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Abstract

Very little is known about how auditory categories are learned incidentally, without instructions to
search for category-diagnostic dimensions, overt category decisions, or experimenter-provided
feedback. This is an important gap because learning in the natural environment does not arise from
explicit feedback and there is evidence that the learning systems engaged by traditional tasks are
distinct from those recruited by incidental category learning. We examined incidental auditory
category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time
(SMART) task, in which participants rapidly detect and report the appearance of a visual target in
one of four possible screen locations. Although the overt task is rapid visual detection, a brief
sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct
sound categories that predict the location of the upcoming visual target. These many-to-one
auditory-to-visuomotor correspondences support incidental auditory category learning.
Participants incidentally learn categories of complex acoustic exemplars and generalize this
learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar
variability is more tightly coupled to the visuomotor associations than when the same stimulus
variability is experienced across trials. We relate these findings to phonetic category learning.
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When we recognize red wines as Barbera, mushrooms as edible, and children’s cries as
joyful, we rely on categorization. Our ability to treat distinct perceptual experiences as
functionally equivalent is vital for perception, action, language and thought. There is a rich
literature on category learning (Ashby & Maddox, 2005; Cohen & Lefebvre, 2005; Seger &
Miller, 2010), with the vast majority of research conducted using visual objects and training
paradigms that capitalize on overt category decisions and explicit feedback. Although we
have learned much from this traditional approach, the results of such overt category training
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tasks with visual objects may not generalize to category learning in all modalities or all
natural environments.

Speech highlights this issue. The acoustic complexity of speech presents an auditory
category-learning challenge for learners. Complex multidimensional acoustic attributes
define speech categories; as many as 16 different acoustic dimensions co-vary with the
consonants /b/ and /p/, for example (Lisker, 1986). Further, the significance of various
acoustic dimensions is language-community dependent. For instance, among American
English listeners, spectral quality is a strong cue to vowel categories, as in heel versus hill
(Hillenbrand, Getty, Clark, & Wheeler, 1995). By contrast, British English listeners from the
South of England rely much more on vowel duration than spectral quality to distinguish
these categories (Escudero, 2001). Further complicating the demands on the listener, there is
also concurrent acoustical variability unrelated to consonant or vowel category identity,
which is associated instead with the talker’s voice, emotion, and even with room acoustics.
The mapping from acoustics to phonemes can be understood as a process of auditory
perceptual categorization (see Holt & Lotto, 2010), whereby listeners must learn to
discriminate and perceptually-weight linguistically significant acoustic dimensions and to
generalize across within-category acoustic variability in speech.

Although perceptual categorization has long been studied in the cognitive sciences (for a
review see Cohen & Lefebvre, 2005), the challenges presented by speech signals are
somewhat different from those that have motivated most research on categorization. Speech
category exemplars are inherently temporal in nature, with the information signaling
categories spread across time. Moreover, unlike typical ‘stimulus-response-feedback’
laboratory tasks, speech category acquisition ‘in the wild’ occurs under more incidental
conditions, without instructions to search for category-diagnostic dimensions, overt category
decisions, or experimenter-provided feedback.

Beyond ecological validity, this is an important issue because there is growing evidence that
overt and incidental learning paradigms draw upon neural substrates with distinctive
computational specialties (e.g. Doya, 1999; Lim, Fiez, Wheeler, & Holt, 2013; Tricomi,
Delgado, McCandliss, McClelland, & Fiez, 2006). Indeed, research across multiple fields
has shown that stimulus structure (Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005;
Maddox, Ing, & Lauritzen, 2006), feedback (Maddox & David, 2005), and task timing
(Ashby, Maddox, & Bohil, 2002; Maddox, Ashby, Ing, & Pickering, 2004) can have a
considerable influence on the category learning mechanisms that are recruited (in the
auditory domain see Chandrasekaran, Yi, & Maddox, 2014). To fully understand the general
principles underlying category learning, it is vital to understand incidental category
acquisition.

In the auditory domain, there has been some recent progress in developing approaches to
studying incidental learning (Seitz et al., 2010; Vlahou, Protopapas, & Seitz, 2012; Wade &
Holt, 2005). Seitz et al. (2010) report that participants’ discrimination of sub-threshold
nonspeech sounds improves under task-irrelevant perceptual learning paradigms (Seitz &
Watanabe, 2009) whereby sub-threshold sounds are presented in a manner that is temporally
correlated with other, supra-threshold task-relevant sound stimuli. Even though participants
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do not attend to the sub-threshold sounds, these sounds’ alignment with task-relevant goals
leads participants to learn about them. Quite surprisingly, the magnitude of this incidental
learning is comparable to that achieved through explicit training with direct attention to the
sounds, overt decisions, and trial-by-trial performance feedback.

Vlahou et al. (2012) have extended this auditory task-irrelevant perceptual learning
approach (Seitz & Watanabe, 2009) to a difficult non-native speech contrast. These studies
are innovative in that they examine incidental auditory perceptual learning. However, they
do not specifically address auditory category learning. Instead, in their approach, learning is
measured through improved discriminability thresholds for trained sounds, which may lay a
sensory foundation from which to build new auditory categories. However, the relationship
of learning in this paradigm to category acquisition remains to be determined. Highlighting
the difference, task-irrelevant perceptual learning tends to be limited to stimuli experienced
in training, whereas generalization to novel exemplars is a hallmark of categorization.

Wade and Holt (2005) provide more direct evidence that implicit task relevance can result in
auditory category learning. In their task, participants’ objective is to earn points by
executing actions to shoot and capture aliens that emerge at specific locations within a
space-themed videogame. The task is largely visuomotor, but it is structured such that sound
can support success in the game. Most significantly, each alien is associated with multiple,
acoustically-variable sounds drawn from an artificial nonspeech auditory category. Upon
each appearance of an alien, sounds from its corresponding auditory category are played
repeatedly. As the game progresses to more challenging levels the pace becomes faster and
generalizing across the acoustic variability that characterizes within-category sound
exemplars facilitates game performance. Players can hear an approaching alien before
seeing it appear. Thus, if players have learned the sound categories’ relationship with the
aliens, they can get a head start on executing the appropriate action. Players may capitalize
on the predictive relationship between sound category and game action although they
receive no explicit instruction about the relationship’s existence or utility. Wade and Holt
argue that this predictive relationship encourages participants to learn to treat acoustically
variable within-category sounds as functionally equivalent, i.e., to categorize the sounds.
However, the learning is incidental, in that it involves no instructions to search for category-
diagnostic dimensions, no overt category decisions, and no explicit categorization-
performance feedback. Learners’ goals and attention are not directed to sound
categorization. Yet, participants quickly learn the sound categories and generalize to novel
exemplars (Leech, Holt, Devlin, & Dick, 2009; Lim et al., 2013; Lim & Holt, 2011; Liu &
Holt, 2011; Wade & Holt, 2005).

Successful auditory category learning within this videogame engages putatively speech-
selective left posterior superior temporal cortex for processing the newly-acquired
nonspeech categories (Leech et al., 2009; Lim et al., 2013) and warps perceptual space in a
manner like that observed in speech category acquisition (Liu & Holt, 2011). The learning
evoked in this incidental training task is also effective in speech category learning. Adult
native-Japanese second-language learners of English significantly improve in categorizing
English /r/-/1/ (a notoriously difficult second-language phonetic learning challnage, Bradlow,
Pisoni, Akahane-Yamada, & Tohkura, 1997; Ingvalson, Holt, & McClelland, 2012;
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Ingvalson, McClelland, & Holt, 2011; Lively, Pisoni, Yamada, Tohkura, & Yamada, 1994)
with just 2.5 hours of incidental training within the videogame (Lim & Holt, 2011).

Studies like these move us closer to understanding the nature of learning under naturalistic
task demands, in that they do not involve overt instructions to search for category structure,
explicit categorization decisions, or trial-by-trial experimenter-provided feedback. However,
many important questions remain regarding the character of incidental auditory category
learning and the processes underlying it.

In the present research, we focus on two of these issues. The first is related to the incidental
task demands that are theorized to promote learning in the Wade and Holt (2005)
videogame. By design, the videogame models a complex array of factors to simulate the
functional use of sound categories in a naturalistic environment. Participants actively
navigate the videogame environment and encounter rich multimodal associations and
predictive relationships between sound categories and game events. They also experience
distributional variability in category exemplars, and a strong relationship between sound
category learning and videogame success. Any of these factors might contribute to category
learning.

Wade and Holt (2005, see also Lim & Holt, 2011; Lim et al., 2013) argue that the consistent
temporal correlation of the visual (alien) and motor (response to the alien) dimensions with
the auditory categories may serve as the ‘representational glue’ that binds together
acoustically-distinct category exemplars in the incidental training. This is an interesting
possibility because it treats co-occurring stimulus and response dimensions as teaching
signals for learning. However, the richness of the cues available in the videogame makes it
impossible to test this hypothesis directly within the videogame paradigm. In the present
studies, we develop and use a simplified incidental training task -- the Systematic
Multimodal Associations Reaction Time (SMART) task -- to assess the influence of
visuomaotor associations in binding acoustically-variable exemplars together in incidental
category learning. We hypothesize that these associations support incidental auditory
category learning.

The second issue concerns variability. Research in speech category learning has emphasized
the importance of experiencing high acoustic-phonetic variability in training. Experience
with multiple speakers, phonetic contexts, and exemplars seems to promote non-native
speech category learning and generalization among adult learners (Bradlow et al., 1997;
Iverson, Hazan, & Bannister, 2005; Jamieson & Morosan, 1989; Wang, Spence, Jongman, &
Sereno, 1999). This notion has been highly influential in empirical and theoretical
approaches to speech category learning. However, it has arisen from studies of extensive
training across multiple training sessions spanning days or weeks that have examined
learning via explicit, feedback-driven tasks in which listeners actively search for category-
diagnostic information. How variability impacts incidental auditory learning remains an
open question.

In the present studies, we address the issue of variability in incidental auditory category
learning in a way that differs from prior research. Thus far, studies examining the impact of
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variability have typically compared category learning across stimulus sets characterized by
high versus low acoustic variability. In the present studies, we hold acoustic variability
constant across experiments and manipulate the relationship of within-category exemplar
variability to the visuomotor associations that we predict will serve as “glue” that binds
exemplars into categories. We predict more robust auditory category learning under
conditions whereby within-category acoustic variability is experienced in association with
the visuomotor dimensions compared to the same variability experienced across trials.

Across five experiments, we investigate incidental auditory category learning for the same
artificial, nonlinguistic auditory categories studied by Wade and Holt (2005). Experiment 1
tests the main hypothesis that auditory categories can be learned incidentally as participants
engage in a seemingly unrelated visual detection task. Experiments 2a and 2b examine
whether the learning observed in Experiment 1 depends upon the visuomotor associations
we hypothesize to be significant in driving learning. Experiment 3 tests the influence of
exemplar variability on incidental learning and Experiment 4 doubles the length of
incidental training to compare the outcome to the impact of variability on learning.

The SMART Task

The present experiments examine these questions in the context of a novel incidental
training task — the Systematic Multimodal Associations Reaction Time (SMART) task. This
task builds from the visuomotor associations we hypothesize to be significant in driving
learning in the Wade and Holt (2005) videogame task, but strips away the complexity of the
videogame. It thus allows direct assessment of the influence of visuomotor associations in
binding acoustically-variable exemplars together in incidental category learning.

In the SMART task, participants must rapidly detect the appearance of a visual target in one
of four possible screen locations and report its position by pressing a key corresponding to
the visual location. The primary task is thus visual detection. However, a brief sequence of
sounds precedes each visual target. Unknown to participants, the sounds are drawn from one
of four distinct sound categories. This basic version of the paradigm mimics some of the
aspects of incidental training paradigms thought to be important in learning (Lim & Holt,
2011). There is a multimodal (auditory category to visual location) correspondence that
relates variable sound category exemplars to a consistent visual object, as in the Wade and
Holt (2005) videogame. This mapping is many-to-one, such that multiple, acoustically-
variable sound category exemplars are associated with a single visual location (akin to the
single alien in the videogame). Likewise, sound categories are predictive of the action
required to complete the task; in the case of the SMART task, they perfectly predict the
location of the upcoming visual detection target and corresponding response button to be
pressed. As with the Wade and Holt (2005) task, the SMART task makes it possible to
investigate whether participants incidentally learn auditory categories during a largely
visuomotor task. However, the SMART task characteristics are straightforward by
comparison to the Wade & Holt (2005) first-person interactive videogame, thereby allowing
task manipulations to test the factors necessary and sufficient to produce robust incidental
auditory category learning and generalization.
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We assess category learning with two measures. The first is more covert and implicit, using
changes in visual target detection time as a metric. In the first three blocks of the
experiment, there is a perfect correlation between the sound categories and the location of
the upcoming visual target. In the terms used above, the visuomotor demands of the task
provide a strong signal to bind within-sound-category variability. In a fourth test block,
scrambling the mapping between location and sound category destroys this relationship. If
participants incidentally learn about the sound categories in the first three blocks then we
expect visual detection times to be slower in the random (fourth) test block relative to the
(third) block that preceded it. We refer to this implicit measure of auditory category learning
as the RT Cost. It can be observed without overt auditory categorization decisions or
responses. Participants are not alerted to the relationship of the sound to the task and the
acoustic variability among within-category sound exemplars assures that there is no simple
sound-location association.

We also measure category acquisition via an overt sound categorization task that follows the
SMART task. In this task, participants hear novel sound exemplars drawn from the sound
categories experienced during the SMART task and guess the location where the visual
target would be most likely to appear. However, no visual targets appear in this task and
there is no feedback about the correctness of responses. This is thus a strong assessment of
generalization of incidental category learning to novel, category-consistent stimuli. It also
requires that participants apply the newly learned auditory categories in an explicit task that
differs from the learning context. This task presents the opportunity to examine correlations
of overt category labeling to the more implicit RT Cost measure collected in the SMART
task.

Experiment 1

Methods

In Experiment 1 and the experiments that follow, we adopt the same artificial nonspeech
auditory categories studied by Wade and Holt (2005; see also Emberson, Liu, & Zevin,
2013; Leech et al., 2009; Lim et al., 2013; Liu & Holt, 2011). The purpose of Experiment 1
is to test whether a predictive relationship between sound categories and the visuomotor
aspects of the task (location, response) is sufficient to result in learning the complex auditory
categories, and to generalize learning to novel exemplars. Our overarching goal for the
entire set of experiments is to understand the factors that drive incidental auditory category
learning.

Participants—In this and all experiments, participants were recruited from the Carnegie
Mellon University community. They received payment or course credit, had normal or
corrected-to-normal vision, and reported normal hearing. Twenty-five participants were
tested in Experiment 1.

Stimuli—The artificial, complex nonspeech sound categories of Wade and Holt (2005; see
also Emberson et al., 2013; Leech et al., 2009; Liu & Holt, 2011) were used in Experiment
1, and all experiments that follow. Each auditory category experienced in the SMART task
was composed of six sound exemplars. Two of the categories were ‘unidimensional’, and
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were differentiated by a single, perceptually salient acoustic dimension. The other two
categories were ‘multidimensional’ and were defined such that no single acoustic dimension
determined category membership (see Figure 1 for schematized versions of the six
exemplars for each category). Across categories, each sound exemplar was 250 ms in
duration and was created by combining a sound made of a lower-frequency spectral peak
with another sound made of a higher-frequency spectral peak. Sounds drawn from the
unidimensional categories shared the same lower-frequency spectral peak, namely a 100 ms-
long 600 Hz square wave carrier that linearly transitioned to a 300-Hz offset frequency
across the last 150 ms of the stimulus. Similarly, sounds from each multidimensional
category had identical lower-frequency spectral peak characteristics; for these sounds, the
143-Hz square wave carrier transitioned linearly from a 300-Hz starting frequency across
150 ms to 600 Hz, where it was steady-state for the remaining 100 ms of the stimulus.

Uni- and multi-dimensional exemplars were differentiated by the dynamics of the higher
spectral peak. The unidimensional category sounds’ high spectral peak started and remained
at a given steady-state frequency for 100 ms, and then transitioned to an offset frequency
across 150 ms. By contrast, the multidimensional exemplars’ higher peak immediately
transitioned across 150 ms from an onset frequency, and then remained at a given steady-
state frequency for the following 100 ms. For multidimensional categories, the high spectral
peak was derived from a sawtooth wave of periodicity 150 Hz; for unidimensional stimuli, it
was derived from bandpass-filtered uniform random noisel. Across all categories, the
steady-state portion of the high-frequency peak varied across exemplars in center frequency
from 950 to 2950 Hz in 400-Hz steps, thereby carrying no first-order information to
category membership.

The linear transitions from the high peak steady-state frequencies were determined by the
steady-state frequency and a category-specific offset frequency to which the high peak
transitioned. But, to prevent listeners from using the onset/offset frequency alone to
determine category membership, the high peak transitioned only about 83% of the distance
to the (canonical) onset/offset frequency. As a result, the high peak onset/offset frequencies
varied somewhat across exemplars within a category.

The unidimensional category offset frequencies were chosen such that the categories (UD1/
UD2) were defined by an upward or downward high-peak frequency trajectory, as shown in
Figure 1. Since the offset loci were substantially higher (UD1, 3950 Hz) or lower (UD2, 350
Hz) than the steady-state frequencies (varying between 1000 Hz to 3000 Hz, depending on
exemplar), each exemplar within a category possessed a falling or rising high-peak offset
transition, with somewhat different slopes and offset-frequencies. This created a
perceptually salient cue to category membership that listeners are able to use fairly well to
group stimuli (Emberson et al., 2013; Wade & Holt, 2005).

I\white noise sound sources were generated at 22050 Hz and filtered with an eighth-order elliptical bandpass filter with 2-dB peak-to-
peak ripple, 50-dB minimum attenuation, and 500-Hz bandwidth using Matlab (Mathworks, Inc.). After filtering, all spectral peaks
(square/sawtooth wave and filtered white noise) were equalized for RMS amplitude within and across categories, and 25-ms linear
onset and offset amplitude ramps were applied.
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Unlike the higher spectral peak transitions present in the unidimensional categories, the
onset frequencies for the high peak in the multidimensional categories (MD1/MD2) were
chosen so that the direction of the high peak transition provided no first-order acoustic
information with which to differentiate the two categories. Here, onset frequencies (2550 Hz
for MD1, 1350 Hz for MD2) fell within the range (1000 Hz to 3000 Hz) of potential steady-
state frequencies, which were identical over both multidimensional categories. Hence, high
spectral peak onset transitions in both MD1 and MD2 varied from steeply increasing in
frequency, to flat to slightly decreasing in frequency (see Figure 1). The multidimensional
categories thus lacked consistent necessary and sufficient single cues to category
membership, a characteristic intended to model the sound categorization challenge presented
by the notoriously non-invariant nature of acoustic dimensions to phonetic categories.
Nonetheless, consistent with the characteristics of many phonetic categories (Lindblom,
1996; Lindblom, Brownlee, Davis, & Moon, 1992), the multidimensional categories are
linearly separable in higher-dimensional acoustic space. Although there is no first-order
acoustic cue with which to differentiate these categories, transition slope and steady-state
frequency information provide reliable higher-order information.

In addition to the six exemplars defining each of the categories during training, five
additional exemplars per category were created and reserved for testing generalization of
category learning to novel exemplars. These stimuli had steady-state frequencies
intermediate to those of the training stimuli (900 Hz to 2500 Hz, in 400-Hz steps). In other
respects their acoustic characteristics matched those of their category, as described above.

Procedure—All testing took place in a sound-attenuated chamber with participants seated
directly in front of a computer monitor. Sounds were presented diotically over headphones
(Beyer, DT-150).

SMART Visual Detection Task: Participants first performed a visual detection task in the
Systematic Multimodal Associations Reaction Time (SMART) paradigm (see Figure 2).
Four rectangles organized horizontally across the computer monitor were present throughout
the experiment. On each trial, a red X (the visual target) appeared in one of four rectangles.
Across trials, assignment of the X to one of the four rectangles was random; unlike
traditional serial reaction time tasks (a well-studied incidental learning paradigm; Nissen &
Bullemer, 1987), there was no underlying sequence in the appearance of X’s across trials.
Using the fingers of the dominant hand, participants indicated the position of the X as
quickly and accurately as possible by pressing the U, I, O or P key on a standard keyboard:;
the keys’ left-to-right position mapped straightforwardly to the horizontal screen position of
the rectangles. Before the appearance of the visual target, participants heard five repetitions
of a single sound category exemplar (250 ms sounds, 0 ms ISI, 1250 ms total duration
followed immediately by the visual target).

Unbeknownst to participants, the sound category from which each exemplar was drawn
perfectly predicted of the horizontal position where the visual target would appear (see
Figure 2). For a given subject, presentation of five repetitions of a randomly-selected UD1
exemplar might always precede the appearance of the X in the left-most rectangle and
thereby be associated with pressing ‘U’ on the keyboard. (Note that assignment of sound
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categories to horizontal position was counterbalanced across participants). Importantly, this
was not a simple associative single-sound-to-position mapping. Each sound category was
defined by six complex, acoustically-variable exemplars. Associating the visual target
position with the preceding sounds required participants to begin to treat the perceptually
discriminable sounds defining a category as functionally equivalent in signaling visuospatial
position. Note that the task did not require that participants make use of this functional
relationship between sound category and visual target location; the task could be completed
perfectly based on visual information alone. However, since the sound category predicts the
upcoming spatial position of the visual target, visual detection reaction time (RT) can serve
as an indirect measure of sound category learning. If participants come to rely on the sound
categories to direct responses to the visual targets, then detection responses should be slower
(RT Cost) when the relationship is destroyed.

At the beginning of the experiment, participants completed eight practice trials for which
there was no correlation between sound category and the position of the visual target.
(Practice trials were identical to experimental trials in all other respects). Following practice,
there were 3 blocks of trials for which there was a perfect correlation between sound
category and visual target location. Each of these blocks had 96 trials (4 sound categories x
6 exemplars x 4 repetitions of each exemplar). After these three blocks, there was a fourth
block in which sound category identity was no longer predictive of the position in which the
visual target would appear. In this block, assignment of sound to visual position was fully
random; any sound exemplar could precede presentation of the visual target in any position.
Block 4 was somewhat shorter than the other blocks (48 trials) so that experience with the
random mapping would be less likely to erode any category learning achieved across Blocks
1-3. The final, fifth, block restored the relationship between sound category and the location
of the upcoming visual target. This served to re-establish category learning prior to the overt
categorization task.

Participants were encouraged to rest briefly between blocks. Reaction times (RTs) were
measured from the onset of the visual detection target to the press of the response key.

Overt Categorization Task: A ‘surprise’ explicit sound categorization test immediately
followed the SMART visual detection task. On each trial, participants heard a sound
exemplar presented five times and observed four rectangles arranged horizontally, just as in
the SMART task. Using the dominant hand and same keys (U, I, O, P) as used in the
SMART task, participants guessed which visual location matched the sound. No visual
targets were presented in the overt task and there was no feedback. Therefore participants
could not learn about auditory category in the course of the overt task. Sound-category
exemplars in the test were the five novel sounds created for each sound category. These
sounds were not experienced in the SMART task and thus tested generalization of category
learning to novel exemplars, a characteristic element of categorization.

Results

Results for all experiments are shown in Figures 3 and 4; Experiment 1 results are in the top
left-hand corner of Figure 3 and the left-most bar of Figure 4.
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SMART Visual Detection Task: Trials for which there was a visual detection error
(M=3%) or response time (RT) longer than 1500 ms or shorter than 100 ms (M=2%) were
excluded from analyses. A repeated measures analysis of variance (ANOVA\) revealed a
significant main effect of Block, F(4,96)=4.25, p=.003, np2z.150. Central to the hypotheses,
there was a significant RT Cost, where RT Cost = RTg|ocka — RTRIock3, 1(24)=3.69, p=.001.
As seen in Figure 3, participants were on average 38 ms faster to detect the visual target in
Block 3 (consistent sound category to location mapping) compared to Block 4, when the
sound category/location relationship was destroyed. This indicates that participants were
sensitive to the relationship between sound category and visual target and suggests that RT
Cost can serve as an index of category learning collected online during the incidental
SMART training task.

A repeated measures ANOVA revealed no significant differences in RT cost for the two
types of categories, F < 1.

Overt Categorization Task: As an overt measure of category learning, we used
participants’ accuracy in explicitly matching novel sound category exemplars with visual
locations consistent with the category-location relationship encountered in the SMART task.
The sounds tested in the overt categorization task were not heard during the visual detection
task and thus generalization -- a hallmark of category learning -- was required for accurate
matching. Participants reliably matched the novel sounds to the experienced visual locations
at above-chance levels, t(24)=6.36, p<.0001 (M=49.73, S.E.=3.89). This was true for both
unidimensional, t(24)=5.77, p<.0001, (M=52.62, S.E.=4.79), and multidimensional,
t(24)=5.80, p<.0001, (M=46.84, S.E.=3.76), sound categories.

Relationship Between Implicit and Overt M easures: There was a significant positive
relationship between RT Cost and category labeling accuracy in the overt categorization task
(r =0.596, p=0.001). The slower that visual detection RTs were during the random sound-to-
location mapping in Block 4 (relative to the average in Block 3), the more accurate labeling
was of novel generalization category exemplars. This is evidence that the online measure of
category learning collected during incidental learning in the SMART task relates to
generalization of category learning assessed with a more traditional overt labeling task.

Experiments 2a and 2b

The results of Experiment 1 are consistent with incidental auditory category learning via the
link to the visuomotor aspects of the primary visual detection task. However, it is possible
that the learning arose instead from mere exposure to the sound input. Another alternative
hypothesis is that participants in Experiment 1 did not learn auditory categories per se, but
instead learned sound-location associations between individual sound exemplars and their
associated visual positions. We address these possibilities in Experiments 2a and 2b.

In Experiment 2a, we test whether incidental category learning generalizes to novel category
exemplars within the SMART task. If participants learn sound-location associations, and not
auditory categories, then introducing new category exemplars should produce a RT Cost
because no sound-location associations will be known for these stimuli. However, if
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participants are learning auditory categories, then they may generalize to these new
category-consistent exemplars. In this case, we would observe no RT Cost.

In Experiment 2b, we address the concerns above in a different way. Across blocks,
participants experience a deterministic mapping between visual location and sound, but the
exemplars mapped to a particular visual location are not necessarily drawn from the same
sound category. Thus, overall category exemplar exposure is identical to Experiment 1, but
within-category distributional acoustic regularity is not associated with the visuomotor
mappings inherent in the SMART task. If listeners are learning from mere exposure then we
should observe overt category labeling accuracy on par with that in Experiment 1.

Participants—Twenty-six participants participated in Experiment 2a. Twenty-five
participated in Experiment 2b. Participants had the same characteristics as those of
Experiment 1.

Stimuli—Stimuli were identical to those of Experiment 1.
Procedure—The procedure was identical to Experiment 1, except as described below.

Experiment 2a: Blocks 1-3 and Block 5 of the SMART task were identical to those of
Experiment 1. However, in Block 4 novel, but category-consistent, sounds were presented.
This maintained the category-to-location mapping with category exemplars that had not
been previously encountered. The generalization stimuli used in the overt categorization test
of Experiment 1 served as the novel generalization sounds in Block 4. To the extent that
participants learn the auditory categories across Blocks 1-3 and generalize this learning in
Block 4, there should be no RT Cost from Block 3 to Block 4. Experiment 2a did not
include an overt categorization test because the generalization stimuli used as a test of
category generalization in the overt labeling task of Experiment 1 were used instead in
Block 4 of the SMART task.

Experiment 2b: In this experiment, six sound exemplars were again deterministically
mapped to each visual target location, but unlike Experiment 1 and Experiment 2a, the set of
exemplars associated with each location did not come from a single sound category. The
exemplar-to-location mapping was maintained across Blocks 1-3, and in Block 5. In Block
4, a new mapping of exemplars to location was introduced. This mapping also did not obey
the category structure of the stimuli; sounds from any category could be assigned to any
location, so long as it was not the same location experienced across Blocks 1-3 and 5. If
listeners learned specific sound-location associations, then disrupting the exemplar-
consistent (but not category-specific) associations established in Blocks 1-3 with a new
sound-to-location randomization in Block 4 should produce a RT Cost. However, we expect
no RT Cost if the learning observed in Experiment 1 was not a simple sound-location
association. Such a finding also would rule out exemplar memorization and mere exposure
as the drivers of the Experiment 1 findings. Experiment 2b included an overt categorization
test identical to that of Experiment 1.
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Results
Experiment 2a

SMART Visual Detection Task (see Figure 3, top middle panel): Trials for which there
was a visual detection error (M=3%) or response time (RT) longer than 1500 ms or shorter
than 100 ms (M=3%) were excluded from analyses. A repeated measures analysis of
variance (ANOVA) revealed no significant main effect of Block, F(4,100)<1. A planned t-
test showed that introducing novel generalization stimuli in Block 4 was not associated with
a significant RT Cost (RTgjocka — RTBIock3), 1(25)=.45, p=.66 (M=2 ms). In other words,
although completely new sounds were introduced in Block 4, participants responded just as
quickly to the visual target. Thus, any learning that occurred over Blocks 1-3 generalized to
novel category exemplars in Block 4. This pattern of generalization is consistent with
category learning in Experiment 1, rather than learning item-specific sound-location
associations.

Experiment 2b

SMART Visual Detection Task (see Figure 3, top right panel): Trials for which there was
a visual detection error (M=3%) or response time (RT) longer than 1500 ms or shorter than
100 ms (M=1%) were excluded from analyses. A repeated measures analysis of variance
(ANOVA) revealed no significant main effect of Block, F(4, 96)=1.54, p=0.19. There was
no significant RT Cost, t(24)=-0.70, p=0.49. Thus, although there was a consistent sound
exemplar to visual location mapping in Blocks 1-3, disruption of this mapping did not affect
the speed at which participants detected the visual targets. This is in contrast to the
consequences of disrupting the sound category to visual location mapping in Experiment 1.
These results suggest that the pattern of responses observed in Experiment 1 was not the
result of mere exposure to the sound exemplars, memorization of individual sound-location
mappings, or simple sound-location associations.

Overt Categorization Task (see Figure 4, middle bar): Consistent with the lack of an RT
cost in the incidental SMART task, participants’ accuracy in overtly matching novel sound
category exemplars and visual locations was not significantly different from chance for
either uni-dimensional (t(24)=.42, p=0.68) or multi-dimensional (t(24)=-0.52, p=0.61)
categories. Categories composed of arbitrary samplings of exemplars with no coherent
distributional structure in perceptual space were not learned, suggesting that structured
distributions are an important factor in incidental category learning. We return to this point
in the General Discussion.

Relationship Between Implicit and Overt Measures: There was no correlation between
RT Cost (Block4rt-Block3gT) and overt categorization accuracy, r=.05, p=.4.

Experiment 3

Experiments 2a and 2b confirmed that the results of Experiment 1 were consistent with
auditory category learning and did not arise from mere exposure to the stimuli or from
learning individual auditory-visual associations. Moreover, Experiment 2b highlighted the
importance of category exemplars that sample an orderly distribution in perceptual space in
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supporting learning in the incidental task. Whereas participants learned the auditory
categories when six acoustically-variable exemplars sampled from a structured distribution
in perceptual space were associated with a visual target location (Experiment 1), they did not
learn when six exemplars randomly sampled from the entire set of exemplars across the four
auditory categories were consistently associated with one of the visual target locations
(Experiment 2b). In Experiment 3, we explored this further by examining the impact of
category-consistent exemplar variability across the five sounds preceding the visual target.
As highlighted in the Introduction, the issue of variability in training is central in studies of
speech category learning. However, the influence of variability on incidental auditory
learning is unknown.

In Experiment 3, we examine how the learning we observe in Experiment 1 is modulated by
acoustic variability. We take a somewhat different approach compared to prior studies.
Whereas investigations of the influence of category exemplar variability on auditory
category learning have contrasted learning across category exemplars characterized by more
or less variability, we hold variability constant across Experiments 1 and 3. This relates to
our hypothesis that visuomotor associations support incidental learning.

The learning observed in Experiment 1, as compared to the failure to learn in Experiment
2b, suggests that the visuomotor associations from the primary visual detection task serve as
a strong signal to bind together the acoustically variable auditory category exemplars. We
hypothesize that experience that more strongly ties acoustic variability to the teaching signal
afforded by the visuomotor associations will promote auditory category learning. To test
this, we manipulate exemplar variability within a trial while holding it constant (and
equivalent to Experiment 1) across the experiment. Specifically, in Experiment 1 five
repetitions of a single exemplar drawn from a category preceded a visual target on each trial.
By contrast, in Experiment 3, five unique exemplars drawn from the same category preceded
a visual target’s appearance in the category-consistent location. Across experiments, the
within-category variability experienced by participants was equivalent. However, in
Experiment 3 participants experienced within-category variability within a single trial,
tightly coupled with the visuomotor associations we hypothesize to promote incidental
category learning, whereas in Experiment 1 participants experienced the variability only
across trials.

Participants—Twenty-five participants with the same characteristics as Experiment 1
were tested.

Stimuli—Stimuli were identical to those of Experiment 1.

Procedure—The experiment was conducted like Experiment 1, except for one change. In
Experiment 1, a single category exemplar was chosen and presented 5 times preceding the
visual target. In Experiment 3, there were also 5 sounds preceding the visual target.
However, instead of a single exemplar, 5 unique exemplars were randomly selected (without
replacement) from the 6 category exemplars and presented in a random order. In this way,
participants experienced the same category input distributions experienced in Experiment 1.
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Across the course of the entire experiment, participants’ experience with within- and
between-category acoustic variability was identical in Experiments 1 and 3. However,
participants in Experiment 3 experienced exemplar variability within a single trial, instead of
across trials as in Experiment 1.

Results

SMART Visual Detection Task (see Figure 3, bottom left panel): Trials for which there
was a visual detection error (M=4.5%) or response time (RT) longer than 1500 ms or shorter
than 100 ms (M=7.5%) were excluded from analyses. A repeated measures analysis of
variance (ANOVA) revealed a significant main effect of Block (F(4,96)=25.61, p=0.0001,
npz =.516). Most relevant to the hypotheses, there was a large and significant RT Cost
(t(24)=7.78, p=0.001), with participants responding an average of 77 ms slower in Block 4
than Block 3. A repeated measures ANOVA revealed no significant differences in RT cost
for the two types of categories, F < 1.

Overt Categorization Task (see Figure 4, second bar from right): There was also strong
evidence of category learning in the overt post-training categorization task. Participants
labeled novel generalization stimuli at above-chance levels, t(24)=11.92, p<0.0001
(M=65.8%, S.E.=3.42). This was true for both uni-dimensional (t(24)=11.56, p<0.0001
(M=77.5%, S.E.=4.5)), and multi-dimensional (t(24)=8.9, p<0.0001 (M=54%, S.E.=3.26))
categories.

Relationship Between Implicit and Overt M easures. There was a significant positive
relationship between participants’ overt categorization task accuracy and the RT cost elicited
from disrupting the category-location mapping in Block 4, r=0.85, p <0.0001.

Comparison of Category L earning to Experiment 1 Category L earning: Experiments 1
and 3 differed in whether participants experienced within-category exemplar variability
within a trial (across the 5 sounds preceding a visual target, Experiment 3) or across trials (5
sounds preceding a visual target were identical, Experiment 1). This factor influenced
category learning considerably, as observed in both category learning measures. The RT
Cost observed in Experiment 3 (M=77 ms, SE=9.97) was significantly greater than that
observed in Experiment 1 (M=38 ms, SE=10.3), t(48)=2.779, p=.008. In addition,
participants in Experiment 3 exhibited greater category learning as indicated by accuracy in
the overt labeling task (M=65.75, SE=3.42) than participants in Experiment 1 (M=49.73,
SE=3.89), 1(48)=3.09, p=.003. We also examined learning across the three first blocks in
Experiment 1 compared with Experiment 3. A repeated measures analysis of variance
(ANOVA) revealed a significant interaction between block (Blocks 1-3) an