Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: J Consult Clin Psychol. 2015 Apr 13;83(4):696–708. doi: 10.1037/ccp0000017

Table 2.

Model fit indices for unconditional models with 1–7 classes (N = 1433).

Latent
Classes
Log-
likelihood
Parameters BIC Difference
in BIC
aBIC Difference
in aBIC
Entropy BLRT
1 −22293 27 44783 -- 44697 -- 1.00 --
2 −12177 55 24753 20029 24579 20118 0.99 p<.001
3 −10670 83 21943 2810 21679 2900 0.97 p<.001
4 −10112 111 21029 914 20677 1002 0.96 p<.001

5 −9839 139 20688 341 20247 430 0.95 p<.001

6 −9615 167 20443 245 19912 335 0.95 p<.001
7 −9469 195 20353 90 19733 179 0.93 p<.001

Notes:

BIC is the Bayesian information criterion, a measure of model fit; smaller values indicated better fit.

aBIC is the BIC adjusted for sample size; smaller values again indicate better fit.

Entropy is a measure of the accuracy of classification of participants in latent classes and of class differentiation; higher values indicate better classification.

BLRT is the Bootstrap likelihood ratio test, a test of the significance of differences in model fit with the addition of one more latent class; p<.05 indicates a significant change in model fit with a change in the number of latent classes.