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Abstract

Background—Cognitive deficits compromise quality of life and productivity for individuals 

with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine 

pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We 

have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant 

with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive 

endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase 

(KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the 

KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in 

schizophrenia. However, the relationship between KMO variation and cognitive function in 

schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) 

allele on cognitive function in schizophrenia.

Methods—We examined the association of KMO polymorphisms with general 

neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy 

controls.

Results—Consistent with our original report, the KMO rs2275163C>T C (risk) allele was 

associated with deficits in general neuropsychological performance, and this effect was more 

marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the 
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missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. 

Neither variant affected P50 gating.

Conclusions—These data suggest that KMO variation influences a range of cognitive domains 

known to predict functional outcome. Extensive molecular characterization of this gene would 

elucidate its role in cognitive function with implications for vertical integration with basic 

discovery.
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1. Introduction

Cognitive deficits profoundly reduce the quality of life of individuals with schizophrenia, 

and have no effective treatments (Green, 1996; Gold et al., 2000; Green et al., 2000; Harvey 

et al., 2003; Jaaskelainen et al., 2013). Cognitive impairments predict functional outcomes 

(Green et al., 2000; Prouteau et al., 2005; Martinez-Aran et al., 2007), including 

unemployment status (Gold et al., 2002; Caspi et al., 2003; Goldberg and Gomar, 2009; 

Harvey et al., 2012; Sheffield et al., 2013), which partly underlie the high healthcare costs 

associated with schizophrenia (Insel, 2008; Kessler et al., 2008; Soni 2009). Elucidating the 

neurobiological substrates of cognition could identify targets for developing rational pro-

cognitive pharmacology for schizophrenia (Hyman and Fenton, 2003; Gold, 2004; 

Tamminga, 2006; Millan et al., 2012).

Preclinical evidence indicates that the kynurenine pathway (KP) of tryptophan metabolism is 

a valuable target for pro-cognitive drug development (Shepard et al., 2003; Erhardt et al., 

2004; Chess et al., 2007, 2009; Potter et al., 2010; Wonodi and Schwarcz, 2010; Pocivavsek 

et al., 2012; Stone and Darlington, 2013). In the brain as in the periphery (Wolf, 1974; 

Stone, 1993; Guillemin et al., 1999), the KP generates two neuroactive metabolites - 

kynurenic acid (KYNA) and quinolinic acid (QUIN) - shown to modulate critical 

glutamatergic and cholinergic systems that regulate cognitive processes (Morris et al., 1986; 

Davis et al., 1992; Buffalo et al., 1994; Krystal et al., 1994; Newcomer and Krystal, 2001; 

Stone and Darlington, 2013) (Fig. 1). The excitotoxin QUIN is an agonist at glutamatergic 

N-methyl-D-aspartate receptors (NMDAR) (Stone and Perkins, 1981; Schwarcz et al., 1983), 

while KYNA is a competitive, broad-spectrum antagonist at ionotropic glutamate receptors, 

with its greatest affinity at the allosteric site on NMDAR (Perkins and Stone, 1982; Birch et 

al., 1988; Moroni et al., 1988; Foster et al., 1992; Stone, 1993; Parsons et al., 1997; 

Scharfman et al., 2000; Carpenedo et al., 2001; Erhardt et al., 2001b; Rassoulpour et al., 

2005; Stone et al., 2013).

Another action attributed to KYNA is antagonism of α7 nicotinic acetylcholine receptors 

(α7nAChR) (Hilmas et al., 2001; Alkondon et al., 2004; Lopes et al., 2007; Alkondon et al., 

2011a, 2011b), although some studies failed to demonstrate this (Mok et al., 2009; Dobelis 

et al., 2012). Notwithstanding, the emerging hypothesis of KYNA’s role in cognition is 

based on the established roles of NMDAR (Krystal et al., 1994; Malhotra et al., 1996; 

Newcomer et al., 1999; Lahti et al., 2001) and α7nAChR (Kim and Levin, 1996; Newhouse 
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et al., 1997; Levin and Simon, 1998; Rusted et al., 2000) in fundamental cognitive 

processes.

Elevated KYNA levels have been demonstrated in several psychiatric diseases marked by 

cognitive dysfunction, including schizophrenia (Schwarcz et al., 2001; Erhardt et al., 2001a; 

Nilsson et al., 2005; Linderholm et al., 2010; Sathyasaikumar et al., 2011), psychotic bipolar 

disorder (Olsson et al., 2010, 2012; Lavebratt et al., 2014), HIV-associated neurocognitive 

disorders (Baran et al., 2000, 2012), and Alzheimer’s disease (Baran et al., 1999). Relevant 

to schizophrenia, KYNA’s role as an endogenous primary NMDAR antagonist converges 

with the established hypoglutamatergic hypothesis of schizophrenia (see reviews, Coyle, 

1996; Coyle et al., 2003; Javitt, 2007). Evidence from our group suggests that 

downregulation of the KMO gene (OMIM 603538), which encodes kynurenine 3-

monooxygenase (KMO) (EC 1.14.13.9), the rate-limiting microglial enzyme of the KP, 

might be the proximal cause of elevated KYNA levels observed in schizophrenia 

(Sathyasaikumar et al., 2010; Wonodi et al., 2011), a relationship recently investigated in 

KMO knockout mice (Giorgini et al., 2013). We previously showed an association between 

the CC genotype of KMO single nucleotide polymorphism (SNP) rs2275163C>T and 

significantly reduced KMO gene expression in postmortem schizophrenia prefrontal cortex 

from a region related to cognitive function; and in a clinical sample, the KMO risk allele (C) 

was associated with poor performance on oculomotor measures of predictive pursuit and 

visuospatial working memory (Wonodi et al., 2011). However, the relationship between 

KMO variation and cognitive function in humans is unknown. In the present study, we 

hypothesized that the rs2275163C>T risk allele, which was associated with reduced KMO 

messenger RNA (mRNA) expression (which would shunt KP metabolism towards enhanced 

KYNA formation) in our original report, would be associated with poor cognitive 

performance. Because a second non-synonymous variant in KMO, the C (Arg452) allele of 

rs1053230>NT (Arg452Cys) has also recently been associated with reduced KMO mRNA 

expression in brain and lymphoblastoid tissues, and with increased KYNA levels in 

cerebrospinal fluid (Holtze et al., 2012; Lavebratt et al., 2014), we additionally tested as a 

secondary aim, the association of this SNP with cognitive function in our sample. Lastly, we 

explored the effect of the KMO risk allele on P50 gating. Since P50 gating has been shown 

to not be correlated with general cognitive abilities, we anticipated association between the 

risk allele and cognitive function, but not necessarily with P50 suppression.

2. Methods

2.1. Participants

We enrolled a total of 245 unrelated individuals with minimal overlap with participants in 

our original study. Schizophrenia participants (n = 150) were recruited from outpatient 

clinics at the Maryland Psychiatric Research Center. Healthy controls (n = 95) were 

recruited through media advertisements. Since neurophysiological measures may be affected 

by age, particularly in individuals above 60 years (Ross et al., 1999), our endophenotypic 

studies are restricted to subjects between 18 and 58 years. Participants were evaluated with 

the Structured Clinical Interview for DSM-IV (SCID-IV) (First et al., 1997). Diagnosis of 

schizophrenia was based on SCID-IV (patient version). Healthy controls did not meet the 
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criteria for Axis I or II disorders (SCID-IV, nonpatient version). Respondents were excluded 

if they had substance dependence within 6 months prior to study enrollment, current 

substance abuse, or mental retardation. All participants provided written informed consent.

2.2. Cognitive assessment

All participants (n = 245) were administered a broad battery of tests assessing general 

intellectual ability (the Wechsler Abbreviated Scale of Intelligence (WASI)) (Wechsler, 

1999), reading (Wechsler Test of Adult Reading), episodic memory (Logical Memory 

subtest from the WMS III and the Warrington Recognition Memory Test administered with 

a 60 minute delay) (Warrington, 1984), processing speed (Digit Symbol Substitution, Trail 

Making Tests A and B, Semantic Fluency), problem solving (the Wisconsin Card Sorting 

Test and the Making Groups Test), and working memory using the Spatial Span and Letter-

Number Sequencing Tests from the WMS III (Battery, 1944; Reitan and Wolfson, 1971; 

Wechsler, 1997).

2.3. Laboratory procedures

2.3.1. P50 suppression—The P50 gating measures were recorded and processed as 

previously described (Hong et al., 2008) in a subsample of 184 participants (118 

schizophrenia) (Table 1). Smokers refrained from smoking 1 h prior to testing. Participants 

sat in a semi-reclining chair in a sound-attenuated booth and 150 paired-click auditory 

stimuli were presented through headphones. Single trial records were baseline-corrected, 

bandpass filtered, and averaged to obtain the P50 waves. P50 response to the first stimulus 

(S1) was defined as the largest positive-going wave occurring 35-75 ms after the stimulus, 

measured from the trough of the preceding wave to the P50 peak. The S2 P50 was set to ±10 

ms of the latency to S1 P50. Scoring was blinded to diagnostic grouping. The P50 gating 

endpoint outcome measure was the S2/S1 ratio.

2.3.2. SNP genotyping—We genotyped rs2275163C>T and rs1053230C>T (Table 2), 

using TaqMan technology as previously described (Wonodi et al., 2009).

2.4. Statistical analysis

2.4.1. Cognitive and P50 analyses—To combine results from the individual tests in the 

neuropsychological battery into a single global cognitive composite score, we used the 

following procedure. The primary analysis was done using the composite score calculated 

using weights for individual test scores estimated from analysis of the first principal 

component of the cognitive tests. This composite score (“global cognitive composite score”) 

explained 52% of the variance from the cognitive measures, and was examined using 

ANOVA with diagnosis, genotype (presence of minor allele genotype), and diagnosis by 

genotype interaction. The diagnosis by genotype interaction tested whether the magnitude of 

genotype effects was similar between schizophrenia and control participants. Similar models 

were used to examine scores on individual cognitive tests, and P50 gating analysis (S1/S2 

ratio).

2.4.2. Phenotype and SNP association analyses—Prior to SNP analysis, the 

distributions of rs2275163C>T and rs1053230C>T genotypes were evaluated, separately, in 
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European-American and African-American participants for their fit with expectations under 

the Hardy Weinberg equilibrium (Hardy, 1908). Furthermore, we determined the minor 

allele frequencies (MAF) of both SNPs in both ethnic groups and compared them with the 

Global MAF (GMAF) for rs2275163C>T (0.30) and rs1053230C>T (0.12) from dbSNP 

based on 1000 Genomes (Consortium and Abecasis GR, 2010). We further compared allele 

frequencies of rs2275163C>T between our control groups and 1000 Genomes and found 

similar MAF in both European Americans (34.00 in our control samples vs. 35.00 in 1000 

Genomes European Ancestry) and African Americans (17.00 in our control samples vs. 

16.00 in 1000 Genomes African Ancestry). Based on our previous findings (Wonodi et al., 

2011), we compared phenotypes across 2 genotype groups (homozygous CC vs. combined 

CT/TT genotypes). We restricted secondary analysis of the effects of rs1053230C>T on 

cognitive measures to European-American participants only because the current sample of 

African-Americans was too small to reliably test whether the effects of this genotype were 

different in that population.

3. Results

3.1. Cognitive performance and P50 suppression

Schizophrenia and controls were not significantly different on the demographic variables of 

age, sex, or ethnicity (Table 1). Schizophrenia participants had significantly reduced global 

cognitive composite scores (mean [SD], −0.31 [0.96]; n = 150) compared with controls 

(0.46 [0.83]; n = 95) (P < .001), and worse P50 gating (mean [SD], 0.76 [0.27]; n = 118) 

compared with controls (0.62 [0.21]; n = 66) (P < .001).

3.2. Phenotype and SNP association

3.2.1. KMO rs2275163C>T and Cognition (Table 3)—Individuals homozygous for 

the rs2275163C>T (risk) C allele genotype (CC) had a significantly reduced global 

cognitive composite score (mean [SD], −0.23 [1.02]; n = 144) compared with CT/TT 

genotype individuals (0.31 [0.84]; n = 101) (P < .001; effect size = .57). The effect of CC vs. 

CT/TT was smaller in control compared with schizophrenia [Cohen’s d = −0.22 versus d = 

−0.76, respectively; test for interaction; (P = .03)]. In controls, estimated effect sizes for CC 

vs. CT/TT genotype effect were small for all measures (all effect sizes < ±0.3; all P > 0.15). 

In schizophrenia participants, only 3 tests (Logical Memory Test, immediate recall; 

Warrington Recognition Memory Test for Words; Trail Making Test: Part A) for CC vs. 

CT/TT genotype differences were not statistically significant (P < 0.05); for the remainder 

of the tests in schizophrenia individuals, effect sizes for CC vs. CT/TT genotype ranged 

from Cohen’s d = −0.37 to d = −0.76, with all but one > d = −0.50 (Table 3).

3.2.2. KMO rs2275163C>T and P50—There was no main effect of genotype on P50 

gating (P = .16; effect size = −.25), and no statistically significant genotype by diagnosis 

interaction (P = .70). P50 gating in controls with CC genotype was not different from CT/TT 

genotype controls (P = .45; effect size = .19). P50 gating was not different between CC and 

CT/TT genotype schizophrenia participants (P = .17; effect size = −.24) (Fig. 2).
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3.2.3. KMO rs1053230C>T (Arg452Cys) and cognition—Exploratory analyses of 

rs1053230C>T effects on global cognitive composite score in pooled European-American 

control and schizophrenia participants showed a significant main effect of genotype with C 

(Arg452) homozygotes showing poorer global cognitive composite scores (mean [SD], 0.01 

[1.08]; n = 107) compared with CT/TT genotype individuals (0.37 [0.96]; n = 51) (P = .04; 

effect size = .35). However, there was no main effect of diagnosis (P = .33) or genotype × 

diagnosis interaction (P = .80). Global cognition composite score in C (Arg452) homozygous 

controls (0.73 [0.77]; n = 32) was not different from CT/TT genotype controls (0.85 [0.65]; 

n = 25) (P = .56; effect size = −0.16). Global cognition composite score in C (Arg452) 

homozygous schizophrenia participants (−0.30 [1.06]; n = 75) was not different from CT/TT 

genotype patients (−0.10 [1.00]; n = 26) (P = .37; effect size = −0.21).

3.2.4. KMO rs1053230C>T (Arg452Cys) and P50—Exploratory analyses of 

rs1053230C>T effects on P50 gating in pooled European-American control and 

schizophrenia participants showed no main effect of genotype in P50 gating between C 

(Arg452) homozygotes (mean [SD], 0.69 [0.24]; n = 76) and CT/TT genotype individuals 

(0.69 [0.32]; n = 40) (P = .80). While the CC vs. CT/TT genotype difference was not 

significantly different from zero in either control or schizophrenia participants, the effects of 

genotype were in opposite directions in the two groups and were significantly different (test 

for genotype × diagnosis interaction, P = .02). P50 gating in C (Arg452) homozygote 

controls (0.64 [0.19]; n = 21) was not significantly different from CT/TT genotype controls 

(0.53 [0.21]; n = 19) (P = .10; effect size = 0.54). P50 gating in C (Arg452) homozygous 

schizophrenia participants (0.72 [0.28]; n = 55) was not significantly different from CT/TT 

genotype patients (0.85 [0.33]; n = 21) (P = .07; effect size = −0.44).

4. Discussion

To our knowledge, this is the first report suggesting that KMO could be a valid candidate 

gene for general cognitive abilities in humans. While there was some variability in the extent 

of impairment across cognitive measures, the rs2275163C>T CC group performed more 

poorly (arithmetically) on each and every measure. These findings are consistent with our 

original report and preclinical data that demonstrate impairments in spatial working memory 

(Chess et al., 2007) and cognitive flexibility (Pocivavsek et al., 2012, Alexander et al., 2013) 

in rodents following experimental manipulation of KMO function. Of note however, two of 

three measures that did not differ significantly as a function of genotype in our sample 

(effect sizes of −.14 and −.25) were both measures of verbal memory, raising the possibility 

that this particular cognitive function may be less sensitive to KMO variation. It is 

conceivable that the growing evidence linking KMO variation and elevated KYNA levels to 

schizophrenia and psychotic bipolar disorder may be explained by indirect relationships with 

cognitive deficits intrinsic to both disorders. Notably, the original report of association of 

rs2275163C>T and schizophrenia in a Japanese sample was not replicated in an independent 

Japanese sample (Aoyama et al., 2006). We initially used a well-phenotyped discovery 

sample for an endophenotype-based genome wide association screen to prioritize 

biologically plausible candidate genes based on top SNP-hits. Two KMO SNPs, including 

rs2275163C>T, were among the top SNP-hits, which met our criteria to prioritize KMO as a 
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plausible candidate for schizophrenia-related impairments. This motivated further studies 

leading up to our original report in which we found no association with schizophrenia but 

demonstrated an effect on neurocognitive endophenotypes and KMO gene expression 

(Wonodi et al., 2011).

A recent report by Lavebratt et al. (2014) supports and extends our original findings by 

showing downregulated KMO in schizophrenia and psychotic bipolar disorder cortical 

tissues compared with normal control and non-psychotic bipolar disorder specimens. The 

study further showed that KMO polymorphism influenced both KYNA levels in 

cerebrospinal fluid of psychotic bipolar disorder individuals, and KMO mRNA expression in 

lymphoblastoid cell lines. Importantly, similar to schizophrenia, individuals with psychotic 

bipolar disorder exhibit more impaired cognitive performance compared with non-psychotic 

bipolar disorder patients (Martinez-Aran et al., 2008; Hill et al., 2009, 2013; Reilly et al., 

2013). In participants with minimal overlap with our original sample, we show that 

rs2275163C>T CC genotype individuals display marked deficits on a number of measures 

of cognitive performance compared with CT/TT genotype individuals. These genotype 

differences were significantly enhanced in schizophrenia relative to controls, and the effect 

is broad, impacting cognitive functioning in general, rather than being limited to specific 

cognitive abilities. Based on our original findings, we hypothesized that this intronic KMO 

SNP might be in linkage disequilibrium (LD) with a causal variant(s) (Reich et al., 2001; 

Consortium, 2003) that reduces KMO gene function. Further, this risk variant might also be 

in LD with multiple biologically active variants, which interact with each other, epigenetic 

factors, and the environment to increase the risk of cognitive impairments, perhaps, by 

effects on NMDAR function (Maher and LoTurco, 2012; Wang and Zhu, 2014; Wei et al., 

2014) via interaction with AKT3, a recently identified schizophrenia risk gene that maps to 

the same chromosomal region (1q42-44) as KMO (Ripke et al., 2013). Indeed, 

rs2275163C>T is a haplotype tagging SNP, which indicates that it maps to a genomic region 

with high LD and “tags” variation in a particular combination of alleles (Johnson et al., 

2001; Gabriel et al., 2002). Alternatively, rs2275163C>T might influence KMO mRNA 

expression by post-transcriptional and post-translational modifications, including effects on 

microRNAs (miRNAs), which are regulated by genes in intronic regions of protein-coding 

genes via interactions with the 3′ UTRs (Conne et al., 2000; Hobert, 2008; Dahan et al., 

2011; Schizophrenia Psychiatric Genome-Wide Association Study, 2011; Ripke et al., 

2013).

Our finding of a more marked influence of this KMO risk variant on cognitive abilities in 

schizophrenia compared with controls is consistent with “multiple hit” theories of 

schizophrenia (Bayer et al., 1999). In this model, the interplay of multiple susceptibility 

genes (“first hit”) disrupts the intra-and intercellular signaling pathways involved in 

neurodevelopment and primes them for a sustained pathological response to environmental 

insults (“second hit”) that contribute, additively, to increased vulnerability and pathogenesis 

in schizophrenia (Maynard et al., 2001; Cannon et al., 2003). Thus, as previously shown 

with COMT gene (Egan et al., 2001; Thaker et al., 2004) a putative risk variant may be 

associated with more severe cognitive impairments in schizophrenia than in controls. 

Further, evidence suggests that several schizophrenia candidate genes converge on NMDAR 
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function (Stahl, 2007). Exploratory analyses in European-Americans in the current sample 

showed an effect of the functional KMO Arg452Cys variant on global cognitive composite 

score in pooled patients and controls, although there was no genotype by diagnosis 

interaction. Nevertheless, this trend level effect accords with reports showing effects of this 

variant on KMO expression and KYNA levels in European samples (Holtze et al., 2012; 

Lavebratt et al., 2014).

We found no statistically significant association of either KMO variant with P50 

suppression. This implies that KMO variation may influence complex cognition through 

interactions with brain circuitry that are distinct from the inhibitory neuronal mechanisms 

involved in sensory gating (Adler et al., 1982; Freedman et al., 1983). Although the P50 

gating deficit is a highly validated schizophrenia endophenotype (Adler et al., 1992; 

Leonard et al., 1996; Freedman et al., 1997; Adler et al., 1998; Hong et al., 2008), the 

strongest evidence for a relationship of P50 with cognition has been with measures of 

sustained attention and vigilance (Cullum et al., 1993; Erwin et al., 1998; Potter et al., 2006; 

Smith et al., 2010). Accordingly, our results tentatively provide genetic evidence indicating 

that the P50 gating deficit is unrelated to complex cognitive abilities in schizophrenia 

(Thoma et al., 2003; Sanchez-Morla et al., 2013). However, for the Arg452Cys, we did find 

that the estimated effects of genotype in control and schizophrenia participants, while not 

significantly different from zero in either group, were significantly different from each 

other, suggesting further investigation of the effects of this genotype on P50 is warranted. 

Important limitations of this study include the absence of measures of KMO gene 

expression, KYNA, and QUIN. Additionally, we acknowledge that cryptic population 

substratification may have confounded our results in this sample of self-reported ethnicity 

(Pritchard and Rosenberg, 1999). Though we conducted analyses separately in both ethnic 

groups prior to combined genotype-phenotype analyses, and limited the exploratory analyses 

of the functional Arg452Cys variant to European-American participants, we did not use a full 

ancestry informative marker (AIMS) panel for ancestry inference and thus could not adjust 

for potential population admixture (Pritchard et al., 2000). Lastly, the lack of comprehensive 

information on participants’ educational levels is a further limitation in this study.

In summary, our results support the need for further studies to extensively characterize the 

diversity of KMO variation in combination with expression quantitative trait loci (eQTLs) 

(Nica et al., 2010; Montgomery and Dermitzakis, 2011) to ascertain their relationship with 

cognitive abilities in humans. This would generate new knowledge for vertical integration 

with basic discovery and could uncover novel targets for developing procognitive 

pharmacology for people with schizophrenia.
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Fig. 1. 
The kynurenine pathway of tryptophan metabolism. Tryptophan metabolism is initiated by 

oxidative cleavage by tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase 

(IDO). In the brain, the pivotal metabolite and substrate kynurenine is enzymatically 

converted to the neuroactive metabolites, quinolinic acid (QUIN) and kynurenic acid 

(KYNA) in microglia and astrocytes, respectively. No neuroactivity has been determined for 

anthranilic acid and 3-HK to date (Stone, 1993). A persistent downregulation of microglial 

KMO mRNA would shunt KP metabolism towards enhanced KYNA formation, which 

would result in increased inhibition of NMDA receptors (NMDA-R) and neuronal α7 

nicotinic receptors (α7nACh-R), with effects on fundamental cognitive processes.
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Fig. 2. 
No effect of KMO rs2275163C>T risk variant on P50 suppression. A: Schizophrenia 

participants showed significantly reduced mean P50 suppression compared with healthy 

controls: **P = .001 (analysis of variance). Error bars indicate SD. HC, healthy control: n = 

66; SZ, schizophrenia: n = 118. B: No effect of KMO risk variant on mean P50 suppression 

in pooled schizophrenia and healthy control participants. The collapsed carriers of the minor 

allele (TT and CT) (blue bar) are compared with carriers that are homozygous for the major 

allele (CC) (red bar): P = .16 [NS] (analysis of variance). TT and CT: n = 68; CC: n = 116. 
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HC, healthy control: n = 66; SZ, schizophrenia: n = 118. Error bars indicate SD. C: No 

effect of KMO risk variant on mean P50 suppression in schizophrenia participants. The 

collapsed carriers of the minor allele (TT and CT) (blue bar) are compared with carriers that 

are homozygous for the major allele (CC) (red bar): P = .17 [NS] (analysis of variance post 

hoc test). TT and CT: n = 42; CC: n = 76. Effect size, Cohen’s d = −.24. SZ, schizophrenia: 

n = 118. Error bars indicate SD. D: No effect of KMO risk variant on mean P50 suppression 

in healthy control participants. The collapsed carriers of the minor allele (TT and CT) (blue 

bar) are compared with carriers that are homozygous for the major allele (CC) (red bar): P 

= .45 [NS] (analysis of variance post hoc test). TT and CT: n = 26; CC: n = 40. Effect size, 

Cohen’s d = .19. HC, healthy control: n = 66. Error bars indicate SD.
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Table 1

Demographic and phenotypic measures of study participants.

Mean (SD)
a

Healthy control

participants
b

Schizophrenia

patients
c

P
value

Age, years 39.24 ± 12.6 40.97 ± 11.0 .26

Female sex, % 43.2 48.7 .43

Ethnicity (EA/AA), % 62.1/37.9 72.0/28.0 .12

Global cognitive
composite

 score
d

0.46 ± 0.83 −0.31 ± 0.96 <.001

P50 Gating
e 0.62 ± 0.21

(n = 66)
0.76 ± 0.27
(n = 118)

<.001

Abbreviations: AA, African-American; EA, European-American.

a
Data are presented as mean (SD) unless otherwise indicated.

b
n = 95 unless otherwise indicated.

c
n = 150 unless otherwise indicated.

d
On the basis of the first principle component of the Neuropsychological Test Battery.

e
Based on P50 suppression of auditory event-related potential.
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