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Abstract

Very little is known about how auditory categories are learned incidentally, without instructions to 

search for category-diagnostic dimensions, overt category decisions, or experimenter-provided 

feedback. This is an important gap because learning in the natural environment does not arise from 

explicit feedback and there is evidence that the learning systems engaged by traditional tasks are 

distinct from those recruited by incidental category learning. We examined incidental auditory 

category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time 

(SMART) task, in which participants rapidly detect and report the appearance of a visual target in 

one of four possible screen locations. Although the overt task is rapid visual detection, a brief 

sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct 

sound categories that predict the location of the upcoming visual target. These many-to-one 

auditory-to-visuomotor correspondences support incidental auditory category learning. 

Participants incidentally learn categories of complex acoustic exemplars and generalize this 

learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar 

variability is more tightly coupled to the visuomotor associations than when the same stimulus 

variability is experienced across trials. We relate these findings to phonetic category learning.
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When we recognize red wines as Barbera, mushrooms as edible, and children’s cries as 

joyful, we rely on categorization. Our ability to treat distinct perceptual experiences as 

functionally equivalent is vital for perception, action, language and thought. There is a rich 

literature on category learning (Ashby & Maddox, 2005; Cohen & Lefebvre, 2005; Seger & 

Miller, 2010), with the vast majority of research conducted using visual objects and training 

paradigms that capitalize on overt category decisions and explicit feedback. Although we 

have learned much from this traditional approach, the results of such overt category training 
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tasks with visual objects may not generalize to category learning in all modalities or all 

natural environments.

Speech highlights this issue. The acoustic complexity of speech presents an auditory 

category-learning challenge for learners. Complex multidimensional acoustic attributes 

define speech categories; as many as 16 different acoustic dimensions co-vary with the 

consonants /b/ and /p/, for example (Lisker, 1986). Further, the significance of various 

acoustic dimensions is language-community dependent. For instance, among American 

English listeners, spectral quality is a strong cue to vowel categories, as in heel versus hill 

(Hillenbrand, Getty, Clark, & Wheeler, 1995). By contrast, British English listeners from the 

South of England rely much more on vowel duration than spectral quality to distinguish 

these categories (Escudero, 2001). Further complicating the demands on the listener, there is 

also concurrent acoustical variability unrelated to consonant or vowel category identity, 

which is associated instead with the talker’s voice, emotion, and even with room acoustics. 

The mapping from acoustics to phonemes can be understood as a process of auditory 

perceptual categorization (see Holt & Lotto, 2010), whereby listeners must learn to 

discriminate and perceptually-weight linguistically significant acoustic dimensions and to 

generalize across within-category acoustic variability in speech.

Although perceptual categorization has long been studied in the cognitive sciences (for a 

review see Cohen & Lefebvre, 2005), the challenges presented by speech signals are 

somewhat different from those that have motivated most research on categorization. Speech 

category exemplars are inherently temporal in nature, with the information signaling 

categories spread across time. Moreover, unlike typical ‘stimulus-response-feedback’ 

laboratory tasks, speech category acquisition ‘in the wild’ occurs under more incidental 

conditions, without instructions to search for category-diagnostic dimensions, overt category 

decisions, or experimenter-provided feedback.

Beyond ecological validity, this is an important issue because there is growing evidence that 

overt and incidental learning paradigms draw upon neural substrates with distinctive 

computational specialties (e.g. Doya, 1999; Lim, Fiez, Wheeler, & Holt, 2013; Tricomi, 

Delgado, McCandliss, McClelland, & Fiez, 2006). Indeed, research across multiple fields 

has shown that stimulus structure (Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005; 

Maddox, Ing, & Lauritzen, 2006), feedback (Maddox & David, 2005), and task timing 

(Ashby, Maddox, & Bohil, 2002; Maddox, Ashby, Ing, & Pickering, 2004) can have a 

considerable influence on the category learning mechanisms that are recruited (in the 

auditory domain see Chandrasekaran, Yi, & Maddox, 2014). To fully understand the general 

principles underlying category learning, it is vital to understand incidental category 

acquisition.

In the auditory domain, there has been some recent progress in developing approaches to 

studying incidental learning (Seitz et al., 2010; Vlahou, Protopapas, & Seitz, 2012; Wade & 

Holt, 2005). Seitz et al. (2010) report that participants’ discrimination of sub-threshold 

nonspeech sounds improves under task-irrelevant perceptual learning paradigms (Seitz & 

Watanabe, 2009) whereby sub-threshold sounds are presented in a manner that is temporally 

correlated with other, supra-threshold task-relevant sound stimuli. Even though participants 
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do not attend to the sub-threshold sounds, these sounds’ alignment with task-relevant goals 

leads participants to learn about them. Quite surprisingly, the magnitude of this incidental 

learning is comparable to that achieved through explicit training with direct attention to the 

sounds, overt decisions, and trial-by-trial performance feedback.

Vlahou et al. (2012) have extended this auditory task-irrelevant perceptual learning 

approach (Seitz & Watanabe, 2009) to a difficult non-native speech contrast. These studies 

are innovative in that they examine incidental auditory perceptual learning. However, they 

do not specifically address auditory category learning. Instead, in their approach, learning is 

measured through improved discriminability thresholds for trained sounds, which may lay a 

sensory foundation from which to build new auditory categories. However, the relationship 

of learning in this paradigm to category acquisition remains to be determined. Highlighting 

the difference, task-irrelevant perceptual learning tends to be limited to stimuli experienced 

in training, whereas generalization to novel exemplars is a hallmark of categorization.

Wade and Holt (2005) provide more direct evidence that implicit task relevance can result in 

auditory category learning. In their task, participants’ objective is to earn points by 

executing actions to shoot and capture aliens that emerge at specific locations within a 

space-themed videogame. The task is largely visuomotor, but it is structured such that sound 

can support success in the game. Most significantly, each alien is associated with multiple, 

acoustically-variable sounds drawn from an artificial nonspeech auditory category. Upon 

each appearance of an alien, sounds from its corresponding auditory category are played 

repeatedly. As the game progresses to more challenging levels the pace becomes faster and 

generalizing across the acoustic variability that characterizes within-category sound 

exemplars facilitates game performance. Players can hear an approaching alien before 

seeing it appear. Thus, if players have learned the sound categories’ relationship with the 

aliens, they can get a head start on executing the appropriate action. Players may capitalize 

on the predictive relationship between sound category and game action although they 

receive no explicit instruction about the relationship’s existence or utility. Wade and Holt 

argue that this predictive relationship encourages participants to learn to treat acoustically 

variable within-category sounds as functionally equivalent, i.e., to categorize the sounds. 

However, the learning is incidental, in that it involves no instructions to search for category-

diagnostic dimensions, no overt category decisions, and no explicit categorization-

performance feedback. Learners’ goals and attention are not directed to sound 

categorization. Yet, participants quickly learn the sound categories and generalize to novel 

exemplars (Leech, Holt, Devlin, & Dick, 2009; Lim et al., 2013; Lim & Holt, 2011; Liu & 

Holt, 2011; Wade & Holt, 2005).

Successful auditory category learning within this videogame engages putatively speech-

selective left posterior superior temporal cortex for processing the newly-acquired 

nonspeech categories (Leech et al., 2009; Lim et al., 2013) and warps perceptual space in a 

manner like that observed in speech category acquisition (Liu & Holt, 2011). The learning 

evoked in this incidental training task is also effective in speech category learning. Adult 

native-Japanese second-language learners of English significantly improve in categorizing 

English /r/-/l/ (a notoriously difficult second-language phonetic learning challnage, Bradlow, 

Pisoni, Akahane-Yamada, & Tohkura, 1997; Ingvalson, Holt, & McClelland, 2012; 
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Ingvalson, McClelland, & Holt, 2011; Lively, Pisoni, Yamada, Tohkura, & Yamada, 1994) 

with just 2.5 hours of incidental training within the videogame (Lim & Holt, 2011).

Studies like these move us closer to understanding the nature of learning under naturalistic 

task demands, in that they do not involve overt instructions to search for category structure, 

explicit categorization decisions, or trial-by-trial experimenter-provided feedback. However, 

many important questions remain regarding the character of incidental auditory category 

learning and the processes underlying it.

In the present research, we focus on two of these issues. The first is related to the incidental 

task demands that are theorized to promote learning in the Wade and Holt (2005) 

videogame. By design, the videogame models a complex array of factors to simulate the 

functional use of sound categories in a naturalistic environment. Participants actively 

navigate the videogame environment and encounter rich multimodal associations and 

predictive relationships between sound categories and game events. They also experience 

distributional variability in category exemplars, and a strong relationship between sound 

category learning and videogame success. Any of these factors might contribute to category 

learning.

Wade and Holt (2005, see also Lim & Holt, 2011; Lim et al., 2013) argue that the consistent 

temporal correlation of the visual (alien) and motor (response to the alien) dimensions with 

the auditory categories may serve as the ‘representational glue’ that binds together 

acoustically-distinct category exemplars in the incidental training. This is an interesting 

possibility because it treats co-occurring stimulus and response dimensions as teaching 

signals for learning. However, the richness of the cues available in the videogame makes it 

impossible to test this hypothesis directly within the videogame paradigm. In the present 

studies, we develop and use a simplified incidental training task -- the Systematic 

Multimodal Associations Reaction Time (SMART) task -- to assess the influence of 

visuomotor associations in binding acoustically-variable exemplars together in incidental 

category learning. We hypothesize that these associations support incidental auditory 

category learning.

The second issue concerns variability. Research in speech category learning has emphasized 

the importance of experiencing high acoustic-phonetic variability in training. Experience 

with multiple speakers, phonetic contexts, and exemplars seems to promote non-native 

speech category learning and generalization among adult learners (Bradlow et al., 1997; 

Iverson, Hazan, & Bannister, 2005; Jamieson & Morosan, 1989; Wang, Spence, Jongman, & 

Sereno, 1999). This notion has been highly influential in empirical and theoretical 

approaches to speech category learning. However, it has arisen from studies of extensive 

training across multiple training sessions spanning days or weeks that have examined 

learning via explicit, feedback-driven tasks in which listeners actively search for category-

diagnostic information. How variability impacts incidental auditory learning remains an 

open question.

In the present studies, we address the issue of variability in incidental auditory category 

learning in a way that differs from prior research. Thus far, studies examining the impact of 
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variability have typically compared category learning across stimulus sets characterized by 

high versus low acoustic variability. In the present studies, we hold acoustic variability 

constant across experiments and manipulate the relationship of within-category exemplar 

variability to the visuomotor associations that we predict will serve as “glue” that binds 

exemplars into categories. We predict more robust auditory category learning under 

conditions whereby within-category acoustic variability is experienced in association with 

the visuomotor dimensions compared to the same variability experienced across trials.

Across five experiments, we investigate incidental auditory category learning for the same 

artificial, nonlinguistic auditory categories studied by Wade and Holt (2005). Experiment 1 

tests the main hypothesis that auditory categories can be learned incidentally as participants 

engage in a seemingly unrelated visual detection task. Experiments 2a and 2b examine 

whether the learning observed in Experiment 1 depends upon the visuomotor associations 

we hypothesize to be significant in driving learning. Experiment 3 tests the influence of 

exemplar variability on incidental learning and Experiment 4 doubles the length of 

incidental training to compare the outcome to the impact of variability on learning.

The SMART Task

The present experiments examine these questions in the context of a novel incidental 

training task – the Systematic Multimodal Associations Reaction Time (SMART) task. This 

task builds from the visuomotor associations we hypothesize to be significant in driving 

learning in the Wade and Holt (2005) videogame task, but strips away the complexity of the 

videogame. It thus allows direct assessment of the influence of visuomotor associations in 

binding acoustically-variable exemplars together in incidental category learning.

In the SMART task, participants must rapidly detect the appearance of a visual target in one 

of four possible screen locations and report its position by pressing a key corresponding to 

the visual location. The primary task is thus visual detection. However, a brief sequence of 

sounds precedes each visual target. Unknown to participants, the sounds are drawn from one 

of four distinct sound categories. This basic version of the paradigm mimics some of the 

aspects of incidental training paradigms thought to be important in learning (Lim & Holt, 

2011). There is a multimodal (auditory category to visual location) correspondence that 

relates variable sound category exemplars to a consistent visual object, as in the Wade and 

Holt (2005) videogame. This mapping is many-to-one, such that multiple, acoustically-

variable sound category exemplars are associated with a single visual location (akin to the 

single alien in the videogame). Likewise, sound categories are predictive of the action 

required to complete the task; in the case of the SMART task, they perfectly predict the 

location of the upcoming visual detection target and corresponding response button to be 

pressed. As with the Wade and Holt (2005) task, the SMART task makes it possible to 

investigate whether participants incidentally learn auditory categories during a largely 

visuomotor task. However, the SMART task characteristics are straightforward by 

comparison to the Wade & Holt (2005) first-person interactive videogame, thereby allowing 

task manipulations to test the factors necessary and sufficient to produce robust incidental 

auditory category learning and generalization.
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We assess category learning with two measures. The first is more covert and implicit, using 

changes in visual target detection time as a metric. In the first three blocks of the 

experiment, there is a perfect correlation between the sound categories and the location of 

the upcoming visual target. In the terms used above, the visuomotor demands of the task 

provide a strong signal to bind within-sound-category variability. In a fourth test block, 

scrambling the mapping between location and sound category destroys this relationship. If 

participants incidentally learn about the sound categories in the first three blocks then we 

expect visual detection times to be slower in the random (fourth) test block relative to the 

(third) block that preceded it. We refer to this implicit measure of auditory category learning 

as the RT Cost. It can be observed without overt auditory categorization decisions or 

responses. Participants are not alerted to the relationship of the sound to the task and the 

acoustic variability among within-category sound exemplars assures that there is no simple 

sound-location association.

We also measure category acquisition via an overt sound categorization task that follows the 

SMART task. In this task, participants hear novel sound exemplars drawn from the sound 

categories experienced during the SMART task and guess the location where the visual 

target would be most likely to appear. However, no visual targets appear in this task and 

there is no feedback about the correctness of responses. This is thus a strong assessment of 

generalization of incidental category learning to novel, category-consistent stimuli. It also 

requires that participants apply the newly learned auditory categories in an explicit task that 

differs from the learning context. This task presents the opportunity to examine correlations 

of overt category labeling to the more implicit RT Cost measure collected in the SMART 

task.

Experiment 1

In Experiment 1 and the experiments that follow, we adopt the same artificial nonspeech 

auditory categories studied by Wade and Holt (2005; see also Emberson, Liu, & Zevin, 

2013; Leech et al., 2009; Lim et al., 2013; Liu & Holt, 2011). The purpose of Experiment 1 

is to test whether a predictive relationship between sound categories and the visuomotor 

aspects of the task (location, response) is sufficient to result in learning the complex auditory 

categories, and to generalize learning to novel exemplars. Our overarching goal for the 

entire set of experiments is to understand the factors that drive incidental auditory category 

learning.

Methods

Participants—In this and all experiments, participants were recruited from the Carnegie 

Mellon University community. They received payment or course credit, had normal or 

corrected-to-normal vision, and reported normal hearing. Twenty-five participants were 

tested in Experiment 1.

Stimuli—The artificial, complex nonspeech sound categories of Wade and Holt (2005; see 

also Emberson et al., 2013; Leech et al., 2009; Liu & Holt, 2011) were used in Experiment 

1, and all experiments that follow. Each auditory category experienced in the SMART task 

was composed of six sound exemplars. Two of the categories were ‘unidimensional’, and 
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were differentiated by a single, perceptually salient acoustic dimension. The other two 

categories were ‘multidimensional’ and were defined such that no single acoustic dimension 

determined category membership (see Figure 1 for schematized versions of the six 

exemplars for each category). Across categories, each sound exemplar was 250 ms in 

duration and was created by combining a sound made of a lower-frequency spectral peak 

with another sound made of a higher-frequency spectral peak. Sounds drawn from the 

unidimensional categories shared the same lower-frequency spectral peak, namely a 100 ms-

long 600 Hz square wave carrier that linearly transitioned to a 300-Hz offset frequency 

across the last 150 ms of the stimulus. Similarly, sounds from each multidimensional 

category had identical lower-frequency spectral peak characteristics; for these sounds, the 

143-Hz square wave carrier transitioned linearly from a 300-Hz starting frequency across 

150 ms to 600 Hz, where it was steady-state for the remaining 100 ms of the stimulus.

Uni- and multi-dimensional exemplars were differentiated by the dynamics of the higher 

spectral peak. The unidimensional category sounds’ high spectral peak started and remained 

at a given steady-state frequency for 100 ms, and then transitioned to an offset frequency 

across 150 ms. By contrast, the multidimensional exemplars’ higher peak immediately 

transitioned across 150 ms from an onset frequency, and then remained at a given steady-

state frequency for the following 100 ms. For multidimensional categories, the high spectral 

peak was derived from a sawtooth wave of periodicity 150 Hz; for unidimensional stimuli, it 

was derived from bandpass-filtered uniform random noise1. Across all categories, the 

steady-state portion of the high-frequency peak varied across exemplars in center frequency 

from 950 to 2950 Hz in 400-Hz steps, thereby carrying no first-order information to 

category membership.

The linear transitions from the high peak steady-state frequencies were determined by the 

steady-state frequency and a category-specific offset frequency to which the high peak 

transitioned. But, to prevent listeners from using the onset/offset frequency alone to 

determine category membership, the high peak transitioned only about 83% of the distance 

to the (canonical) onset/offset frequency. As a result, the high peak onset/offset frequencies 

varied somewhat across exemplars within a category.

The unidimensional category offset frequencies were chosen such that the categories (UD1/

UD2) were defined by an upward or downward high-peak frequency trajectory, as shown in 

Figure 1. Since the offset loci were substantially higher (UD1, 3950 Hz) or lower (UD2, 350 

Hz) than the steady-state frequencies (varying between 1000 Hz to 3000 Hz, depending on 

exemplar), each exemplar within a category possessed a falling or rising high-peak offset 

transition, with somewhat different slopes and offset-frequencies. This created a 

perceptually salient cue to category membership that listeners are able to use fairly well to 

group stimuli (Emberson et al., 2013; Wade & Holt, 2005).

1White noise sound sources were generated at 22050 Hz and filtered with an eighth-order elliptical bandpass filter with 2-dB peak-to-
peak ripple, 50-dB minimum attenuation, and 500-Hz bandwidth using Matlab (Mathworks, Inc.). After filtering, all spectral peaks 
(square/sawtooth wave and filtered white noise) were equalized for RMS amplitude within and across categories, and 25-ms linear 
onset and offset amplitude ramps were applied.
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Unlike the higher spectral peak transitions present in the unidimensional categories, the 

onset frequencies for the high peak in the multidimensional categories (MD1/MD2) were 

chosen so that the direction of the high peak transition provided no first-order acoustic 

information with which to differentiate the two categories. Here, onset frequencies (2550 Hz 

for MD1, 1350 Hz for MD2) fell within the range (1000 Hz to 3000 Hz) of potential steady-

state frequencies, which were identical over both multidimensional categories. Hence, high 

spectral peak onset transitions in both MD1 and MD2 varied from steeply increasing in 

frequency, to flat to slightly decreasing in frequency (see Figure 1). The multidimensional 

categories thus lacked consistent necessary and sufficient single cues to category 

membership, a characteristic intended to model the sound categorization challenge presented 

by the notoriously non-invariant nature of acoustic dimensions to phonetic categories. 

Nonetheless, consistent with the characteristics of many phonetic categories (Lindblom, 

1996; Lindblom, Brownlee, Davis, & Moon, 1992), the multidimensional categories are 

linearly separable in higher-dimensional acoustic space. Although there is no first-order 

acoustic cue with which to differentiate these categories, transition slope and steady-state 

frequency information provide reliable higher-order information.

In addition to the six exemplars defining each of the categories during training, five 

additional exemplars per category were created and reserved for testing generalization of 

category learning to novel exemplars. These stimuli had steady-state frequencies 

intermediate to those of the training stimuli (900 Hz to 2500 Hz, in 400-Hz steps). In other 

respects their acoustic characteristics matched those of their category, as described above.

Procedure—All testing took place in a sound-attenuated chamber with participants seated 

directly in front of a computer monitor. Sounds were presented diotically over headphones 

(Beyer, DT-150).

SMART Visual Detection Task: Participants first performed a visual detection task in the 

Systematic Multimodal Associations Reaction Time (SMART) paradigm (see Figure 2). 

Four rectangles organized horizontally across the computer monitor were present throughout 

the experiment. On each trial, a red X (the visual target) appeared in one of four rectangles. 

Across trials, assignment of the X to one of the four rectangles was random; unlike 

traditional serial reaction time tasks (a well-studied incidental learning paradigm; Nissen & 

Bullemer, 1987), there was no underlying sequence in the appearance of X’s across trials. 

Using the fingers of the dominant hand, participants indicated the position of the X as 

quickly and accurately as possible by pressing the U, I, O or P key on a standard keyboard; 

the keys’ left-to-right position mapped straightforwardly to the horizontal screen position of 

the rectangles. Before the appearance of the visual target, participants heard five repetitions 

of a single sound category exemplar (250 ms sounds, 0 ms ISI, 1250 ms total duration 

followed immediately by the visual target).

Unbeknownst to participants, the sound category from which each exemplar was drawn 

perfectly predicted of the horizontal position where the visual target would appear (see 

Figure 2). For a given subject, presentation of five repetitions of a randomly-selected UD1 

exemplar might always precede the appearance of the X in the left-most rectangle and 

thereby be associated with pressing ‘U’ on the keyboard. (Note that assignment of sound 
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categories to horizontal position was counterbalanced across participants). Importantly, this 

was not a simple associative single-sound-to-position mapping. Each sound category was 

defined by six complex, acoustically-variable exemplars. Associating the visual target 

position with the preceding sounds required participants to begin to treat the perceptually 

discriminable sounds defining a category as functionally equivalent in signaling visuospatial 

position. Note that the task did not require that participants make use of this functional 

relationship between sound category and visual target location; the task could be completed 

perfectly based on visual information alone. However, since the sound category predicts the 

upcoming spatial position of the visual target, visual detection reaction time (RT) can serve 

as an indirect measure of sound category learning. If participants come to rely on the sound 

categories to direct responses to the visual targets, then detection responses should be slower 

(RT Cost) when the relationship is destroyed.

At the beginning of the experiment, participants completed eight practice trials for which 

there was no correlation between sound category and the position of the visual target. 

(Practice trials were identical to experimental trials in all other respects). Following practice, 

there were 3 blocks of trials for which there was a perfect correlation between sound 

category and visual target location. Each of these blocks had 96 trials (4 sound categories x 

6 exemplars x 4 repetitions of each exemplar). After these three blocks, there was a fourth 

block in which sound category identity was no longer predictive of the position in which the 

visual target would appear. In this block, assignment of sound to visual position was fully 

random; any sound exemplar could precede presentation of the visual target in any position. 

Block 4 was somewhat shorter than the other blocks (48 trials) so that experience with the 

random mapping would be less likely to erode any category learning achieved across Blocks 

1–3. The final, fifth, block restored the relationship between sound category and the location 

of the upcoming visual target. This served to re-establish category learning prior to the overt 

categorization task.

Participants were encouraged to rest briefly between blocks. Reaction times (RTs) were 

measured from the onset of the visual detection target to the press of the response key.

Overt Categorization Task: A ‘surprise’ explicit sound categorization test immediately 

followed the SMART visual detection task. On each trial, participants heard a sound 

exemplar presented five times and observed four rectangles arranged horizontally, just as in 

the SMART task. Using the dominant hand and same keys (U, I, O, P) as used in the 

SMART task, participants guessed which visual location matched the sound. No visual 

targets were presented in the overt task and there was no feedback. Therefore participants 

could not learn about auditory category in the course of the overt task. Sound-category 

exemplars in the test were the five novel sounds created for each sound category. These 

sounds were not experienced in the SMART task and thus tested generalization of category 

learning to novel exemplars, a characteristic element of categorization.

Results

Results for all experiments are shown in Figures 3 and 4; Experiment 1 results are in the top 

left-hand corner of Figure 3 and the left-most bar of Figure 4.
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SMART Visual Detection Task: Trials for which there was a visual detection error 

(M=3%) or response time (RT) longer than 1500 ms or shorter than 100 ms (M=2%) were 

excluded from analyses. A repeated measures analysis of variance (ANOVA) revealed a 

significant main effect of Block, F(4,96)=4.25, p=.003, ηp
2=.150. Central to the hypotheses, 

there was a significant RT Cost, where RT Cost = RTBlock4 – RTBlock3, t(24)=3.69, p=.001. 

As seen in Figure 3, participants were on average 38 ms faster to detect the visual target in 

Block 3 (consistent sound category to location mapping) compared to Block 4, when the 

sound category/location relationship was destroyed. This indicates that participants were 

sensitive to the relationship between sound category and visual target and suggests that RT 

Cost can serve as an index of category learning collected online during the incidental 

SMART training task.

A repeated measures ANOVA revealed no significant differences in RT cost for the two 

types of categories, F < 1.

Overt Categorization Task: As an overt measure of category learning, we used 

participants’ accuracy in explicitly matching novel sound category exemplars with visual 

locations consistent with the category-location relationship encountered in the SMART task. 

The sounds tested in the overt categorization task were not heard during the visual detection 

task and thus generalization -- a hallmark of category learning -- was required for accurate 

matching. Participants reliably matched the novel sounds to the experienced visual locations 

at above-chance levels, t(24)=6.36, p<.0001 (M=49.73, S.E.=3.89). This was true for both 

unidimensional, t(24)=5.77, p<.0001, (M=52.62, S.E.=4.79), and multidimensional, 

t(24)=5.80, p<.0001, (M=46.84, S.E.=3.76), sound categories.

Relationship Between Implicit and Overt Measures: There was a significant positive 

relationship between RT Cost and category labeling accuracy in the overt categorization task 

(r =0.596, p=0.001). The slower that visual detection RTs were during the random sound-to-

location mapping in Block 4 (relative to the average in Block 3), the more accurate labeling 

was of novel generalization category exemplars. This is evidence that the online measure of 

category learning collected during incidental learning in the SMART task relates to 

generalization of category learning assessed with a more traditional overt labeling task.

Experiments 2a and 2b

The results of Experiment 1 are consistent with incidental auditory category learning via the 

link to the visuomotor aspects of the primary visual detection task. However, it is possible 

that the learning arose instead from mere exposure to the sound input. Another alternative 

hypothesis is that participants in Experiment 1 did not learn auditory categories per se, but 

instead learned sound-location associations between individual sound exemplars and their 

associated visual positions. We address these possibilities in Experiments 2a and 2b.

In Experiment 2a, we test whether incidental category learning generalizes to novel category 

exemplars within the SMART task. If participants learn sound-location associations, and not 

auditory categories, then introducing new category exemplars should produce a RT Cost 

because no sound-location associations will be known for these stimuli. However, if 
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participants are learning auditory categories, then they may generalize to these new 

category-consistent exemplars. In this case, we would observe no RT Cost.

In Experiment 2b, we address the concerns above in a different way. Across blocks, 

participants experience a deterministic mapping between visual location and sound, but the 

exemplars mapped to a particular visual location are not necessarily drawn from the same 

sound category. Thus, overall category exemplar exposure is identical to Experiment 1, but 

within-category distributional acoustic regularity is not associated with the visuomotor 

mappings inherent in the SMART task. If listeners are learning from mere exposure then we 

should observe overt category labeling accuracy on par with that in Experiment 1.

Methods

Participants—Twenty-six participants participated in Experiment 2a. Twenty-five 

participated in Experiment 2b. Participants had the same characteristics as those of 

Experiment 1.

Stimuli—Stimuli were identical to those of Experiment 1.

Procedure—The procedure was identical to Experiment 1, except as described below.

Experiment 2a: Blocks 1–3 and Block 5 of the SMART task were identical to those of 

Experiment 1. However, in Block 4 novel, but category-consistent, sounds were presented. 

This maintained the category-to-location mapping with category exemplars that had not 

been previously encountered. The generalization stimuli used in the overt categorization test 

of Experiment 1 served as the novel generalization sounds in Block 4. To the extent that 

participants learn the auditory categories across Blocks 1–3 and generalize this learning in 

Block 4, there should be no RT Cost from Block 3 to Block 4. Experiment 2a did not 

include an overt categorization test because the generalization stimuli used as a test of 

category generalization in the overt labeling task of Experiment 1 were used instead in 

Block 4 of the SMART task.

Experiment 2b: In this experiment, six sound exemplars were again deterministically 

mapped to each visual target location, but unlike Experiment 1 and Experiment 2a, the set of 

exemplars associated with each location did not come from a single sound category. The 

exemplar-to-location mapping was maintained across Blocks 1–3, and in Block 5. In Block 

4, a new mapping of exemplars to location was introduced. This mapping also did not obey 

the category structure of the stimuli; sounds from any category could be assigned to any 

location, so long as it was not the same location experienced across Blocks 1–3 and 5. If 

listeners learned specific sound-location associations, then disrupting the exemplar-

consistent (but not category-specific) associations established in Blocks 1–3 with a new 

sound-to-location randomization in Block 4 should produce a RT Cost. However, we expect 

no RT Cost if the learning observed in Experiment 1 was not a simple sound-location 

association. Such a finding also would rule out exemplar memorization and mere exposure 

as the drivers of the Experiment 1 findings. Experiment 2b included an overt categorization 

test identical to that of Experiment 1.

Gabay et al. Page 11

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Experiment 2a

SMART Visual Detection Task (see Figure 3, top middle panel): Trials for which there 

was a visual detection error (M=3%) or response time (RT) longer than 1500 ms or shorter 

than 100 ms (M=3%) were excluded from analyses. A repeated measures analysis of 

variance (ANOVA) revealed no significant main effect of Block, F(4,100)<1. A planned t-

test showed that introducing novel generalization stimuli in Block 4 was not associated with 

a significant RT Cost (RTBlock4 – RTBlock3), t(25)=.45, p=.66 (M=2 ms). In other words, 

although completely new sounds were introduced in Block 4, participants responded just as 

quickly to the visual target. Thus, any learning that occurred over Blocks 1–3 generalized to 

novel category exemplars in Block 4. This pattern of generalization is consistent with 

category learning in Experiment 1, rather than learning item-specific sound-location 

associations.

Experiment 2b

SMART Visual Detection Task (see Figure 3, top right panel): Trials for which there was 

a visual detection error (M=3%) or response time (RT) longer than 1500 ms or shorter than 

100 ms (M=1%) were excluded from analyses. A repeated measures analysis of variance 

(ANOVA) revealed no significant main effect of Block, F(4, 96)=1.54, p=0.19. There was 

no significant RT Cost, t(24)=−0.70, p=0.49. Thus, although there was a consistent sound 

exemplar to visual location mapping in Blocks 1–3, disruption of this mapping did not affect 

the speed at which participants detected the visual targets. This is in contrast to the 

consequences of disrupting the sound category to visual location mapping in Experiment 1. 

These results suggest that the pattern of responses observed in Experiment 1 was not the 

result of mere exposure to the sound exemplars, memorization of individual sound-location 

mappings, or simple sound-location associations.

Overt Categorization Task (see Figure 4, middle bar): Consistent with the lack of an RT 

cost in the incidental SMART task, participants’ accuracy in overtly matching novel sound 

category exemplars and visual locations was not significantly different from chance for 

either uni-dimensional (t(24)=.42, p=0.68) or multi-dimensional (t(24)=−0.52, p=0.61) 

categories. Categories composed of arbitrary samplings of exemplars with no coherent 

distributional structure in perceptual space were not learned, suggesting that structured 

distributions are an important factor in incidental category learning. We return to this point 

in the General Discussion.

Relationship Between Implicit and Overt Measures: There was no correlation between 

RT Cost (Block4RT-Block3RT) and overt categorization accuracy, r=.05, p=.4.

Experiment 3

Experiments 2a and 2b confirmed that the results of Experiment 1 were consistent with 

auditory category learning and did not arise from mere exposure to the stimuli or from 

learning individual auditory-visual associations. Moreover, Experiment 2b highlighted the 

importance of category exemplars that sample an orderly distribution in perceptual space in 
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supporting learning in the incidental task. Whereas participants learned the auditory 

categories when six acoustically-variable exemplars sampled from a structured distribution 

in perceptual space were associated with a visual target location (Experiment 1), they did not 

learn when six exemplars randomly sampled from the entire set of exemplars across the four 

auditory categories were consistently associated with one of the visual target locations 

(Experiment 2b). In Experiment 3, we explored this further by examining the impact of 

category-consistent exemplar variability across the five sounds preceding the visual target. 

As highlighted in the Introduction, the issue of variability in training is central in studies of 

speech category learning. However, the influence of variability on incidental auditory 

learning is unknown.

In Experiment 3, we examine how the learning we observe in Experiment 1 is modulated by 

acoustic variability. We take a somewhat different approach compared to prior studies. 

Whereas investigations of the influence of category exemplar variability on auditory 

category learning have contrasted learning across category exemplars characterized by more 

or less variability, we hold variability constant across Experiments 1 and 3. This relates to 

our hypothesis that visuomotor associations support incidental learning.

The learning observed in Experiment 1, as compared to the failure to learn in Experiment 

2b, suggests that the visuomotor associations from the primary visual detection task serve as 

a strong signal to bind together the acoustically variable auditory category exemplars. We 

hypothesize that experience that more strongly ties acoustic variability to the teaching signal 

afforded by the visuomotor associations will promote auditory category learning. To test 

this, we manipulate exemplar variability within a trial while holding it constant (and 

equivalent to Experiment 1) across the experiment. Specifically, in Experiment 1 five 

repetitions of a single exemplar drawn from a category preceded a visual target on each trial. 

By contrast, in Experiment 3, five unique exemplars drawn from the same category preceded 

a visual target’s appearance in the category-consistent location. Across experiments, the 

within-category variability experienced by participants was equivalent. However, in 

Experiment 3 participants experienced within-category variability within a single trial, 

tightly coupled with the visuomotor associations we hypothesize to promote incidental 

category learning, whereas in Experiment 1 participants experienced the variability only 

across trials.

Methods

Participants—Twenty-five participants with the same characteristics as Experiment 1 

were tested.

Stimuli—Stimuli were identical to those of Experiment 1.

Procedure—The experiment was conducted like Experiment 1, except for one change. In 

Experiment 1, a single category exemplar was chosen and presented 5 times preceding the 

visual target. In Experiment 3, there were also 5 sounds preceding the visual target. 

However, instead of a single exemplar, 5 unique exemplars were randomly selected (without 

replacement) from the 6 category exemplars and presented in a random order. In this way, 

participants experienced the same category input distributions experienced in Experiment 1. 
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Across the course of the entire experiment, participants’ experience with within- and 

between-category acoustic variability was identical in Experiments 1 and 3. However, 

participants in Experiment 3 experienced exemplar variability within a single trial, instead of 

across trials as in Experiment 1.

Results

SMART Visual Detection Task (see Figure 3, bottom left panel): Trials for which there 

was a visual detection error (M=4.5%) or response time (RT) longer than 1500 ms or shorter 

than 100 ms (M=7.5%) were excluded from analyses. A repeated measures analysis of 

variance (ANOVA) revealed a significant main effect of Block (F(4,96)=25.61, p=0.0001, 

ηp
2 = .516). Most relevant to the hypotheses, there was a large and significant RT Cost 

(t(24)=7.78, p=0.001), with participants responding an average of 77 ms slower in Block 4 

than Block 3. A repeated measures ANOVA revealed no significant differences in RT cost 

for the two types of categories, F < 1.

Overt Categorization Task (see Figure 4, second bar from right): There was also strong 

evidence of category learning in the overt post-training categorization task. Participants 

labeled novel generalization stimuli at above-chance levels, t(24)=11.92, p<0.0001 

(M=65.8%, S.E.=3.42). This was true for both uni-dimensional (t(24)=11.56, p<0.0001 

(M=77.5%, S.E.=4.5)), and multi-dimensional (t(24)=8.9, p<0.0001 (M=54%, S.E.=3.26)) 

categories.

Relationship Between Implicit and Overt Measures: There was a significant positive 

relationship between participants’ overt categorization task accuracy and the RT cost elicited 

from disrupting the category-location mapping in Block 4, r=0.85, p <0.0001.

Comparison of Category Learning to Experiment 1 Category Learning: Experiments 1 

and 3 differed in whether participants experienced within-category exemplar variability 

within a trial (across the 5 sounds preceding a visual target, Experiment 3) or across trials (5 

sounds preceding a visual target were identical, Experiment 1). This factor influenced 

category learning considerably, as observed in both category learning measures. The RT 

Cost observed in Experiment 3 (M=77 ms, SE=9.97) was significantly greater than that 

observed in Experiment 1 (M=38 ms, SE=10.3), t(48)=2.779, p=.008. In addition, 

participants in Experiment 3 exhibited greater category learning as indicated by accuracy in 

the overt labeling task (M=65.75, SE=3.42) than participants in Experiment 1 (M=49.73, 

SE=3.89), t(48)=3.09, p=.003. We also examined learning across the three first blocks in 

Experiment 1 compared with Experiment 3. A repeated measures analysis of variance 

(ANOVA) revealed a significant interaction between block (Blocks 1–3) and experiment 

(Exp 1 vs. 3), F(2, 96) = 4.19, p = .017. Further analysis revealed a significant linear trend in 

decreased RT across blocks for Experiment 3, F(1, 48) = 23.16, p <.001, but not for 

Experiment 1, F(1, 48) = 1.62, p =.207. Learning was more robust when within-category 

exemplar variability was linked to the visuomotor associations that support incidental 

auditory category learning.
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Experiment 4

The difference in category learning outcomes between Experiments 1 and 3 suggests that 

task demands encouraging a link from within-category acoustic variability to a consistent 

signal (like one of the visual locations in the SMART task) facilitate incidental category 

learning. In Experiment 4, we sought to establish a benchmark against which to compare the 

degree of this facilitation. Experiment 4 was identical to Experiment 1 in nearly all respects 

but that we doubled the number of blocks across which participants experienced a consistent 

mapping between auditory category and visual location.

Methods

Participants—Twenty-five participants with the same characteristics as Experiment 1 

were tested.

Stimuli—Stimuli were identical to those of Experiment 1.

Procedure—The experiment was conducted like Experiment 1, except that participants 

completed 10 blocks instead of 5 blocks in the SMART task. Randomized blocks whereby 

the relationship between auditory category and visual target location was destroyed were 

presented at Block 4 and Block 9. This allowed us to compute two RT Cost measures at two 

points across training.

Results

SMART Visual Detection Task (see Figure 3, middle bottom panel): Trials for which 

there was a visual detection error (M=4%) or response time (RT) longer than 1500 ms or 

shorter than 100 ms (M=3%) were excluded from analyses. A repeated measures analysis of 

variance (ANOVA) revealed a significant main effect of Block, F(9,216)=5.07, p=0.0001, 

ηp
2 = 0.175. As shown in Figure 3, there was a significant RT Cost (t(24)=3.45, p<0.0001), 

with participants responding an average of 36 ms slower in Block 4 than Block 3. There was 

also a significant RT Cost, Cost t(24)=3.47, p=.002, later in training with participants 

averaging 31 ms slower visual detections in Block 9 than Block 8. A repeated measures 

ANOVA revealed no significant differences between the two types of categories in the first 

RT cost (Blocks 3 vs. 4), F (1, 24) = 1.38, p = .252, or in the second RT cost (Blocks 8 vs. 

9), F<1.

Overt Categorization Task: There was also evidence of category learning in the overt post-

training categorization task. Participants labeled novel generalization stimuli at above-

chance levels, (t(24)=5.94, p<0.0001, M=54.8%, S.E.=5.01). This was the case for both uni-

dimensional (t(24)=5.22, p<0.0001, M=56.82%, S.E.=6.1), and multi-dimensional 

(t(24)=5.76, p<0.0001, M=52.7%, S.E.=4.81) categories.

Relationship Between Implicit and Overt Measures: There was no significant 

relationship between participants’ overt categorization task accuracy and the RT cost elicited 

from disrupting the category-location mapping in Block 4, r=.237, p=.127 or in Block 9, r=.

145, p=.245.
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Comparison of Category Learning in Experiment 4 vs. Experiment 3: In doubling the 

training trials in the incidental SMART task, Experiment 4 provided a benchmark against 

which to compare the benefit of variability in Experiment 3. Category learning as assessed 

via the implicit measure of RT Cost was significantly greater in Experiment 3 than 

Experiment 4. Randomizing the relationship between sound category exemplars and visual 

detection targets slowed Experiment 3 participants’ visual detection significantly more 

(M=77 ms, SE=9.66) than Experiment 4 participants, as measured at both the first 

(M=35.63, SE=10.33, t(48)=2.95, p=.005) and the second (M=31.45, SE=9.07, t(48)=3.46, 

p=.001) block of randomization in Experiment 4. In the overt labeling task, there was no 

significant difference (t(48)=1.81, p=.076) across experiments. However, the trend was for 

greater accuracy in overt labeling of generalization exemplars after training with within-trial 

variability in Experiment 3 (M=65.75, SE=3.42) compared to training with double the 

training trials in Experiment 4 (M=54.77, SE=5.01). In all, these comparisons underscore 

the advantageousness of experiencing within-category exemplar variability in the context of 

the visuomotor aspects of the primary task hypothesized to support category learning. 

Indeed, it is notable that experiencing category exemplar variability in this way resulted in 

as much, or better, learning as doubling the training.

General Discussion

Categorization - the ability to treat distinct perceptual experiences as equivalent - is central 

to cognition. Accordingly, a rich tradition of research has addressed how humans categorize 

the perceptual world. Most of what we know about perceptual category learning comes from 

studies of participants who are actively searching for diagnostic cues in the context of 

stimulus-response-feedback tasks. However, much less is known about how categories are 

learned incidentally – that is, without instructions to search for category-diagnostic 

dimensions, overt category decisions, or experimenter-provided feedback. Although 

incidental learning has not been a central focus of research, there is evidence that the 

learning systems engaged by traditional tasks may be distinct from those recruited by 

incidental category learning (Lim et al., 2013; Tricomi et al., 2006). Since much of the 

learning we do about categories in the natural auditory world is likely to be incidental rather 

than driven by explicit, feedback-directed learning, it is important to begin to understand 

how listeners incidentally acquire perceptual categories.

In the present research, we examined factors driving incidental category learning by 

studying how participants incidentally learn nonspeech auditory categories. To this end, we 

developed a novel experimental paradigm – the SMART task – in which participants 

experienced auditory categories incidentally in the course of participating in a visual 

detection task. Unbeknownst to participants, auditory category membership predicted the 

upcoming location of the visual detection target. As a result, the degree to which visual 

target detection slowed when the tight coupling of auditory category and visual target 

location was destroyed served as an implicit assessment of sound category learning in the 

incidental training task. After incidental training, we also assessed auditory category 

learning using a more traditional overt labeling task to test the generalization of incidental 

category learning across task and novel sound exemplars.
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We focused on two significant issues in incidental category learning. The first was the 

influence of visuomotor associations in binding acoustically-variable exemplars together in 

incidental category learning. We hypothesized that these associations would support 

incidental auditory category learning. Specifically, we expected that the consistent 

correlation of visual location and the appropriate motor response to indicate the location of 

the visual target would support auditory category learning as participants performed the 

visual detection task. This approach treats co-occurring stimulus and response dimensions as 

teaching signals for learning.

Indeed, we find strong evidence for incidental category learning across experiments. 

Experiment 1 established that participants suffer a reaction time cost to visual detection 

responses when the relationship between auditory category and visual target location is 

destroyed by random assignment in Block 4 of the SMART task. Further, the magnitude of 

this reaction time cost (in all but Experiment 4) was positively correlated with participants’ 

accuracy in the overt labeling task that followed: the greater the indication of incidental 

category learning via the reaction time cost, the greater participants’ categorization accuracy 

for novel sound exemplars in the subsequent overt labeling task.

Experiments 2a and 2b corroborate the conclusion that Experiment 1 resulted in incidental 

category learning via the visuomotor coupling, and not via learning from mere exposure or 

simple auditory-visual associations. When novel category-consistent auditory exemplars 

were introduced in Block 4 of Experiment 2a, participants experienced no reaction time cost. 

The fact that visual detection response times were unaffected suggests that participants were 

already generalizing category learning to novel sound exemplars in Block 4, consistent with 

categorization.

The learning also was not a result of simple association of sounds to visual locations. When 

sounds were arbitrarily assigned to visual location without respect to auditory category 

membership yet consistently paired with the appearance of a visual target in a particular 

location in Experiment 2b, participants failed to demonstrate learning in either the incidental 

or overt tests. Thus, the distributional structure and similarity of within-category exemplars 

appears to have participated in promoting incidental category learning. This is consistent 

with the results of Wade and Holt (2005), who found that participants who experienced 

categories without distributional structure also failed to exhibit above-chance labeling 

following videogame training.

In contrast to Experiments 2a and 2b, the results of Experiments 1, 3, and 4 showed 

incidental auditory category learning and robust generalization of this category learning to 

both novel stimuli and also to an overt labeling task. Participants’ attention was not directed 

to the sounds, they were not informed that the sounds formed categories, they did not 

actively search for category-diagnostic dimensions and make decisions based on them, and 

they did not receive overt feedback about category decisions. We find consistent evidence 

that a pairing of visual detection task elements with the auditory categories can serve as the 

‘representational glue’ that binds together acoustically distinct sound exemplars in incidental 

training, so long as those exemplars have an underlying distributional structure. It will be of 
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interest to further probe the boundaries and constraints on the kinds of distributional 

structure that are readily learnable in incidental auditory category learning in future research.

The second central issue of the present work was the role of stimulus variability in learning. 

Prior research in speech category learning has emphasized the importance of trained sound 

variability in promoting category acquisition (e.g., Bradlow et al., 1997; Iverson et al., 2005; 

Jamieson & Morosan, 1989; Lively, Logan, & Pisoni, 1993; Wang et al., 1999). Although 

several studies have examined incidental learning in the auditory domain (Seitz et al., 2010; 

Vlahou et al., 2012; Wade & Holt, 2005), the issue of how variability impacts incidental 

category learning has not been explored. Drawing off of the hypothesis that consistent 

pairing of the visual detection task elements with the auditory categories could serve to bind 

together acoustically-variable within-category exemplars, we took an approach somewhat 

different from previous studies. With learning in Experiment 1 as a baseline, Experiment 3 

was constructed to have equivalent category exemplar variability across the experiment. 

However, whereas within-category variability was experienced across trials (and therefore 

across visuomotor associations) in Experiment 1, it was experienced within trials in 

Experiment 3. Therefore, the coupling of within-category acoustic variability with the 

binding signals from the primary visual detection task was more robust in Experiment 3. We 

predicted that learning would be facilitated by within-trial exemplar variability, with 

stronger learning in Experiment 3 than Experiment 1, even though overall variability was 

held constant across experiments.

Indeed, our nontraditional manipulation of category variability had a strong effect. The RT 

Cost observed in the Experiment 3 SMART task was nearly double that observed in 

Experiment 1; destruction of the relationship between the sound categories and visual 

locations had a much more damaging effect on participants’ visual detection response speed 

in Experiment 3 than Experiment 1. This suggests that participants in Experiment 3 were 

more strongly reliant upon the auditory categories to guide visual detection. The larger 

reduction in RTs across the first three blocks in Experiment 3 compared with Experiment 1 

is another indication for better learning for within-trial variability. The results of the overt 

labeling task suggest that this reliance was due to more robust category learning. 

Participants in Experiment 3 exhibited significantly greater accuracy in generalization to 

novel sound category exemplars in the overt labeling task, compared to Experiment 1 

participants. In all, these results demonstrate that variability impacts incidental category 

learning. It seems that people learn more quickly when within-category exemplar variability 

is experienced within each trial. Studies of supervised learning suggest that training 

interleaved across categories may promote learning compared with blocked training (Shea & 

Morgan, 1979). However, under unsupervised learning conditions the advantage of 

interleaved over blocked training depends in category similarity (Clapper, 2014). The 

present data extends this research further by demonstrating the advantage of within-trial 

variability over variability across trials for promoting incidental auditory category learning.

More than this, these results move forward our thinking about the impact variability in 

training. The issue here is not one of experiencing more versus less variability in training; 

variability was equated across Experiments 1 and 3. Rather, the significant factor appears to 

be how variability relates to the associations supporting learning. By this view, variability 
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that is experienced in a manner that is more tightly coupled to the binding signals that drive 

learning is expected to promote category learning. We would predict this to be true of 

learning via feedback in more traditional tasks as well (i.e., when explicit feedback is the 

binding signal). This remains a question open for future research.

The careful reader may have noted that we have been attentive to describing the present 

learning and that observed by Wade and Holt (2005) as incidental. We do so to emphasize 

that the sound categories are learned by virtue of their relationship to success in performing 

a task defined along other dimensions. Although participants are not overtly searching for 

dimensions diagnostic to category membership and do not receive overt feedback about 

categorization performance, it is important to highlight that this learning is neither passive, 

nor entirely unsupervised or feedback-free. Specifically, in the case of the SMART task, 

supportive cues (the visual referent and associated motor response) linked to the overt task 

were correlated with auditory category membership. This buttressed learning beyond what 

has been observed for these same stimuli under passive, unsupervised learning conditions 

(Wade and Holt, 2005; Emberson et al., 2013). Nevertheless, there is evidence that quite 

complex perceptual categories can be acquired through unsupervised learning (for examples 

in the visual domain see Clapper, 2012; Love, 2002). It will be important to unravel the 

relative influence of stimulus input distributions, categorization training task, the influence 

of an active task, and the presence of different types of feedback in future work. This is 

especially important in light of the fact the incidental approach to category learning 

described here (and in Wade and Holt, 2005) differs from both passive exposure paradigms 

and learning via explicit experimenter-provided feedback, the two approaches that have 

been most influential in understanding auditory category learning relevant to speech 

categorization.

In the domain of speech, learning via passive exposure has been an influential theoretical 

perspective (Redington, Chater, & Finch, 1998; Saffran, 2001). By this view, the emphasis 

is on category learning via passive accumulation of distributional regularities (Maye, 

Werker, & Gerken, 2002; Saffran, Aslin, & Newport, 1996). The present results are in 

accord with this perspective with respect to the significance of distributional regularities in 

the input in supporting category learning. Experiment 2b, in particular, emphasizes that the 

distributional structure of exemplars in input has an important influence on the learnability 

of perceptual categories. However, the present results bring up an important point for 

consideration with respect to passive, statistical learning accounts of auditory (and phonetic) 

category acquisition. Experiments 2a and 2b demonstrate that exposure alone was not 

sufficient to elicit category learning. In fact, prior research using these same auditory 

categories supports the conclusion that passive exposure is not always sufficient for category 

acquisition. The sounds used here are not acquired in unsupervised sorting tasks with no 

feedback (Wade & Holt, 2005) or across passive exposure to streams of category exemplars 

in statistical segmentation tasks like those pioneered by Saffran et al. (1996) (Emberson et 

al., 2013).

Some have voiced concerns about the extent to which passive, distributional statistical 

learning could scale up to learning categories in more cluttered natural environments, where 

there is an explosion of potentially relevant distributional regularities, only some of which 
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are significant (Pierrehumbert, 2003). The present results suggest that understanding 

incidental category learning may require broader consideration of the regularities available 

to learners in natural environments. In the present task, categories that fail to be acquired 

with passive exposure are learned quite quickly and incidentally in the context of 

correlations with the visuomotor demands of the primary visual detection task. The present 

paradigm is simplistic compared to the supportive multimodal correlations potentially 

available in the natural perceptual world. But, the results suggest that the presence of co-

occurring visual referents may support category learning in the context of auditory category 

learning in complex environments by signaling the distinctiveness of acoustically-similar 

items across references or the similarity of acoustically-distinct exemplars paired with the 

same referent.

Though the visual “referent” is a very simple difference in visual target location, it seems to 

have served to signal a common relationship among category exemplars. A recent study 

using the videogame paradigm of Wade and Holt (2005) provides support for this possibility 

(Lim, Lacerda & Holt, in press). Participants played the videogame with sound categories 

linked to the appearance of specific alien creatures. However, instead of encountering 

isolated category exemplars upon the appearance of an alien, participants heard acoustically-

variable category exemplars embedded in highly variable continuous sound streams. 

Although variable, the category exemplars were the best predictors of specific aliens and the 

appropriate game action in the sea of highly variable, continuous sound. Participants learned 

the categories and generalized learning to novel exemplars without knowledge that there 

were significant units embedded in the continuous sound, information about the category 

exemplars’ temporal extent, or awareness of the temporal position of the exemplars within 

the stream. By contrast, naïve participants failed in unsupervised sorting of these same 

continuous sounds into categories after passive exposure. Lim et al. hypothesize that the 

consistent appearance of a unique alien creature, a visual referent, supported learners in 

acquiring the auditory categories in this complex environment. What this suggests is that 

objects and events in the world consistently paired with, or predictive of, categories can 

support category acquisition in complex environments. Since there was no temporal 

synchronization of the visual referent with the acoustically-variable category exemplars 

embedded in highly variable continuous sound streams, Lim et al. suggest that the alien may 

provide a visual referent akin to that provided by the coincidence of words and objects in the 

world. Imagine being a non-English listener hearing “I found my keys! The keys were under 

my book all along. I thought I had lost the keys for good!” from a talker holding a set of 

keys. There is high acoustic variability throughout the utterance, including across the 

individual instances of keys. Nevertheless, the visual referent may serve as a correlated 

signal that supports discovery of the commonalities across the acoustically-variable 

instances of keys peppering the continuous acoustic stream. The Lim et al. data present the 

possibility that visual referents may support auditory category learning by signaling the 

distinctiveness of acoustically similar items across referents and/or the similarity of 

acoustically distinct items paired with the same referent even for highly variable, continuous 

sensory input that mimics the complexity of real world learning situations. Incidental 

learning conditions whereby supportive multi-modality information correlates with category 

membership may boost learning above and beyond passive exposure. This perspective is in 
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line with theories positing that in the natural environment infant word learners cut through 

noisy co-occurrence statistics between words and referents by relying on the convergence of 

multiple, statistically-sensitive processes (see Smith, Suanda, & Yu, 2014). Challenging 

learning domains, like the categories of the present studies that are not learned under passive 

exposure conditions, may be supported by seemingly task-irrelevant “noise” that nonetheless 

possesses regularity.

This is an important theoretical issue for speech categorization, where it is clear that learning 

in the natural environment does not arise from explicit feedback of the sort typical of 

laboratory training tasks. The present results caution that it need not be necessary to posit 

entirely passive “statistical” distributional learning to accommodate this fact. Statistical 

input distributions do matter for learning. Nevertheless, although the visuomotor task 

characteristics in the SMART task are very simple, they support incidental category learning 

beyond what could be evoked by passive exposure to the sounds. The natural learning 

environment could be expected to provide even richer supportive regularities and 

opportunities for learning.

This brings up another theoretical issue of relevance to the present results. Although 

participants do not engage in explicit categorization and there is no feedback in the 

traditional sense of the experimenter providing “correct” versus “incorrect” feedback, it 

would be an error to suggest that there is no feedback in incidental tasks like SMART, or the 

Wade and Holt (2005) videogame. In the videogame, feedback quite clearly arrives in the 

success or failure of shooting actions. To the extent that sound categories predict appropriate 

actions, the outcomes of behavior provide an internal feedback signal that may be influential 

in driving category learning. In a recent review, Lim, Fiez, and Holt (2014) make the case 

that such learning signals may be powerful in hastening the system’s sensitivity to 

distributional regularities that would be more slowly acquired through the Hebbian learning 

principles associated with learning through passive exposure. Indeed, in a recent 

neuroimaging study of participants as they played the Wade and Holt (2005) videogame, 

Lim et al. (2013) find evidence for posterior striatal involvement in incidental category 

learning consistent with this possibility.

Considering this in the context of the present paradigm, it is important to note that 

participants were nearly uniformly successful in the simple visual detection task. 

Nonetheless, there was a relationship between sound category and location such that 

successful sound categorization could facilitate successfully detecting and quickly 

responding to the visual target. Therefore, predictions about target location made based on 

sound category are followed by “feedback” about the accuracy of the prediction via the 

actual appearance of the visual object at a specific location. The present studies do not 

differentiate the extent to which prediction and auditory-visual association drive category 

learning, but the SMART paradigm is amenable for discovering this in future research.

This aspect of the task bears some resemblance to the task-irrelevant perceptual learning 

tasks that produce incidental auditory learning, as reviewed in the Introduction. In the task-

irrelevant perceptual learning paradigm, learning may take place for stimulus features, 

whether or not they are relevant to the task, so long as they are systematically paired with 
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successfully processed task targets, or rewards, within a critical time window (Seitz, Nanez, 

Holloway, Tsushima, & Watanabe, 2006; Seitz, Nanez, Holloway, Koyama, & Watanabe, 

2005; Seitz & Watanabe, 2009; Watanabe, Náñez, & Sasaki, 2001). Applying this approach 

in the auditory domain, Seitz et al. (2010) demonstrated that when nonspeech sounds 

modeling aspects of speech formant transitions were paired with targets in an unrelated 

behavioral task, the discrimination thresholds for detecting whether the formant transition 

changed in frequency across time decreased. Neither attention nor even awareness of the 

subthreshold sounds was necessary to evoke this learning. These studies provide evidence of 

auditory learning from training that is neither passive, nor requiring overt attention nor 

response to the learned stimulus dimensions. Interestingly, these results also suggest that 

explicit feedback can sometimes be counterproductive to learning (Vlahou et al., 2012). 

However, as noted, this incidental learning is not necessarily category learning.

Nonetheless, the task-irrelevant learning paradigm task bears some resemblance to the 

SMART task in that participants’ attention is directed away from the learning domain 

(auditory categories in the present case) and toward another task (here, visual detection). 

Moreover, learning appears to be closely related to the coordinated timing of task-relevant 

events and stimuli in the to-be-learned domain. Seitz and Watanabe (2009) argue that task-

irrelevant perceptual learning occurs due to diffuse reinforcement signals driven by the 

primary task and signals driven by the presentation of the task-irrelevant stimuli. To the 

extent that task-relevant and task-irrelevant stimulus features temporally coincide, then task-

irrelevant learning occurs. Both task-irrelevant perceptual learning and the incidental 

category learning observed in the present studies challenge the prevailing notion that 

directed attention to the to-be-learned input is a prerequisite for learning.

An interesting aspect of the present data is the generalization of incidental learning to the 

overt labeling task and to novel category exemplars. Although participants acquired the 

artificial auditory categories incidentally, they appear to have been able to immediately 

apply this knowledge to a new task requiring conscious decision making about novel 

sounds. Moreover, assessments of learning in the incidental and overt tasks were well-

correlated. This is an important aspect of the learning we observe. In the present 

experiments, the superficial relationship of visual location was maintained across the 

incidental and overt tasks. Future research will need to determine whether this is important. 

Nonetheless, the degree of across-task generalization we observe is notable. Many 

“gamified” tasks that attempt to train individuals incidentally have been criticized for 

“training to the test” with quite poor generalization of new representations to untrained 

tasks. Ultimately, if approaches to incidental category learning are to have real-world impact 

such as in training adults to better categorize second language phonetic categories, then 

generalization of learning to new tasks is essential. It will be informative for future research 

to establish the extent to which incidental speech category training, for example, generalizes 

to benefit other language-learning tasks. On a practical level, the present incidental approach 

to training auditory categories is simple, fast and effective. Moreover, the relationship of 

visuomotor task elements to auditory categories appears to be the significant factor in 

driving learning and so the SMART task is quite amenable to embedding in other, perhaps 
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more engaging, primary tasks (as, for example, the Wade and Holt, 2005 videogame). Our 

finding that learning generalizes to overt labeling is a necessary first step in this regard.

Incidental category learning draws upon different learning systems than traditional overt 

categorization training task (Lim et al., 2013; Tricomi et al., 2006). In light of the fact that 

incidental learning is likely to be typical of category acquisition in the natural world, it is 

important to begin to understand its basis. To this end, we introduced a novel paradigm for 

studying the learning mechanisms involved in incidental category learning. With it, we 

discovered that many-to-one auditory-to-visuomotor correspondences are powerful in 

supporting incidental auditory category learning. These correspondences serve as a 

‘representational glue’ that binds together acoustically distinct sound exemplars in incidental 

training, so long as the exemplars have an underlying distributional structure. Moreover, 

incidental category learning is facilitated when category exemplar variability is more tightly 

coupled to these visuomotor correspondences than when the same exemplar variability is 

experienced across trials. These results advance our understanding of incidental auditory 

category learning and inform the incidental learning mechanisms available to phonetic 

category learning and category acquisition across modalities.
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Figure 1. 
Schematic spectrograms show the artificial nonspeech auditory category exemplars across 

time and frequency, for each uni-dimensional (UD1/UD2) and multidimensional (MD1/

MD2) category. The dashed grey lines show the lower-frequency spectral peak that is 

common to all exemplars of a given category. Each colored line shows the higher-frequency 

spectral peak corresponding to a single category exemplar. See text for further details.
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Figure 2. 
Overview of the Systematic Multimodal Associations Reaction Time (SMART) task. (a) 

There is a consistent mapping between auditory categories and screen locations, with 

acoustically-variable sound exemplars associated with the category-consistent visual 

location. (b) The order of events in an example trial of the task. A sound category is 

randomly selected and an exemplar from it is chosen and presented. This is followed the 

appearance of a red ‘X’ in the corresponding screen location. Participants then respond by 

pressing the key corresponding to the position of the ‘X’.
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Figure 3. 
Reaction time (RT) to detect the visual target as a function of Block, presented across 

experiments. The RT Cost is the difference in average reaction time across Blocks 3 and 4 

(and 8 and 9 in Experiment 4), summarized in the bottom panel.
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Figure 4. 
Average accuracy in the post-training overt categorization task across experiments. Note 

that there was no overt categorization task conducted in Experiment 2a. All sounds 

categorized in the overt categorization task were novel category exemplars not experienced 

in training. The dashed line represents chance-level performance.
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