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For both normal and malignant cells, the degradation of intracel-
lular proteins must be carefully controlled to adjust the levels of im-
portant regulatory proteins and rapidly eliminate damaged or
misfolded proteins before their toxic aggregates compromise the cell
function or survival." The ubiquitin-proteasome pathway degrades
most intracellular proteins. This complex system (Fig 1) identifies
proteins intended for degradation and attaches to them chains of
ubiquitin (Ub) molecules® through a sequential system of Ub-
activating enzymes, Ub-conjugating enzymes, and Ub ligases.* Ubi-

selectively digested by its distinct (chymotrypsin-like, trypsin-like, and
caspase-like) proteolytic activities.* '

This complex degradative network and its substrate proteins
influence diverse aspects of cancer biology, thus creating opportu-
nities for therapeutic interventions. The first agent targeting this
cascade was bortezomib (formerly known as PS-341), an inhibitor of
the chymotrypsin-like activity of the proteasome. Bortezomib has
pronounced clinical activity in multiple myeloma (MM)"''"** and
other plasma cell dyscrasias (amyloidosis'*'® and Waldenstrom

quitinated proteins are then recognized by the 26S proteasome’ and ~ macroglobulinemia'”'®), is also active in mantle-cell lymphoma,'**°
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Fig 1. Overview of the ubiquitin-proteasome pathway and its therapeutic implications. Most intracellular proteins are degraded by the 26S proteasome, a large
complex (> 60 known subunits) that selectively digests proteins with covalently attached ubiquitin (Ub) chains.® The 26S proteasome comprises two 19S regulatory
complexes flanking a hollow cylindrical core particle (termed 20S proteasome). Proteins are marked for degradation by a complex enzymatic system upstream of the
26S proteasome: one of two Ub-activating enzymes (E1s) uses the energy from adenosine triphosphate (ATP) hydrolysis (to adenosine diphosphate [ADP] and inorganic
phosphate) to transfer Ub to one of 40 Ub-conjugating enzymes (E2s), which interact with one of approximately 600 Ub ligases (E3s).*® The latter covalently attach
Ub chains to specific lysine (Lys) residue(s) of different sets of protein substrates.*® The 19S proteasome complexes recognize (through their Rpn13 or S5a/Rpn10
subunits,” not depicted in this figure) these ubiquitinated substrates, disassemble the Ub chains (which are then recycled), unfold the target proteins, and translocate
them to the 20S proteasome chamber.®'° The 20S proteasome chamber (shown in cross-section in the right-hand panel) comprises three types of proteolytic subunits,
B5, B2, and B1: each subunit cleaves proteins preferentially after large hydrophobic, basic, or acidic residues (chymotrypsin-like, trypsin-like, and caspase-like activities,
respectively). Most tissues express this canonical constitutive 20S proteasome. Cells of the immune system also express (particularly when exposed to certain
proinflammatory cytokines) the immunoproteasome, a variant form with different catalytic subunits (81i, 82i, and B5i) and often associated with 11S regulatory
complexes, to optimize presentation of antigenic peptides through major histocompatibility complex class | molecules. The proteasome inhibitors bortezomib and
carfilzomib both bind to and inhibit the chymotrypsin-like activity of the g5 subunit.
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but has limited, if any, activity in most other hematologic malig-
nancies or solid tumors. Its complex molecular sequelae include
suppression of antiapoptotic molecules, such as nuclear factor
kappa B, Bcl-2 family members, and caspase inhibitors,*'** and
sensitization of MM cells to diverse established**?** or investiga-
tional®* agents. Bortezomib thus emerged as a key component of
diverse anti-MM combination regimens.*>>® Eventually, patients
become resistant to bortezomib or intolerant to its main dose-
limiting toxicity, namely sensory peripheral neuropathy.”” To
overcome these limitations, second-generation proteasome inhib-
itors were developed. One of them, carfilzomib, received acceler-
ated US Food and Drug Administration approval in 2012 for
treatment of patients with MM who had relapsed from and were
refractory to bortezomib and at least one thalidomide derivative.*®
In the accompanying article, Papadopoulos et al*® report results of
a phase I trial of carfilzomib infusion over 30 minutes. Compared
with prior studies with shorter infusion time (2 to 10 minutes),*
this trial delivered higher doses (maximum-tolerated dose of 56
mg/m?*) and had a higher overall response rate (50% in patients
with relapsed and refractory MM, including those who were resis-
tant to bortezomib). The safety profile for carfilzomib included
thrombocytopenia (similar to bortezomib), likely because consti-
tutive proteasome activity in platelets is required to degrade Bax
and preserve their normal life span.>’ In contrast to historical
experience with bortezomib, but consistent with prior carfilzomib
studies,”® peripheral neuropathy was not observed, but cardiopul-
monary adverse effects (eg, dyspnea, hypoxemia, pulmonary hy-
pertension) and serum creatinine elevations were noted.

Bortezomib and carfilzomib can be administered without cata-
strophic clinical toxicities, likely because their clinically achievable
concentrations do not completely abrogate the chymotrypsin-like
activity,'*** and also spare other proteolytic (trypsin-like and
caspase-like)**** activities of the proteasome. Overall protein degra-
dation is thus only modestly (< 40%) suppressed in either normal or
tumor cells. Normal cells can conceivably tolerate this perturbation,
but malignant plasma cells may not be able to, because they depend on
higher levels of proteasome activity for a process termed endoplasmic
reticulum (ER) —associated degradation®***; misfolded or unassembled
proteins in the ER lumen must undergo retrograde transport to the cyto-
plasm to be degraded by the proteasome and prevent ER stress and
apoptosis. In plasma cell dyscrasias, the proteasome capacity (availability
ofactive proteasome particles) is apparently close to being saturated by the
increased proteasome load (ie, the amount of misfolded or unassembled
proteins such as immunoglobulins). Indeed, these plasma cells produce
large quantities of immunoglobulins, but their assembly has an apprecia-
ble error rate (hence, the free immunoglobulin light chains detected in
sera of patients with plasma cell dyscrasias). This high proteasome load for
a given proteasome capacity may explain in part why proteasome inhibi-
tors are more active in plasma cell dyscrasias, compared with most other
hematologic malignancies or solid tumors, whereas differences in this
relationship of proteasome load versus capacity among patients with MM
have been proposed to account for the heterogeneity of clinical responses
to bortezomib.*>*"**

Carfilzomib inhibits the 35 proteasome subunit by forming with
it an irreversible adduct through two covalent bonds,™ conceivably
allowing more sustained and more specific inhibition than the single
reversible adduct formed by bortezomib. For instance, bortezomib,
but not carfilzomib, is proposed to inhibit not only the 85 but also the

Wwww.jco.org

neuroprotective molecule Htra2/Omi***' and other serine proteases

(eg, cathepsin G, cathepsin A),**** some of which are proposed to
contribute to renal injury.** These differences could explain the more
frequent peripheral sensory neuropathy observed with bort-
ezomib and the increase in serum creatinine levels often ob-
served with carfilzomib.>**® Proteasome dysfunction and
accumulation of cardiotoxic misfolded proteins*’~>* have been
linked with different forms of cardiac dysfunction (eg, cardio-
myopathies): the cardiopulmonary adverse events that occur
with carfilzomib thus merit mechanistic dissection to identify
possible predisposing factors and determine whether irrevers-
ible proteasome inhibition could be one of them.

The irreversible 85 inhibition in carfilzomib-treated cells means
that proteasome capacity cannot be restored before new proteasomes
are synthesized.”>>*** Such delayed recovery is proposed to account
for observations that carfilzomib can be active in some cases in which
bortezomib is not (eg, 18.6% response rate with carfilzomib in a phase
I study” of patients with MM who had progressed from a
bortezomib-containing last line of therapy). This observation is con-
cordant with preclinical data that some MM cells can be resistant to
one of these two proteasome inhibitors, but sensitive to the other (eg,
bortezomib-resistant, carfilzomib-sensitive MM cells).’**” Interest-
ingly, another second-generation proteasome inhibitor MLN2238
and its clinically administered prodrug ixazomib (MLN9708) are also
active preclinically in MM cells®® and clinically in patients who were
bortezomib-resistant,” although MLN2238 binds the 85 subunit re-
versibly and with faster kinetics of release than bortezomib itself.*°
Therefore, the relationship of clinical activity with reversible versus
irreversible inhibition of chymotrypsin-like activity is likely to be more
complex and influenced by other pharmacodynamic and pharmaco-
kinetic parameters. Still, the response rates reported by Papadopoulos
et al*® can be considered promising, compared with historical data
from single-agent trials of bortezomib,'>*' lenalidomide,** and po-
malidomide®** in relapsed and refractory MM. Ultimately, results
from randomized trials of carfizomib-containing versus bortezomib-
containing regimens (eg, ENDEAVOR [NCT01568866]; Phase 3
Study With Carfilzomib and Dexamethasone Versus Velcade
and Dexamethasone for Relapsed Multiple Myeloma Patients
[ENDEAVOR]) should shed light on the differential safety and effi-
cacy profiles of these agents. It will also be important to determine the
depth and durability of responses to bortezomib in patients with
carfilzomib-resistant, bortezomib-naive MM.

Recent studies of second-generation proteasome inhibitors, in-
cluding the report by Papadopoulos et al*® and other carfilzomib trials,
highlight the promising clinical activity of these agents and the poten-
tial to improve their efficacy and hopefully their safety through mod-
ified infusion rates (eg, in the study by Papadopoulos et al*’) and more
broadly, through optimized dosing, schedules, and combinations with
other established or investigational anti-MM agents (eg, Berenson et
al,%® Niesvizky et al,’® Moreau et al,*” and Wang et al,*® and Stewart et
al®®®). Recent reports indicate that thalidomide derivatives endow the
E3 ligase Cereblon with the ability to ubiquitinate IKZF1 and IKZF3,
two important transcription factors for MM cells.*>”° Active research
is also exploring the selective therapeutic targeting of other en-
zymes that regulate the ubiquitination state of substrate proteins,
including other E3 ubiquitin ligases (eg, Ooi et al”') or deubiquiti-
nases (eg, Wang et al’> and Tian et al”?), and more specific inhibi-
tors of immunoproteasome’®” are being evaluated in lymphoid
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neoplasias. These studies and the ongoing progress in the clinical
development of second-generation proteasome inhibitors have
further validated the overall concept that the regulation of protein
degradation provides promising targets for therapeutic interven-

tions in MM and beyond.
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