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The endeavor to develop human epidermal growth factor recep-
tor 2 (HER2) –targeting agents for cancer therapy now spans more
than two decades, with four drugs already on the market and numer-
ous others in the pharmaceutical pipelines. The interest in this mode
of cancer therapy continues to intensify, particularly in the era of
personalized medicine, because HER2 amplification underlies the bi-
ology of subsets of a large variety of cancers, including breast, gastric,
esophageal, endometrial, ovarian, colorectal, bladder, head and neck,
and others.

HER2 is a receptor tyrosine kinase located at the cell membrane
with a large extracellular domain (ECD) and an intracellular catalytic
kinase domain (KD) and signaling tail. Signal generation by HER2
occurs through heterodimerization with its HER family siblings (epi-
dermal growth factor receptor, HER3, HER4), particularly HER3 (Fig
1). This process is prompted by ligand binding to HER3, which recon-
figures its ECD exposing the interface that mediates dimerization with
HER2. The proximation leads to the allosteric activation of the HER2
KD by the HER3 KD. The activated HER2 KD then phosphorylates
the c-tail of HER3, leading to recruitment of several proteins and
initiating a series of parallel signaling cascades that ultimately execute
the phenotypic changes in cell behavior.

Numerous cell cultured and mouse transgenic models have
confirmed that the overexpression of HER2 is tumorigenic and
continues to be a driver of the tumors that it generates.1,2 It is now
also apparent from several cell-based, xenograft, and transgenic
mouse models that HER3 is an essential partner and codriver for
HER2 in tumorigenesis.3-5 HER3 functions both upstream and
downstream of HER2. It functions upstream because its own KD,
although catalytically inactive, is a highly competent allosteric
activator of the HER2 KD.6 It functions downstream because it is a
key substrate of HER2, particularly competent at recruiting and
activating PI3K, and HER2 activates this pathway through the
phosphorylation of the HER3 c-tail.7,8

The 25-year endeavor to develop targeted therapies for this type
of cancer has had an evolutionary course closely following the trail of
scientific developments. The monoclonal antibody trastuzumab was
developed in the early days following the discovery of HER2 and is
now known to bind the juxta-membrane region of the HER2 ECD.9,10

Pertuzumab was designed much later to interfere with HER2 signaling
and binds the dimerization interface of the HER2 ECD (Fig 1).11,12

These agents exhibit only limited activity in the monotherapy of
advanced-stage HER2-amplified breast or gastric cancers.13-17 But
they do enhance the efficacies of active chemotherapy regimens and
have become staples of combination regimens for the management of

advanced breast and gastric cancers.18-20 The efficacy enhancement
afforded by trastuzumab is even more pronounced in early-stage
breast cancer, with significant survival benefits,21,22 and the neoadju-
vant data available thus far suggest further enhancement by the addi-
tion of pertuzumab.23

The antibody trastuzumab was developed on the basis of 1980s
understanding of HER2, and it is now clear that it does not actually
inhibit HER2 signaling functions very well. A mixed literature has
precluded finality in this debate, because some investigators find pro-
found trastuzumab effects on HER2 expression or signaling.24-26 But
the majority of investigators, including our own group, see only par-
tial, minimal, or no effects on HER2 expression or signaling, even at
high concentrations of trastuzumab.27-41 The antibody pertuzumab,
which was specifically designed to interfere with the ECD-mediated
dimerization of HER2, does in fact inhibit this dimerization function
in its physiologic setting of ligand-induced HER2 signaling when
HER2 levels are normal.12 But it shows no such effects in the patho-
logic scenario of constitutive HER2 signaling seen in cancer cells with
massive HER2 overexpression.27,35,36,42 The failure of these antibodies
to inactivate HER2 signaling in HER2-amplified cancers reflects our
naive understanding of how constitutive signaling is generated in these
cancers. It is plausible that massive overexpression of HER2 leads to
KD interactions and constitutive signaling without the requirement
for ligand-driven ECD dimerization, and the conformation and inter-
actions of the ECD may be irrelevant in this disease state of overex-
pression. If true, this would suggest that targeting the KDs directly
would be a much more effective therapeutic strategy.

Advances in small-molecule discovery platforms and sophisti-
cated structure-guided chemistries have enabled the development of
potent and selective kinase inhibitors, and lapatinib is at the pinnacle
of these accomplishments. Lapatinib inhibits the HER2 kinase with
low nanomolar potency,43 in part because of a slow off-rate,44 near
singular selectivity for the HER family,45 and excellent pharmacoki-
netic properties,46 making it one of the most potent and selective
clinical tyrosine kinase inhibitors (TKIs) yet developed. Despite its
truly remarkable chemical and pharmacologic attributes, lapatinib has
only limited single-agent activity in patients with HER2-amplified
breast, gastric, or gastroesophageal cancers.47-51 The irreversible
HER2 TKI neratinib shows only slightly higher activity at significant
cost in toxicity profile,52,53 and there is little evidence that any of the
plethora of other TKIs in the pharmaceutical pipelines are able to
substantially improve on these TKIs. In patients with HER2-amplified
breast cancer, the incremental activity of lapatinib is more clinically
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useful in combination regimens with capecitabine, paclitaxel, or tras-
tuzumab.49,54,55 In the accompanying article, Satoh et al report that
lapatinib only modestly enhances the efficacy of paclitaxel in patients
with HER2-amplified gastric cancer. It remains to be determined
whether lapatinib can perform better when combined with more
active gastric cancer chemotherapy regimens. The clinical activity of
lapatinib does not compare favorably with HER2-targeting antibodies
in randomized studies.56,57 However, unlike HER2-targeting antibod-
ies, lapatinib potently inactivates constitutive HER2 signaling in
HER2-amplified cancer cells.34,58,59

These developments in HER2-targeting have brought about
two key conundrums: First, considering the overwhelming evi-
dence that HER2 is a disease-driving oncogene, why do HER2-
targeting agents not have much higher clinical activity in
monotherapy? Second, why are the HER2-targeting antibody ther-
apies more active than the TKIs clinically, if they are much poorer
inhibitors of HER2 signaling? Hypothesis-driven experimental sci-
ence has provided resolutions to these dilemmas and identified
new directions for pursuit and renewed hope in the development
of far more effective HER2-directed therapies.

It is now recognized that the HER2-HER3 complex, which is the
functionally relevant tumor driver in HER2-amplified cancers, is
much more resilient to inhibition than had been anticipated. This is
because tumor cells will not tolerate the loss of Akt activity, and
negative feedback signaling loops induced by the loss of Akt activity

can execute a marked increase in HER3 signaling output to preserve
this critical signaling throughput60,61 (Fig 1). The highly dynamic
nature of HER3 signaling endows the HER2-HER3 complex with the
ability to increase its signaling output approximately 100-fold in re-
sponse to pharmaceutical inhibitors, overpowering and undermining
the activity of all such HER2 or HER3 inhibitors.62 Although inhibi-
tors such as lapatinib can inactivate HER2-HER3 signaling at clinically
relevant concentrations, the inhibition lasts less than 24 hours and is
ultimately overpowered by the compensatory mechanisms. These
findings have redefined the HER2-HER3 complex as the true driver of
HER2-amplified cancer and the effective inactivation of this complex
is the new bar for pharmaceutical drug development. None of the
current agents rise to this bar, entirely consistent with their limited
activities as monotherapy.

The fact that HER2-targeting antibodies are far weaker inhibitors
of oncogenic HER2 signaling than TKIs, even though they exhibit
greater clinical efficacy than TKIs in HER2-amplified cancers, seems
paradoxical at first glance. But the key to the paradox lies in the
immunologic dimension encompassed by antibody therapies that are
completely lacking in TKIs. The massive cell-surface expression of
HER2 in HER2-amplified cancer cells enables abundant binding of
engineered HER2-targeting antibodies, thus providing a therapeutic
index for endogenous immunologic responses that would ordinarily
be lacking against self-antigens. Trastuzumab and pertuzumab are
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Fig 1. Structure of the human epidermal growth factor receptor 2 (HER2) and HER3 receptors and their mode of activation through dimerization and activation of
PI3K/Akt signaling and binding sites of trastuzumab, pertuzumab, and lapatinib, showing both an inactive and ligand-activated HER3. Binding of ligand reconfigures the
extracellular domain of HER3, exposing the dimerization interface. The extracellular domain of HER2 is always in the active configuration and does not require ligand.
The phosphorylated signaling tail of HER3 binds and activates PI3K, leading to phosphorylation of membrane lipids, which is reversed by the phosphatase PTEN. These
membrane phospholipids recruit and activate Akt, which regulates many downstream events. In HER2-driven cancer cells, it also regulates HER3 in a feedback loop
shown by the arrow.
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both fully competent human antibodies capable of mediating im-
mune functions such as antibody-dependent cell-mediated cytotoxic-
ity as well as potentially other immune effector functions, and there is
now considerable evidence in support of this mode of action. The in
vivo antitumor efficacy of trastuzumab or its murine predecessor in a
xenograft model is almost entirely lost by a single mutation or a
proteolytic disruption in the Fc region of trastuzumab or elimination
of the mouse Fc receptor gamma, all of which impair the ability of the
mouse to mount an immunologic response to the trastuzumab-
coated xenograft tumor.63,64 Immunocompetent models of neu-
driven mammary tumorigenesis further elucidate the roles of both
innate and adaptive immunities underlying the antitumor activities of
HER2/neu-targeting antibodies.65 There is an abundance of clinical
evidence in patients treated with trastuzumab that further supports an
immunologic mode of action, including the induction of antibody-
dependent cellular cytotoxicity,66 endogenous humoral and enhanced
T-cell–mediated immune responses,67 suppression of regulatory T
cells and induction of Th17 cells,68,69 and increased tumor infiltration
with immune effectors including natural killer cells.70-72 The endoge-
nous immunity induced by trastuzumab therapy appears to last be-
yond the cessation of therapy and has been detected in patients
enrolling onto subsequent vaccine studies.73 It is widely believed that

the greatest potential in the immunologic approach to cancer therapy
lies in the treatment of microscopic residual disease. Consistent with
this, the greatest impact of trastuzumab therapy has been seen in the
adjuvant setting with improvements in outcomes surpassing other
systemic modalities.21,22

The hypothesis that HER2-amplified cancers can be effectively
treated through the inactivation of their HER2-HER3 drivers remains
a solid treatment hypothesis vigorously being pursued through nu-
merous innovative pharmaceutical approaches. The fact that massive
HER2 expression adorns the outside surface of HER2-amplified can-
cer cells, forsaking their ability to camouflage themselves, creates the
opportunity for an entirely separate dimension of pharmaceutical
immunotherapy and immunodelivery approaches. Although much of
the promise of the HER2-inhibiting dimension remains in its future,
HER2 immunotherapy approaches have made a seismic impact al-
ready, even without their appropriate label and accolades as the true
pioneers of the cancer immunotherapy era.
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lated �� T cells increase the in vivo efficacy of
trastuzumab in HER-2� breast cancer. J Immunol
187:1031-1038, 2011

72. Gennari R, Menard S, Fagnoni F, et al: Pilot
study of the mechanism of action of preoperative
trastuzumab in patients with primary operable
breast tumors overexpressing HER2. Clin Cancer
Res 10:5650-5655, 2004

73. Benavides LC, Gates JD, Carmichael MG, et
al: The impact of HER2/neu expression level on
response to the E75 vaccine: From U.S. Military
Cancer Institute Clinical Trials Group Study I-01 and
I-02. Clin Cancer Res 15:2895-2904, 2009

DOI: 10.1200/JCO.2014.55.7652; published
online ahead of print at www.jco.org on May
27, 2014

■ ■ ■

Two Dimensions in Targeting HER2

www.jco.org © 2014 by American Society of Clinical Oncology 2077

http://us.gsk.com/html/media-news/pressreleases/2011/2011-pressrelease-614856.htm
http://us.gsk.com/html/media-news/pressreleases/2011/2011-pressrelease-614856.htm


Acknowledgment

M.M.M. is supported by National Institutes of Health Grants No. CA122216 and CA112970, the California Breast Cancer Research Program
16OB-0150, and the American Association for Cancer Research Breast Cancer Research Fund.

Mark M. Moasser

© 2014 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY


