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Abstract

Oligodendrocytes, which are the main cell type in cerebral white matter, are generated from their 

precursor cells (oligodendrocyte precursor cells: OPCs). However, the differentiation from OPCs 

to oligodendrocytes is disturbed under stressed conditions. Therefore, drugs that can improve 

oligodendrocyte regeneration may be effective for white matter-related diseases. Here we show 

that a vasoactive peptide adrenomedullin (AM) promotes the in vitro differentiation of OPCs 

under pathological conditions. Primary OPCs were prepared from neonatal rat brains, and 

differentiated into myelin-basic-protein expressing oligodendrocytes over time. This in vitro OPC 

differentiation was inhibited by prolonged chemical hypoxic stress induced by non-lethal CoCl2 

treatment. However, AM promoted the OPC differentiation under the hypoxic stress conditions, 

and the AM receptor antagonist AM22–52 cancelled the AM-induced OPC differentiation. In 

addition, AM treatment increased the phosphorylation level of Akt in OPC cultures, and 

correspondingly, the PI3K/Akt inhibitor LY294002 blocked the AM-induced OPC differentiation. 

Taken together, AM treatment rescued OPC maturation under pathological conditions via an AM-

receptor-PI3K/Akt pathway. Oligodendrocytes play critical roles in white matter by forming 

myelin sheath. Therefore, AM signaling may be a promising therapeutic target to boost 

oligodendrocyte regeneration in CNS disorders.
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Introduction

Oligodendrocytes are one of the major cell types in the cerebral white matters. They produce 

a lipid-rich membrane called myelin, which enwrap up to 60 axonal segments each (i.e. 

myelin sheath). Myelin sheaths enable effective nerve impulse conduction and play a 

supporting role for axons and neuron homeostasis [1]. During development, oligodendrocyte 

precursor cells (OPCs) are generated from germinal zones, then proliferate and migrate to 

both grey and white matter areas, where most of them differentiate into mature 

oligodendrocytes and form myelin sheaths. However, some OPCs may persist in an 

immature state. These residual OPCs are widely distributed in adult brains, comprising 5–

8% of all cells [2]. Although myelinated tracts are formed early in life, renewal of myelin 

and oligodendrocyte continues throughout most of the adult life [3–5]. In fact, myelin 

sheaths in the adult CNS exhibit some plasticity in response to changes in neural activity [6] 

and brain injury [7]. Residual OPCs may play an important part in these endogenous 

mechanisms of white matter repair and renewal.

In demyelinating diseases, injury of myelin/oligodendrocytes results in a profound loss of 

myelin sheaths, axonal injury and degeneration, which eventually lead to long-lasting 

functional disabilities [8, 9]. Mouse models of oligodendrocyte injury, such as proteolipid 

protein (plp1)-null mice or Cnp mutant mice, show axon loss without considerable 

demyelination [10, 11], suggesting that oligodendrocytes may also support axon survival 

through a myelin-independent mechanisms [12]. Endogenous repair attempts by OPC 

proliferation and differentiation would occur at the early stage of demyelinating disorders 

but often fail as disease progresses [13]. Although no clinically proven agents currently exist 

to protect/support OPCs under prolonged or acute pathological conditions, enhancement of 

oligodendrogenesis (regeneration of mature myelinating oligodendrocytes) should be a 

promising approach for treatment of demyelinating diseases [8, 14].

One potential target candidate for promoting oligodendrogenesis during pathological 

conditions may be adrenomedullin (AM). AM was discovered as a vasoactive peptide from 

human pheochromocytoma in 1993 [15, 16]. AM is widely distributed in tissues, and 

secreted from various organs such as adrenal medulla, heart, kidney, lung, and vascular wall 

as well as the brain. AM has diverse biological actions, including cell proliferation and 

differentiation in a paracrine and autocrine manner [17–20]. AM also have important roles 

for cellular function of immature cells, such as endothelial progenitor cell (EPC), 

mesenchymal stem cell, hematopoietic stem cell, adrenocortical stem cell, and neural stem/

progenitor cell (NSPC) [18, 21, 22]. Recently, it has been reported that AM may also 

regulate white matter function in the brain. In a mouse model of white matter injury by 

prolonged cerebral hypoperfusion, increased levels of circulating AM preserved 

oligodendrocyte/myelin integrity along with restoring cerebral hemodynamic, promoting 

arteriogenesis/angiogenesis, and alleviating oxidative damage in cerebral microvessels [23, 
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24]. In addition, AM deficiency exacerbated white matter injury during prolonged cerebral 

hypoperfusion conditions [25]. However, mechanisms that underlie the ability of AM to 

protect myelin and oligodendrocytes in damaged white matter remain unclear. In this proof-

of concept study, we tested the hypothesis that AM can promote OPC differentiation under 

pathological conditions.

Materials and Methods

All experiments were performed following protocols approved by the Massachusetts 

General Hospital Institutional Animal Care and Use Committee in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Reagents

AM and AM receptor antagonist AM22–52 were purchased from Peptide Institute Inc., and 

dissolved in distilled water. CoCl2 and LY294002 were purchased from Sigma, and 

dissolved in dimethysulphoxide. The final concentration of dimethysulphoxide in the culture 

medium was less than 0.1%, which had no effect on OPC survival and function.

Cell culture

OPCs were prepared as previously described [26, 27]. Briefly, cerebral cortices from 1–2 

day old Sprague Dawley rats were dissected, minced, and digested. Dissociated cells were 

plated in poly-D-lysine-coated 75 cm2 flasks, and maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM) containing 20% heat-inactivated fetal bovine serum and 1% 

penicillin/streptomycin. After the cells were confluent (~10 d), the flasks were shaken for 1 

h on an orbital shaker (218 rpm) at 37°C to remove microglia. They are then changed to new 

medium and shaken overnight (~20 h). The medium was collected and plated on non-coated 

tissue culture dishes for 1 h at 37°C to eliminate contaminating astrocytes and microglia. 

The non-adherent cells were collected and replated in Neurobasal (NB) medium containing 

2 mM glutamine, 1% penicillin/streptomycin, 10 ng/ml PDGF, 10 ng/ml FGF, and 2% B27 

supplement onto poly-DL-ornithine-coated plates. Four to 5 days after plating, the OPCs 

were used for the experiments. To differentiate OPCs to oligodendrocytes, the culture 

medium was switched to DMEM containing 1% penicillin/streptomycin, 10 ng/ml CNTF, 

15 nM T3, and 2% B27 supplement.

CoCl2 treatment

To mimic hypoxic conditions in vitro, cells were incubated with non-lethal concentration of 

cobalt chloride (CoCl2) according to our previous reports [28, 29]. For experiments in 

Figures 1 and 3, cells were maintained in the differentiation culture media with or without 1 

µM CoCl2 for 7 days. Freshly prepared cultured media containing CoCl2 were applied to 

OPC cultures on days 0, 3, and 5 (i.e. after starting OPC differentiation, we changed the 

culture media on days 3 and 5). Then on day 7 after starting OPC differentiation, cells were 

used for cell proliferation/survival assay, immunocytochemistry, and western blot. For 

experiments in Suppl Figure S1, cells were maintained in the differentiation culture media 

for 7 days. We prepared four groups: (i) control (no CoCl2 stress), (ii) 1 µM CoCl2 (for 7 

days), (iii) 1 µM CoCl2 (for 7 days) plus 10 nM AM (for 7 days), and (iv) 1 µM CoCl2 (for 7 
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days) plus 10 nM AM (from day 0 to day 1). After starting OPC differentiation, we changed 

the cultured media on days 1, 3, 5 and then on day 7, cells were used for western blot.

Cell proliferation/survival assay

Cell proliferation/survival was assessed by WST reduction assay (Cell Counting Kit-8, 

Dojindo). WST assay is a sensitive colorimetric method to detect cell viability. Highly 

water-soluble tetrazolium salt WST-8 is reduced by dehydrogenase activities in live cells to 

give a yellow-color formazan dye, which is soluble in the tissue culture media. Therefore, 

the intensity of the formazan dye can be an indicator correlating to the number of viable 

cells. The cells were incubated with 10% WST solution for 1 h at 37°C. Then the 

absorbance of the culture medium was measured with a microplate reader at a test 

wavelength of 450 nm and a reference wavelength of 630 nm.

Immunocytochemistry

The cells were washed with ice-cold PBS, pH 7.4, followed by 4% paraformaldehyde for 15 

min. After being further washed three times in PBS containing 0.1% Triton X-100, they 

were incubated with 1% bovine serum albumin in PBS for 1 h. Then cells were incubated 

with primary antibodies against MBP (1:100, Thermo Scientific) at 4°C overnight. After 

washing with PBS, they were incubated with secondary antibodies for 1 h at room 

temperature. Finally, nuclei were counterstained with DAPI.

Western blotting

Cells were rinsed twice with ice-cold PBS, and the cells were collected into cell lysis buffer 

(Pro-PREP™ Protein Extraction Kit, iNtRON Biotechnology). After the protein 

concentrations were quantified and adjusted to the same concentrations by adding PBS, 

samples were mixed with equal volumes of sample buffer containing 91% SDS (Novex) and 

9% 2-mercaptoethanol (Sigma). Subsequently, samples were heated at 95°C for 5 min, and 

each sample was loaded onto 4–20% Tris–glycine gels. After electrophoresis and 

transferring to nitrocellulose membranes (Novex), the membranes were blocked in Tris 

buffered saline with 0.1% Tween 20 (TBS-T) containing 5% nonfat dry milk for 60 min at 

room temperature. Membranes were then incubated overnight at 4°C with myelin basic 

protein (MBP) antibody (1:500, Thermo Scientific), Akt antibody (1:1000, Cell Signaling), 

phosphorylated Akt (Ser473) antibody (1:1000, Cell Signaling), or anti-β-actin antibody 

(1:10000, Sigma Aldrich) followed by incubation with peroxidase-conjugated secondary 

antibodies and visualization by enhanced chemiluminescence (Amersham).

Statistical analysis

Experiments were performed in duplicate, repeated 3–4 times independently. Quantitative 

data were analyzed by using ANOVA followed by post hoc Tukey test or Tukey-Kramer 

test. All values are expressed as means ± SD. A value of P <0.05 was considered statistically 

significant.

Maki et al. Page 4

Stem Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Primary OPCs were prepared from rat neonatal cortex. When OPCs were maintained in 

differentiation media (e.g. DMEM plus 2% B27 including 10 ng/ml CNTF, 15 nM T3 over 7 

days), the cells began to exhibit oligodendrocyte-like phenotypes with myelin-basic-protein 

(MBP) expression (Figure 1A: control group). As previously reported, OPC differentiation 

was suppressed by prolonged hypoxia induced by non-lethal CoCl2 treatment for 7 days [28, 

29] (Figure 1A: CoCl2-treated group). However, 7-day treatment with AM rescued OPC 

differentiation under the prolonged chemical hypoxic conditions (Fig 1A: AM + CoCl2-

treated group). Western blot analyses confirmed that AM promoted oligodendrocyte 

maturation under the stressed conditions (Fig 1B-C). However, 1-day AM treatment did not 

rescue the OPC differentiation under the stressed conditions (Suppl Figure S1). A standard 

WST assay showed that neither AM nor CoCl2 altered the OPC number or induced overt 

cell death in our cell culture system (Fig 1D).

We next examined the mechanisms that may underlie AM-mediated rescue of OPC 

differentiation. Receptor-mediated Akt signaling may be involved since AM treatment 

increased the phosphorylation levels of Akt in OPCs within 30 minutes (Fig 2A), and this 

Akt phosphorylation was back to baseline in 24 hours after AM treatment (Fig 2B). AM-

induced Akt phosphorylation was inhibited by the PI3K inhibitor LY294002 (Fig 2C) or 

blockade of the AM receptor with AM22–52 (Fig 2D). Finally, blockade of PI3K/Akt 

signaling with LY294002 or AM22–52 negated the ability of AM to rescue OPC 

differentiation treatment under prolonged hypoxic conditions (Fig 3A-B). These effects were 

not due to changes in cell survival since the WST assay once again showed that there was no 

significant cell damage in our experimental conditions (Fig 3C).

Discussion

In this study, we obtained proof-of-concept data to support our hypothesis that AM can 

rescue OPC differentiation into mature oligodendrocytes under pathological conditions. Our 

pharmacological approaches also showed that the AM receptor and PI3K/Akt would mediate 

these AM effects. AM and its receptors are widely expressed in the central nervous system 

(CNS) [30, 31]. Past studies extensively examined the multiple roles of AM on neuronal and 

vascular function. AM exerts various actions on the vasculature, such as vasodilation, 

angiogenesis, and regulation of blood brain barrier. Similarly, AM acts as a 

neurotransmitter, neuromodulator, or neurohormone [18]. In addition, AM can be 

considered as a therapeutic target for CNS diseases since several animal studies have 

demonstrated that AM reduces neuronal injuries [32–35]. Furthermore, compared to wild-

type mice, brain-specific conditional AM knockout mice or AM heterozygous KO mice 

exhibited more neuronal damage after ischemic insults [36, 37]. In vitro cell culture studies 

also confirmed that AM protected neurons against oxygen glucose deprivation stress in an 

autocrine and paracrine manner [33, 38]. AM may also be effective in the chronic phase as 

AM increased mobilization of CD34+ mononuclear cells (so-called EPCs) and subsequent 

vascular regeneration and neurogenesis after stroke [33]. Our current findings that AM can 

promote oligodendrogenesis under pathological conditions may support these past studies 
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and confirm that the AM signaling would be the therapeutic target for neurological 

disorders, especially for white matter-related diseases.

Neurons play the central role in the brain, and therefore, neuroprotection would be the most 

important approach for CNS diseases. However, oligodendrocytes (and oligodendrocyte-rich 

white matter) should also be considered when we aim to develop efficient therapies for brain 

protection. Compared to rodents, primates possess an evolutionally expanded volume of 

white matter, and white matter damage is a clinically important aspect of several CNS 

diseases, such as stroke or vascular dementia [39–43]. This may explain the reasons why 

many neuroprotectants (e.g. glutamate receptor antagonists, antioxidants, etc.) that were 

proved neuroprotective in rodent CNS disease models have failed to provide efficacy in 

clinical trials [44]. Even small lesions in the white matter areas (corona radiata or internal 

capsule) could lead to severe hemiplegia and poor functional prognosis in humans because 

loss of oligodendroglial supports can cause progressive axon/neuron degeneration and long-

term functional disability. Others and we have previously demonstrated that AM might play 

an important role in the preservation of oligodendrocyte and white matter integrity in mouse 

models of white matter injury [23–25]. For example, overexpression of circulating AM 

increased GST-pi-positive oligodendrocytes and preserved myelin integrity accompanied 

with promotion of neovascularization and vasoprotection after prolonged cerebral 

hypoperfusion in mice. This "oligo-vascular" protection may lead to the prevention of 

cognitive decline after demyelination [23, 24]. In addition, a recent report showed that AM 

knockout mice exhibited decreased OPCs and GST-pi-positive oligodendrocytes and MBP 

expression in white matter after prolonged cerebral hypoperfusion [25]. Here we show for 

the first time that AM would directly work on OPCs to promote oligodendrogenesis under 

pathological conditions in vitro. These findings may explain the mechanisms for beneficial 

effects of AM on white matter integrity and function. Therefore, the multiple actions of AM 

on neuro-vascular-oligo protection would have a potential as a promising treatment for 

cerebrovascular diseases.

Taken together, our findings support the hypothesis that AM can rescue OPC differentiation 

via receptor-mediated Akt signaling. However, there are some important caveats to keep in 

mind. First, our current study used only a pure cell culture system. However, to prove 

clinically-relevant supportive/protective roles of AM on OPCs against stress, we should test 

the efficacy of AM on in vivo white matter injury animals. Second, our data indicate that 

short-term AM treatment was not supportive for in vitro OPC differentiation under 

pathological conditions. A single treatment of AM could activate the downstream pathway 

(i.e. Akt phosphorylation), but to sufficiently drive the OPC differentiation, multiple rounds 

of AM treatments would be required. Before testing the efficacy of AM using in vivo animal 

models, further investigation into the underlying mechanisms of AM/Akt-induced OPC 

maturation is needed to identify effective treatment schedules of AM. Third, we only 

examined the PI3K/Akt pathway as an intracellular signaling pathway for in vitro 

oligodendrogenesis by AM. But the AM receptor would activate other cellular signaling 

pathways, such as MEK/ERK or cAMP/PKA pathways [45]. Whether these pathways are 

also involved in the OPC-supportive effects of AM should be carefully examined in future 

studies. Finally, as OPCs are generated from NSPCs, we may also need to test if AM can 

enhance the number of newly generated OPCs from NSPCs after white matter injury. A 
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recent study showed that lack of AM results in profound changes in the proliferation and 

differentiation rates in the progeny of NSPCs isolated from the olfactory bulbs of AM 

deficient mice. NSPCs derived from the AM deficient mice produced a lower proportion of 

neuronal-astroglial lineage cells and a higher proportions of oligodendrocyte lineage cells 

compared to NSPCs from WT mice [22]. Hence, future studies are warranted to examine 

how AM regulates the cell fates of NSPCs under normal and pathological conditions.

In summary, our data provide proof-of-concept that AM can promote and rescue OPC 

differentiation into mature oligodendrocytes under pathological conditions in vitro. 

Preservation and repair of oligodendrocytes should be an important criteria of therapies for 

CNS disease patients. Therefore, AM signaling may be a novel therapeutic target for 

accelerating regenerative responses in demyelinating conditions such as stroke, multiple 

sclerosis or vascular dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. A vasoactive peptide adrenomedullin (AM) promoted OPC differentiation under 

pathological conditions in vitro

2. AM treatment increased phosphorylation level of Akt in OPC cultures

3. AM receptor antagonist AM22–52 and PI3K inhibitor LY294002 cancelled AM-

induced OPC differentiation

Maki et al. Page 11

Stem Cell Res. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. AM promoted OPC differentiation under prolonged hypoxic conditions
(A) Cultured rat OPCs were maintained in the differentiation media for 7 days. Under 

normal conditions, the OPCs were successfully maturated into MBP-expressing 

oligodendrocytes. On the other hand, when OPCs were incubated with non-lethal 1 µM 

CoCl2 (e.g. chemical hypoxic conditions), they were not differentiated. However, AM 

treatment (10 nM) promoted the in vitro OPC differentiation under the stressed conditions. 

MBP is a marker for mature oligodendrocytes. Scale bar = 200 nm. (B-C) Western blot 

analyses also confirmed that the hypoxic conditions disturbed the OPC differentiation but 

AM promoted the process. MBP is a marker for mature oligodendrocytes, and β-actin is an 

internal control. Percentages of MBP expression were calculated based on the values in 

control group (i.e. no CoCl2 stress). Values are mean ± SD from 4 independent experiments. 

*P<0.05. (D) The WST assay showed that either AM or CoCl2 did not induce overt cell 

death in our OPC culture system. Percentages of WST activity were calculated based on the 
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values in control group (i.e. no CoCl2 stress). Values are mean ± SD from 4 independent 

experiments.
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Figure 2. AM increased the levels of Akt phosphorylation via AM-receptor-PI3K pathway
(A-B) Cultured rat OPCs were incubated with 10 nM AM up to 24 hr, and then cell lysates 

were subjected to western blot analyses with anti-p-Akt or anti-Akt antibodies. AM 

treatment increased the levels of Akt phosphorylation without changing total Akt levels. 

Values are mean ± SD from 3 independent experiments. (C) Under the conditions of 1 µM 

LY294002 (PI3K inhibitor) existence, AM did not increase the phosphorylation levels of 

Akt. Values are mean ± SD from 3 independent experiments. (D) Similarly, AM did not 

increase the phosphorylation levels of Akt under the conditions of 1 µM AM22–52 (AM-

receptor antagonist) existence. Values are mean ± SD from 3 independent experiments.
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Figure 3. AM-receptor-PI3K/Akt pathway mediated AM-induced OPC maturation
(A-B) Cultured rat OPCs were maintained in the differentiation media for 7 days. The 

prolonged chemical hypoxic conditions by non-lethal 1 µM CoCl2 disturbed OPC 

maturation, but AM treatment promoted the process. This AM-induced OPC maturation was 

inhibited by either co-treatment with 1 µM LY294002 (PI3K inhibitor) or 1 µM AM22–52 

(AM-receptor antagonist). Percentages of MBP expression were calculated based on the 

values in control group (i.e. no CoCl2 stress). N=3 of independent experiments. *P<0.05. 

(B) The WST assay showed that in any treatment groups, there was no significant OPC 

damage. Percentages of WST activity were calculated based on the values in control group 

(i.e. no CoCl2 stress). Values are mean ± SD from 3 independent experiments.
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