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Abstract

Lysosomal storage disorders (LSDs) are inherited diseases that result from the intracellular accumulation of
incompletely degraded macromolecules. The majority of LSDs affect both the peripheral and central nervous
systems and are not effectively treated by enzyme replacement therapy, substrate reduction therapy, or bone
marrow transplantation. Advances in adeno-associated virus and retroviral vector development over the past
decade have resurged gene therapy as a promising therapeutic intervention for these monogenic diseases.
Animal models of LSDs provide a necessary intermediate to optimize gene therapy protocols and assess the
safety and efficacy of treatment prior to initiating human clinical trials. Numerous LSDs are naturally occurring
in large animal models and closely reiterate the lesions, biochemical defect, and clinical phenotype observed in
human patients, and whose lifetime is sufficiently long to assess the effect on symptoms that develop later in
life. Herein, we review that gene therapy in large animal models (dogs and cats) of LSDs improved many
manifestations of disease, and may be used in patients in the near future.

Introduction

Lysosomal storage disorders (LSDs) encompass over
50 individual diseases that result from defective catab-

olism of macromolecules and their subsequent accumulation
within lysosomes. The majority of these disorders result from
deficiency of a hydrolytic enzyme; however, select LDSs are
attributed to defects in membrane-bound or activator pro-
teins. All LSDs are an effect of a single gene defect, and the
vast majorities are inherited in an autosomal recessive fash-
ion. While individually they are rare, the combined preva-
lence of all LSDs is *1 in 5000 live births.1–3 For many of
these diseases, there are over 100 known mutations, leading
to a spectrum of onset of symptoms and disease progression.

Several therapeutic approaches have been employed to
treat LSDs. Most commonly, enzyme replacement therapy
(ERT) delivers a recombinant form of the defective enzyme,
while substrate reduction therapy reduces synthesis of the
substrate that cannot be catabolized. Bone marrow or cord
blood transplantation from a normal donor functions to
provide a new source of cells that are capable of migrating
and secreting the deficient enzyme. Repeated, systemic

delivery of ERT has become the standard of care for some
LSDs, such as type I Gaucher disease,4 in which there is no
central nervous system (CNS) involvement. However, the
inability of large recombinant proteins to efficiently pene-
trate the blood–brain barrier (BBB) renders this therapy
ineffective for the majority of LSDs in which neurologic
disease is a prominent feature. The feasibility of infusing
recombinant enzymes directly into cerebrospinal fluid (CSF)
circulation is currently being assessed in numerous animal
models of LSDs. However, the necessity of repeatedly in-
jecting the CNS comes with safety, practicality, and finan-
cial concerns.

An alternative to infusion of recombinant enzyme is the
use of a viral vehicle to deliver the deficient enzyme. LSDs
are an ideal candidate for gene therapy because they are
monogenetic and the therapy can be administered as a one-
time treatment. Furthermore, gene therapy can exploit an
advantageous mechanism of lysosomal enzyme uptake
known as cross-correction.5 The majority of lysosomal en-
zymes are secreted into the extracellular space and, once
they have exited a cell, can subsequently be taken up by a
mannose 6-phoshate receptor on neighboring cells’ plasma
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membrane. Therefore, it is not requisite for gene therapy to
target every cell, as delivery to a subpopulation of cells that
produce and secrete a portion of the deficient enzyme can
cross-correct cells the vector failed to transduce.

Success of gene therapy is dependent on numerous con-
siderations, including but not limited to, vector type, dosage,
injection route, and age at treatment. Many studies have
relied on the ability of viral vectors to target specific organs,
and although strategies to better equip retroviruses for tar-
geted delivery have been underway, the advent of the adeno-
associated viruses (AAV) has allowed for such ambition.6–8

Systemic expression of a therapeutic gene has most com-
monly been obtained through liver-directed gene therapy as
the liver naturally acts as an endogenous source of circu-
lating proteins. Indeed, this approach has been demonstrated
in the clinical setting for hemophilia B, although preexisting
antibodies to the AAV vector in some animals have proven to
be a difficult obstacle.9–11 As passage of circulating thera-
peutic protein across the BBB also remains an issue, direct
brain injections of viral vectors were tested. Although ade-
novirus and retroviruses offer therapeutic advances for
cancer-based therapies, their use in CNS gene therapy is lim-
ited due to their ability to initiate an innate immune response.12

Offering a safer alternative, studies in the CNS using AAV
serotypes have been completed.13–20 From these studies also
came the important discovery identifying select serotypes
that have the ability to undergo axonal transport, and
transduce cells that are some distance from the injection site,
redefining this area of the field.14,16 Indeed systemic admin-
istration of AAV serotypes with a CNS transduction profile,
such as AAV9 and AAVrh10, offers a new wave of therapies
allowing access to the CNS from the periphery. However, old
challenges have been re-identified such as peripheral antibody
responses and new challenges have evolved, such as cell-
specific transduction mediated by age.21,22

Animal models of LSDs provide an important inter-
mediate to optimize gene therapy protocols and assess
the safety and efficacy of therapy prior to initiating human
clinical trials. Numerous LSDs are naturally occurring in
large animal models, particularly cats and dogs, that closely
recapitulate the pathological and biochemical abnormalities
observed in human patients. Furthermore, in contrast to mu-
rine models, the size and complexity of a cat or dog’s brain is
more comparable to that of a child, providing stronger
translational potential for neuropathic LSDs. Finally, the
longer lifespan of large animal models compared with mice
allows the long-term efficacy to be assessed. Herein we re-
view recent advancements in gene therapy in dog and cat
models of LSDs (Table 1) and demonstrate the progress to-
ward treatment in patients.

Gene Therapy in Feline and Canine Models of LSDs

Alpha-mannosidosis

Alpha-mannosidosis (AMD) is an inherited lysosomal
storage disease caused by the deficient activity of the lyso-
somal enzyme a-mannosidase. Deficient enzymatic activity
results in the accumulation of mannose-rich oligosaccharides
within lysosomes.23,24 In humans, the disease is characterized
by intellectual disability, ataxia, and progressive skeletal
abnormalities.25–28 Hepatosplenomegaly, recurrent bacterial
infections, gingival hyperplasia, synovitis, hearing loss,

hydrocephalus, paraplegia, and corneal and lenticular opaci-
ties can also occur.23,24,27 Neuropathological findings include
vacuolated neurons, glia, and endothelial cells throughout the
brain and spinal cord; Purkinje cell loss; and myelin defi-
ciency of the central and peripheral nervous systems.27

Feline alpha-mannosidosis

Spontaneously occurring AMD has been reported in
cats,28–34 cattle,35–42 and guinea pigs,43–45 and a knockout
mouse has been created.46 Interestingly, disease can also be
induced by ingestion of the indolizidine alkaloid swainso-
nine, which is found in locoweed plants.47 Hereditary AMD
occurs in Persian, longhair, and shorthair cats and, in Persian
cats, is caused by a 4 bp deletion in the a-mannosidase gene
(MANB) resulting in a frameshift and premature termina-
tion.30,33,48 Disease in cats is characterized by progressive
cerebellar ataxia, skeletal abnormalities, hepatomegaly, thymic
aplasia, gingival hyperplasia, corneal and lenticular opacities,
and polycystic kidneys.29,31,34 Neuropathologic findings are
similar to those found in human patients.29–32,49,50 Surrogate
MRI markers of CNS disease severity have been developed in
the AMD cat.51–53

In 2001, a comparison of the ability of three AAV sero-
types (AAV1, AAV2, and AAV5) to transduce the cat brain
was examined, and it was determined that AAV1 resulted in
the greatest transduction of both gray and white matter.54

Eight-week-old cats with AMD received six injections of an
AAV1 vector carrying the normal feline alpha-mannosidase
cDNA into each rostral cerebral hemisphere and the rostral
brainstem, and two injections into the cerebellum.51 Sur-
prisingly, all treated cats showed improvement in signs of
cerebellar dysfunction (intention tremor, truncal ataxia, and
tremor) from 12 to 18 weeks of age. Treated cats were eu-
thanized at 18 weeks of age, an age when untreated cats are
euthanized because of severe cerebellar dysfunction. Histo-
logical analysis of the brains of treated cats showed complete
resolution of storage in neurons, glia, and endothelial cells up
to 4.5 mm from the injection track, and up to 2 mm from cells
producing MANB mRNA. While lysosomal storage increased
as the distance from the needle track increased, no regions of
the treated cat brain showed lysosomal storage as severe as
that found in untreated AMD cats. Even in regions of the brain
distant from the injection tracks, such as the occipital cortex,
cells were not as swollen as those seen in untreated AMD cats.
Myelination abnormalities also improved throughout the
brains of treated cats. Finally, resolution of storage also could
be seen in cells of the choroid plexus, ependyma, and me-
ninges. Although disease was not cured in the treated cats,
these studies suggested that direct gene therapy to the brain
could delay, ameliorate, and even improve disease in the cat.
These studies led to the study of third-generation AAV vec-
tors and intrathecal administration of AAV in this feline
model (currently unpublished) and the proposal for a clinical
trial in children with AMD.

GM1 gangliosidosis

GM1 gangliosidosis is an LSD that results from a defi-
ciency of the hydrolytic lysosomal enzyme b-galactosidase
(b-gal; EC 3.2.1.23). Functional b-gal is responsible for the
initial step in ganglioside catabolism and cleavage of the ter-
minal galactose residue, and in its absence GM1 ganglioside
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accumulates throughout the CNS. GM1 gangliosidosis pres-
ents as three clinical forms: (1) infantile, (2) late infantile/
juvenile, and (3) adult onset, with severity decreasing as the age
of onset increases. Infantile and juvenile patients most com-
monly experience developmental regression, muscle weak-
ness, skeletal abnormalities, visceromegaly, and neurological
signs progressing to seizures, blindness, and ultimately a
vegetative state.55 Disease onset of the infantile form typically
occurs in the first 6 months of life and is fatal by 5 years of age.
In the juvenile form, symptoms most commonly arise between
7 months and 3 years of age, and lifespan does not frequently
exceed 15 years of age. The adult onset is highly variable in the
age of onset, presentation of symptoms, and lifespan.

Feline GM1 gangliosidosis

Feline GM1 gangliosidosis results from a G-to-C substi-
tution at position 1448 resulting in an arginine-to-proline
substitution at amino acid 483, which is analogous to a
mutation in humans.56 Feline GM1 gangliosidosis was ini-
tially described in 197157 and is considered to be a model of
late infantile/juvenile onset.58 Disease onset occurs at 4.1 –
0.6 months with fine tremors and progresses to muscle
weakness, ataxia, overt full body tremors, and eventually the
inability to stand, which defines the humane endpoint at 8.0
( – 0.6) months of age.59 Histopathological examination re-
veals enlarged neurons with cytoplasmic inclusions and in-
tense staining with periodic acid Schiff and hepatocellular
vacuolation. Biochemical analysis is comparable to juvenile
patients, with a deficiency of b-Gal activity ( < 10% of
normal) and substantially increased levels of GM1 gangli-
oside (*8 times normal).60

Gene therapy experiments were conducted in GM1 cats
with an AAV vector expressing feline b-Gal injected bilat-
erally into the thalamus and deep cerebellar nuclei (DCN).
Twenty-three GM1 cats were treated between 1.3 and 3.0
months of age, prior to the average age of onset of clinical
signs, with either AAV1 or AAVrh8 serotypes and out-
comes were assessed at 16 weeks after injection (short-term,
n = 7) or at the humane endpoint (long-term, n = 16).59

Short-term studies at 16 weeks postsurgery demonstrated
that b-Gal activity throughout the brain, spinal cord, and
CSF in GM1 cats exceeded that of normal animals and there
was no significant difference between the AAV serotypes.
Treatment with either vector serotype led to significant re-
duction of ganglioside storage in all CNS samples analyzed.
Long-term studies in GM1 cats established statistically
significant increases in survival for both serotypes to nearly
40 months of age, or 5 times that of untreated GM1 cats, at
the time of publication. However, 8 of the 12 treated cats
remained alive with subtle or no discernable clinical phe-
notype, and to date treated cats have exceeded 5 years of age
(D.R. Martin, personal communication). Of the 4 deceased
cats, 2 reached neurological humane endpoint and 2 cats,
with mild or no signs of neurologic disease, failed to recover
from anesthesia and were euthanized. MRI demonstrated
normalization of white to gray matter intensities and overall
brain architecture in AAV-treated GM1 cats. There was an
apparent dose response, as cats treated with 1/10th of the
original dose had a significantly shorter survival time
(17.1 – 3.6 months; p = 0.0046) than those that received the
higher dose. Gene therapy has restored breeding function to

the GM1 colony, allowing for litters completely comprised
of kittens homozygous for the GM1 mutation.59

GM2 gangliosidosis

Tay–Sachs, along with Sandhoff disease (SD), comprises
a category of LSDs known as monosialoganglioside 2
(GM2) gangliosidoses, arising from a deficiency of the hy-
drolytic lysosomal enzyme b-nacetylhexosaminidase (Hex;
EC 3.2.1.52). Hex is comprised of two subunits, a and b,
which dimerize to form three distinct isozymes with dif-
ferent physiological functions. HexA is comprised of an a/b
subunit heterodimer, HexB is a b/b homodimer, and a a/a
homodimer leads to an unstable isozyme, Hex S. HexA
cleaves charged substrates and is the isozyme responsible
the hydrolytic cleavage of GM2 ganglioside. A defect in
HexA results in accumulation of GM2 ganglioside in neu-
rons throughout the CNS leading to progressive and fatal
neurodegeneration.

Three forms of GM2 gangliosidosis are defined based on
age of onset and subsequent disease severity: (1) infantile
(classical), (2) juvenile, and (3) adult onset, with the latter
two having a more heterogeneous disease progression. In-
fantile GM2 has a mean age at onset of 5.0 months, age at
diagnosis of 13.3 months, and life span of 47 months. The
most frequent initial symptoms reported are developmental
arrest, abnormal startle response, and low muscle tone, which
progress to seizures, blindness, and ultimately a vegetative
state.61 Signs of neurodegeneration are visible upon gross
examination of the brain at the time of autopsy. Namely, the
ventricles are enlarged in accordance with macrocephaly and
the gyri become broad and the sulci shortened because of
cortical atrophy.62 Upon histological examination, neurons
laden with storage of glycosphingolipid become enlarged, at-
tributable to cytoplasmic distention by accumulation of foamy,
vacuolated material. This material often displaces neuronal
nuclei peripherally and obscures visualization of Nissl sub-
stance. Ultrastructure examination reveals the presence of
electron-dense lamellated material known as membra-
nous cytoplasmic bodies as well as transversely stacked
myelinoid membranes known as zebra bodies.62 Many path-
ological signs of aberrant storage are also detectable in vis-
ceral organs, including the liver, heart, spleen, and skeletal
system.

Feline GM2 gangliosidosis

Feline GM2 gangliosidosis results from a mutation in the
HEXB gene (the b subunit) causing a deficiency in both HexA
(a/b) and HexB (b/b) enzymes, and thus is a true model of SD.
The GM2 gangliosidosis cat model was first described in
1977,63 and has been well characterized in the intervening
years.64,65 There are four known mutations in the HEXB gene
that result in feline SD: a 25 bp inversion at the 3¢ terminus,65

a single base deletion in exon 1,66 a nonsense mutation in
exon 7,67 and a 15 bp deletion encompassing the splice ac-
ceptor site of intron 11.68 Cats homozygous for the 25 bp
inversion mutation have premature termination of the coding
sequence that results in < 3% of normal Hex enzyme activity
in the brain and peripheral tissues and progressive neurologic
disease similar to infantile patients. Disease onset occurs
at *1.7 months of age with slight intention tremors of the
head and tail. Signs gradually progress to ataxia, hind limb
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weakness, overt whole-body tremors, and inability to stand
(humane endpoint) by 4.5 – 0.5 months. The pathological
presentation of feline GM2 gangliosidosis is very similar to
that seen in human disease and includes distended neurons
and membranous cytoplasmic bodies in the CNS and storage
inclusions, resulting in vacuolation of cells in the viscera.63

Sandhoff disease cats treated by bilateral thalamic injec-
tion with AAV1 vectors encoding human a and b Hex
subunits lived to 7.0 and 8.2 months of age.69 The limited
therapeutic effect may have been because of robust humoral
immune response to the AAV capsid and/or human Hex
protein. Subsequently, AAV vectors encoding feline a and b
Hex subunits were injected bilaterally into the thalamus of
SD cats, which reduced the immune response and increased
survival to 10.4 – 3.7 months of age, or > 2 times that of
untreated cats. After bilateral thalamic injection, Hex activity
was restored to near or above normal levels throughout the
cerebrum, but mean activity was substantially below normal
in the cerebellum.69 To achieve better enzymatic distribution,
the thalamic infusion was combined with direct targeting of
the DCN. SD cats were treated between 4 and 6 weeks of age,
prior to symptom onset, with an AAVrh8 vector encoding
feline Hex. At 16 weeks postsurgery, HexA activity was > 2-
fold normal throughout the brain, spinal cord, and CSF. GM2
ganglioside storage was significantly reduced in all areas of
the brain and spinal cord analyzed when compared with un-
treated SD cats. AAV therapy delayed disease onset up to 16
weeks posttreatment, the age in which untreated SD cats
typically reach humane endpoint. Treated SD cats developed
generalized hind limb weakness and subtle tremors, but did
not progress to severe ataxia and overt whole-body tremors
that are prominent in untreated SD cats.70

Because of added surgical risk associated with directly in-
jecting the cerebellum, SD cats were alternatively treated by
intracerebroventricular (ICV) injection via the lateral ventricle
in combination with the bilateral thalamic injection. HexA
activity was > 4-fold normal throughout the brain and spinal
cord.71 Sixteen weeks after injection, GM2 ganglioside storage
was reduced by > 90% in all CNS regions analyzed. The
thalamus + ICV injection route resulted in a delay in onset of
signs; however, correction of the disease phenotype was not as
complete as previously seen with the thalamus + DCN injection
route.71 Untreated SD cats and cats from both AAV treatment
groups were analyzed for potential biomarkers of disease and
therapeutic efficacy. Alterations were found in blood, CSF, and
clinical evaluations that increased with disease progression.
Importantly, many of these factors were normalized after in-
tracranial AAV gene therapy and thus could serve as secondary
outcome measures.72 Ongoing long-term studies are demon-
strating substantial therapeutic efficacy, with treated SD cats
surviving at least four times longer than untreated cats (D.R.
Martin, personal communication).

Mucopolysaccharidosis I

Mucopolysaccharidosis I (MPS I) is an LSD that is char-
acterized by a deficiency of the lysosomal enzyme a-L-idur-
onidase (IDUA, EC 3.2.1.76). The subsequent accumulation
of partially degraded dermatan and heparan sulfates in lyso-
somes is responsible for the primary manifestations. Cur-
rently, 119 different mutations have been identified leading to
a variety of clinical phenotypes. The clinical disease is cate-

gorized as the severe form, or Hurler syndrome (MPS IH),
and the attenuated form, which includes Hurler–Scheie (in-
termediate, MPS IH/S) and Scheie syndromes (mild, MPS
IS). MPS IH is most commonly diagnosed and is clinically
characterized by a combination of retarded physical and
mental development, corneal clouding, high urine glycos-
aminoglycans (GAGs), organomegaly, coarse facial features,
dysostosis multiplex, joint stiffness, cardiovascular involve-
ment, respiratory problems, and early childhood death.73,74 In
contrast, Scheie syndrome is compatible with normal intel-
ligence, stature, and lifespan with attenuated disease pro-
gression including corneal clouding, joint stiffness, and aortic
valve disease. MPS IH/S is more variable but is usually
characterized by normal intelligence with physical manifes-
tations that have intermediate severity in clinical presenta-
tion. No single feature is diagnostic, while combinations
suggestive of MPS supported with urine GAG analysis and
enzyme activity assays are most often definitive.

Feline MPS I

The feline model of MPS I is homozygous for a 3 bp
deletion translating to loss of an aspartate that is highly
conserved among man, dog, and mouse.75 Clinical presen-
tation most closely resembles the severe human counterpart,
MPS IH, with high urine GAG, no enzyme activity, broad
facial features, short ears, hepatosplenomegaly, corneal
clouding, skeletal and joint deformities including cox-
ofemoral subluxation, and fusion of the cervical vertebrae.76

Behavioral and learning deficits are difficult to accurately
analyze in the feline model; however, storage lesions have
been identified in feline MPS I CNS tissue including in-
creased lysosomal vesicles laden with GM3 ganglioside,
cholesterol, and GAG accumulation.77

Knowledge of the biological component responsible for
MPS I5 has allowed for further therapeutic studies, including
viral vector-mediated gene therapy studies in large animal
models. Previous studies have identified that the feline model is
sensitive to the species differences in the IDUA protein.78,79 In-
deed, Ponder et al. indicated a significant immune response to the
canine IDUA (cIDUA) gene product; however, stable expression
was achieved with additional immunosuppression given for 1
month at the time of gene therapy.79 Until Hinderer and col-
leagues77 cloned the feline IDUA (fIDUA) cDNA, gene therapy-
based studies were limited to the canine model. Intrathecal (IT)
delivery of AAV9-fIDUA resulted in stable CSF and serum
IDUA activity at or just below normal values. Although a sys-
temic IDUA antibody response was detected, overall results in-
dicated global CNS transduction, normalization of secondary
lysosomal enzymes, and the reduction of GAG, cholesterol, and
GM3 ganglioside-associated storage lesions.77 In addition, stor-
age was reduced in livers of all treated animals, while those with
low antibody titers exhibited cross-correction of the spleen.77

Further studies with an intravenously delivered AAV8-fIDUA
highlighted reversal of systemic storage lesions and complete
correction of cardiovascular lesions in animals expressing sus-
tained supraphysiological levels of IDUA in serum.80

Canine MPS I

MPS I in dogs is caused by a donor splice site mutation in
intron 1 of the IDUA gene81 and is characterized by stunted
growth,82 facial dysmorphia,83 joint, bone, heart, and CNS
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disease. Specifically, chondrocytes are affected by storage
material leading to joint hypermobility and swelling,82 ero-
sions, and ulcerations on articular surfaces of joints along
with joint effusion.84,85 Synovial cells in joints are vacuolated
and thickened with brown-red villous projections into the
joints.84,86 Degenerative osteoarthritis develops in all affected
dogs over time86 and distal limb joint laxity may be present
by 9–12 months of age leading to the difficulty in ambula-
tion.84 The bony changes, thickened meninges, and disc de-
generation in the spine may cause spinal cord compression
mainly in the cervical spine and thoracic spine, which can be
quite severe by over a year of age.87 The heart is enlarged and
rounded with thickened valves and intimal surfaces of the
pulmonary arteries and aorta diffusely roughened.86 Vacuo-
lation of mesenchymal cells in arteries, including the coronary
arteries,82,86 thickening of valves and the aortic wall, and di-
lation of ventricles leading to thinner ventricular walls,84 are
evident in affected dogs. Aortic dilation has been shown to be
most severe by a year of age in affected dogs.88,89 Hepatocytes
and Kupffer cells in affected dogs are vacuolated86 and MPS I
dogs often develop portal hypertension and nodular regener-
ative hyperplasia of the liver.90 Lymph nodes are generally
enlarged (3–4 times normal), and the mesenchyme in most
other organs and epithelial cells in kidney and adrenal gland
contain cytoplasmic vacuolation.84,86 Corneal opacities de-
velop by about a year of age in affected dogs84,91 and corneal
stromal cells accumulate storage and worsen with age.89

Storage in the nervous system seen microscopically as
cytoplasmic vacuolation is mainly observed in neurons and
astrocytes, but also in fibroblasts and tissue macrophages.86

Studies in affected dogs demonstrated that leptomeninges of
CNS were thickened because of mesenchymal cells packed
with GAGs. Some cerebral cortical neurons also contained
storage material leading to marginated nuclei, and mild to
moderate axonal degeneration was noted in one dog.84 Peri-
vascular mononuclear cell infiltration was present in both gray
and white matter.86 On electron microscopy, inclusions (zebra
bodies) were noted.86 Increased concentrations of GM2, GM3,
GD3, and b-hexosaminidase and decreased b-galactosidase
concentrations were present in the CNS.86

Only few early gene therapy experiments have been
performed to correct MPS I in the canine model.88,92–95

Some involved transducing cells in vitro and then trans-
planting. Canine bone marrow cells transduced in vitro with
retroviruses expressing the human gene were adminis-
tered to MPS I-affected dogs between 3 and 11 months of
age with low to no survival of transplanted cells, no correc-
tion of disease, and a strong immune responses against the
enzyme.94 In another experiment, in utero transplants be-
tween gestational day 35 and 38 were performed in hetero-
zygous MPS I bitches mated to heterozygous males. There
were no immune responses to IDUA but antibodies developed
against proteins in the culture medium after antigen chal-
lenge. While the provirus was identified at low levels in
hematopoietic cells, no enzyme was detected and no im-
provement in MPS I phenotype.93

Neonatal gene therapy resulted in better amelioration of
disease and no side effects were noted upon administration
of the vector. MPS I dogs received a retroviral vector con-
taining human alpha1-antitrypsin promoter and the canine
IDUA cDNA at 2–3 days of life.88,92 All MPS I-affected,
treated dogs had serum IDUA levels that were 2–68 times

higher than those in the serum of normal dogs, and have been
maintained for up to 8 years. All dogs survived long-term and
corneal clouding was significantly decreased but not normal.
There was reduction in lysosomal storage of cortical neurons
and zebra bodies were absent. Clinical aspects of the dis-
ease phenotype, including facial dysmorphia, umbilical her-
nias, joint disease, and aortic dilation, were improved.88 Bone
disease was mild in control affected MPS I dogs making it
difficult to evaluate the skeletal effects of therapy, but some
of the skeletal manifestations of disease were ameliorated.92

The results suggest that the skeletal tissues are more difficult
to transduce and that treatment might need to be initiated
even earlier or locally in the joint to achieve higher enzyme
levels.92

MPS I dogs aged 3–5 months received intracerebral in-
jections of AAV5 encoding human IDUA in conjunction
with complete immunosuppression, cycolosporine (CsA) +
mycophenolate mofetil (MMF), or partial immunosuppres-
sion with CsA alone.95 Dogs with complete immunosuppres-
sion demonstrated broader dispersion of vector copies, higher
IDUA activity, and greater attenuation neuropathology. Dogs
with incomplete immunosuppression developed subacute en-
cephalitis characterized by infiltration of mononuclear cells
into perivascular and subarachoid spaces. Furthermore, anti-
hIDUA antibodies were detectable in the brain extracts of dogs
that received CsA alone, but not the brain of dogs that received
CsA + MMF.95 This study reiterates the necessity of preventing
a detrimental immune reaction to the therapeutic product.
Other studies have shown that the use of species-specific
transgene reduces immunoreactivity of intracerebral gene
therapy and may negate the need for immunosuppression.69,96

Mucopolysachharidosis III

Mucopolysachharidosis III (MPS III), or Sanfilippo syn-
drome, is characterized by mutations in the lysosomal hydro-
lases responsible for the catabolism of heparan sulfate (HS)
oligosaccharides, and thus includes 4 types, each because of the
deficiency of a different enzyme: heparan N-sulfatase (type A);
alpha-N-acetylglucosaminidase (NAGLU, type B); acetyl
CoA:alpha-glucosaminide acetyltransferase (type C); and N-
acetylglucosamine 6-sulfatase (type D). Clinical onset is
progressive in all types and generally follows a normal de-
velopmental period up to around 1–3 years of age where slo-
wed cognitive advancement develops in the form of speech
delay. Behavior issues develop around 3–4 years of age and
often mirror a cognitive decline. In adolescent years, behav-
ioral issues decline as dementia develops, along with motor
function decline, a complete loss of locomotive capacity and
dysphagia. Patients often develop severe hyperactivity that is
unresponsive to therapy and are often misdiagnosed as atten-
tion-deficit/hyperactivity disorder or within the autism spec-
trum.97 Patients may survive well into their forties depending
on the phenotype, but generally succumb to death in their late
twenties to mid-thirties.98,99 Several naturally occurring ani-
mal models have been identified for types A, B, and D, but only
the Schipperke dog model for MPS IIIB has been maintained
for therapeutic studies.100,101

Canine MPSIIIB

Similar to human, the MPS IIIB dog displays normal
development, until *3 years of age when evidence of
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neurological involvement becomes obvious. Presentations
generally include dullness, head tilt, and lethargy, with
ataxia being a prominent feature. The animals quickly de-
cline neurologically with clinical features involving poor
condition and anorexia, cardiac involvement, tetraparesis,
intention tremors, exaggerated postural reactions, and de-
creased menace response. Overall, the disease is considered
diffuse and central with a prominent cerebellar component.101

Behavioral studies have not been conducted to date. Animals
are typically euthanized because of poor prognosis within 1–2
years from onset of clinical signs.

A single study has been published to date studying the
effects of intracerebral delivery of an AAV5 vector encoding
for human NAGLU. It is unclear whether this treatment de-
layed the onset of neurological symptoms, as this was not the
ultimate goal. However, GAG and ganglioside storage was
markedly reduced in treated animals compared with untreated
controls.102 Although vector genomes and NAGLU activity
were found in the cerebral hemispheres surrounding the in-
jection sites, both products were absent in the most rostral and
caudal portions of the brain, especially the cerebellum.102 Of
note, immunosuppression was mandatory to prevent inflam-
mation and allow disease correction, as animals without im-
munosuppressive treatment had lower (or absent) enzyme
activity and inflammation in the CNS, which may have been
because of the use of the human transgene.102 Overall, this
study provided evidence that AAV gene therapy delivering
functional NAGLU to the brains of MPS IIIB dogs was safe
and well tolerated, and could be generated as a potential
clinical therapy to pursue.

Mucopolysaccharidosis type VI

Mucopolysaccharidosis type VI (MPS VI), also known as
Maroteaux–Lamy syndrome, is characterized by mutations in
the gene encoding for arylsulfatase B (ARSB, EC 3.1.6.12),
necessary for the degradation of dermatan and chondroitin
sulfates. Reduction or absence of this lysosomal enzyme leads
to systemic storage of partially degraded dermatan sulfate.
Disease progression can be rapid or slow with further charac-
terization by urine GAG levels and physical presenta-
tion.103,104 Patients with rapid onset develop coarse facial

features at birth and a variety of clinical manifestations, in-
cluding severe skeletal dysplasia leading to shortened stature,
various bone deformities and spinal cord compression, joint
stiffness and degenerative arthritis, infiltrative cardiomyopathy
and respiratory dysfunction, corneal clouding, organomegaly,
and communicating hydrocephalus.103,104 Patients presenting
as slow onset type develop these features at a later age with
reduced severity, but eventually succumb to severe deformities
and secondary complications. In comparison to many of the
LSDs, cognitive decline and neurodegeneration are not major
features of this disease.105 Naturally occurring large animal
models of MPS VI include both feline and canine forms.100

Feline MPS VI

MPS VI cats carry a homozygous ARSB mutation corre-
sponding to an L476P mutation ultimately causing retention
in the endoplasmic reticulum.106 Cats predominantly present
with physical deformity and orthopedic issues similar to those
described in human.99,104 They reflect the coarse facial fea-
tures of MPS VI, presenting early after birth with small heads,
flattened-broad faces, and short ears. The cats are often of
short stature with progressive locomotor difficulty, especially
in the hind limbs. Radiographic analysis reveals epiphyseal
dysplasia and degenerative joint disease of long bones and
osteopenia. Corneal clouding is evident as well. Animals
degenerate physically over *2 years with hind limb paresis,
reduced pain perception, and increased tensor tone.107 Or-
ganomegaly and cardiac abnormalities, including mitral
valve thickening, are also observed in this model.

Considering the lack of CNS involvement, ERT and
systemic gene therapies are attractive options as crossing of
the BBB is unnecessary. Although ERT is an approved
therapy for MPS VI and has shown reduction in systemic
GAG storage, it has not been shown to prevent skeletal or
ocular abnormalities.108 Current gene therapy studies in the
feline model include neonatal intravenous gene therapy (see
below) using retroviruses and ex vivo in HSCs and fibro-
blasts, and AAV-mediated delivery. Although the ex vivo
studies established the feasibility of their methods in the
MPS VI cat model, neither method was able to produce
long-term expression or express more than 20% of normal

Table 1. Gene Therapy in Canine and Feline Models of Lysosomal Storage Disorders

Disease Deficient enzyme Model origin Gene therapy

Feline models of LSDs
treated with gene
therapy

a-Mannosidosis a-D-mannosidase Persian28 51
GM1 gangliosidosis b-Galactosidase Siamese57

Korat130

Bangladeshi domestic131

Domestic shorthair132

59

GM2 gangliosidosis b-Hexosaminidase Domestic shorthair63

Korat133

Japanese domestic134

Burmese68

69–71

MPS I a-L-iduronidase Domestic shorthair135 77,79,80
MPS VI Arylsulfatase-B Siamese136 109–114

Canine models of LSDs
treated with gene
therapy

MPS I a-L-Iduronidase Plott Hound86 88,92–95
MPS IIIB a-N-acetylglucosaminidase Schipperke101 102
MPS VII b-Glucuronidase German shepherd119

Brazilian terrier120
92,121–126

LSDs, lysosomal storage disorders; MPS, mucopolysaccharidosis.
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serum ARSB activity.109,110 Studies using AAV delivery of
feline ARSB were more successful at establishing sustained
circulating enzyme levels. In an effort to specifically address
retinal storage, Ho and colleagues111 injected an AAV2
vector into the subretinal or intravitreal spaces. Subretinal
injections proved to be superior to the intravitreal route and
restored orientation to the layers as well as reducing va-
cuolization. Intravitreal injections were less dramatic, but
allowed for expression in retinal ganglion cells and subse-
quent storage reduction. Prevention of lesions was evident in
juvenile cats while alleviation of storage GAG was identi-
fied in adult cats.111

In preliminary studies, Tessitore et al. established that
enzyme secreted from transduced hepatocytes using an
AAV8 vector driven by a liver-specific promoter, thyroxine-
binding globulin (TBG), was superior to an AAV1 vector
driven by a muscle-specific promoter, muscle creatine ki-
nase (MCK), for systemic expression of feline ARSB.112

Circulating enzyme above or at normal activity levels and
significant reduction in GAG storage was evident, prompt-
ing further study. A follow-up article established that high
doses (6E12-E13 GC/kg) of AAV8.TBG vector were able to
improve mitral valve lesions and improve long bone length
and facial morphology, further resulting in improved motor
activity.113 Although high serum activity was achieved and
a majority of pathologies were improved in several organs,
variable circulating ARSB expression was noted. Indeed,
further studies with this therapy provided evidence that
preexisting antibodies to AAV8 in the cats influenced the
outcomes of enzyme activity and therapy.114 Considering
the long-term expression and improvements in skeletal ab-
normalities and alleviation of storage material in the cats,
these data support AAV8 liver-directed therapy as a po-
tential treatment option for MPS VI.

Gamma retrovirus expressing fARSB were administered
IV to neonatal cats, which resulted in normalization of body
weight and facial dysmorphia, longer appendicular skeleton,
improved mobility through less erosion of cartilaginous joint
surfaces, and improvement of aortic valve and vessel abnor-
malities. There was little to no improvement of cervical
vertebral length and one treated cat developed spinal cord
compression at 4.6 years of age. However, the average serum
and liver levels of enzyme in the treated cats were 13 and 26
times those of normal cats. Storage of GAGs in all treated cats
was reduced in some organs to those found in normal cats.115

Mucopolysachharidosis VII

MPS VII is an LSD that results from deficient activity in
b-glucuronidase (GUSB; EC 3.2.1.31), an enzyme that
contributes to the degradation of heparan, dermatan, and
chondroitin sulfates.116,117 It is also known as Sly syndrome,
and clinical manifestations include hepatosplenomegaly,
cardiac disease, dysostosis multiplex, hernias, auditory and
visual deficits, coarse facies, respiratory disease, and mental
retardation. It has been treated with hematopoietic stem cell
transplantation,118 and a trial of ERT is in progress (W.S.
Sly, personal communication).

Canine MPS VII

The canine model of MPS VII is because of a missense
mutation that results in an arginine-to-histidine mutation at

amino acid position 166 and < 1% of normal enzyme
activity.119,120 Clinical manifestations in dogs include um-
bilical hernias, hepatosplenomegaly, portacaval shunts, an
average age of death of 3 months, cardiovascular disease,
degenerative joint disease, and dysostosis multiplex, with for
those surviving an inability to stand or walk after 6 months of
age. IV injection of a gamma retroviral vector expressing
canine GUSB to newborn MPS VII dogs resulted in trans-
duction of the liver and stable expression of mannose
6-phosphate-modified enzyme in serum for up to 11 years.
This treatment increased median survival to 6.1 years, im-
proved growth and mobility, reduced facial dysmorphia, and
reduced cardiovascular disease.92,121–125 All treated animals
walked throughout their lifetime although the gait was ab-
normal. Cartilage was absent from articular surfaces of joints
at 6 years or later.126 The advantage of studying the effect of
gene therapy in a large animal model was evident for the MPS
VII dogs, where the large size made it feasible to dissect out
regions such as the joints and heart valves to evaluate im-
provement in histopathology, and the long lifespan of dogs
made it possible to determine that disease in the cartilage and
intervertebral discs was not prevented long-term,123,126 and
will need to be approached with other methods.

In recent short-term proof-of-principle studies, MPS VII
dogs were injected intrarthecaly (IT) with either AAV9 or
AAVrh10 vectors carrying the canine GUSB cDNA. In all
IT-injected dogs, enzyme activity was maintained through-
out the study with supraphysiological levels circulating in
the CSF and global tissue activity above or near normal
levels in all CNS tissues. Storage lesions and GAG were
reduced in all tissues tested and similar to the retroviral
studies, all animals maintained mobility over the study with
minor gait abnormalities (unpublished data).

Conclusions

Success of gene therapy experiments in animal models
along with safety data collected from previous clinical trials
could allow for expedited approval of human clinical trials
for many of the diseases discussed above. In addition to the
preclinical data described herein, human clinical trials have
recently been completed or initiated for similar LSDs. A
phase I/II clinical trial including four children with MPSIIIA
was recently completed. Patients received 12 intracerebral
injections of AAVrh10 encoding N-sulfoglycosamine sul-
fohydrolase at a dose of 7.2 · 1011 viral genomes/patient.
All patients tolerated the neurosurgery and the safety data
collected were encouraging. Efficacy data were limited by
the absence of reliable outcome measures, but suggest sta-
bilization of disease in some of the patients.127 This study
further supports the notion that early intervention is para-
mount to clinical trial design and obtaining therapeutic
benefit. This study served as validation of direct intracranial
injections of AAVrh10, which has been employed in phase
I/II clinical trials for both late infantile neuronal ceroid li-
pofuscinosis (LINCL) and metachromatic leukodsystrophy
(MLD). Lentiviral hematopoietic stem cell gene therapy has
also recently shown benefit in MLD128 and X-linked adre-
noleukodystrophy.129

Large animal models of LSDs have been paramount to the
development of effective gene therapy protocols. Data ob-
tained from these valuable animal models continue to
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support initiation of additional clinical trials. Furthermore, it
is likely that this therapeutic approach may be applied to
other monogenic and neurodegenerative diseases for which
there is currently no effective treatment.
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