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A B S T R A C T

Treatment of glioblastoma (GBM), the most common primary malignant brain tumor in adults,
remains a significant unmet need in oncology. Historically, cytotoxic treatments provided little
durable benefit, and tumors recurred within several months. This has spurred a substantial
research effort to establish more effective therapies for both newly diagnosed and recurrent
GBM. In this context, antiangiogenic therapy emerged as a promising treatment strategy
because GBMs are highly vascular tumors. In particular, GBMs overexpress vascular endo-
thelial growth factor (VEGF), a proangiogenic cytokine. Indeed, many studies have demon-
strated promising radiographic response rates, delayed tumor progression, and a relatively
safe profile for anti-VEGF agents. However, randomized phase III trials conducted to date have
failed to show an overall survival benefit for antiangiogenic agents alone or in combination with
chemoradiotherapy. These results indicate that antiangiogenic agents may not be beneficial in
unselected populations of patients with GBM. Unfortunately, biomarker development has
lagged behind in the process of drug development, and no validated biomarker exists for
patient stratification. However, hypothesis-generating data from phase II trials that reveal an
association between increased perfusion and/or oxygenation (ie, consequences of vascular
normalization) and survival suggest that early imaging biomarkers could help identify the
subset of patients who most likely will benefit from anti-VEGF agents. In this article, we
discuss the lessons learned from the trials conducted to date and how we could potentially
use recent advances in GBM biology and imaging to improve outcomes of patients with GBM
who receive antiangiogenic therapy.

J Clin Oncol 33:1197-1213. © 2015 by American Society of Clinical Oncology

INTRODUCTION

Glioblastoma (GBM), the most common primary
malignant brain tumor in adults, has a poor prog-
nosis with a 2-year survival rate of less than 10%
and 5-year survival rate of less than 5% in unse-
lected patients. Currently, standard treatment for
newly diagnosed GBM (nGBM) consists of max-
imum safe resection followed by fractionated
involved-field radiotherapy with concurrent te-
mozolomide followed by 6 to 12 monthly cycles of
postradiation temozolomide. With this combined
approach, the prognosis still remains poor with a
median overall survival (OS) of 14.7 months.1

Survival outcomes for recurrent GBM (rGBM)
are dismal, with 6-month progression-free sur-
vival of approximately 10% to 25% in patients
receiving standard chemotherapy.2-4 Clearly, a
better understanding of glioblastoma biology and
more effective therapeutic options are needed.

The Cancer Genome Atlas Research Network
has provided a comprehensive genomic catalog of
abnormalities in GBM. Data indicate that GBMs
could be classified into four molecular subtypes:
classical (driven by epidermal growth factor recep-
tor [EGFR]), mesenchymal (driven by NF1), pro-
neural (driven by platelet-derived growth factor
receptor A [PDGFR-A or isocitrate dehydrogenase 1
[IDH1]), and neural.5 Interestingly, these subtypes
were associated with specific clinical and tumor
characteristics. This molecular heterogeneity may
shape the GBM response to various treatments, al-
though its utility in selecting patients for a specific
therapy remains unclear.

Given the limitations of cytotoxic treatment,
new approaches targeting the stroma have emerged,
such as antiangiogenic therapy, which is largely
based on positive results in other solid cancers.6

GBMs are highly vascular tumors, with high expres-
sion of vascular endothelial growth factor (VEGF), a
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proangiogenic cytokine.7 Thus, anti-VEGF and other antiangiogenic
agents would seem to be attractive therapeutic strategies. Initial phase
II studies demonstrated promising results with significant radio-
graphic response rates and improved progression-free survival (PFS)
in rGBM achieved with bevacizumab therapy, a humanized monoclo-
nal antibody against VEGF.8-11 On the basis of these results, the US
Food and Drug Administration granted approval for the use of bev-
acizumab in rGBM in 2009. However, two subsequent randomized,
placebo-controlled phase III trials of bevacizumab with chemoradio-
therapy in patients with nGBM (RTOG-0825/NCT00884741 [Temo-
zolomide and Radiation Therapy With or Without Bevacizumab in
Treating Patients With Newly Diagnosed Glioblastoma] and AVA-
glio/NCT00943826 [A Study of Avastin (Bevacizumab) in Combina-
tion With Temozolomide and Radiotherapy in Patients With Newly
Diagnosed Glioblastoma]) failed to demonstrate an improvement in
OS.12,13 Moreover, two other phase III trials—one with the pan-
VEGF receptor (VEGFR) tyrosine kinase inhibitor (TKI) cediranib
(NCT00777153 [Cediranib in Combination With Lomustine Che-
motherapy in Recurrent Glioblastoma (REGAL)]) and one with en-
zastaurin, an inhibitor of protein kinase C beta whose activation can
lead to VEGF expression (NCT00295815 [Enzastaurin Versus Lomus-
tine in Glioblastoma])—also failed to demonstrate OS benefit in
rGBM.14,15 These failures demonstrate that anti-VEGF/anti-VEGFR
agents, although they are biologically active and well tolerated, do not
extend survival in populations of unselected patients with GBM. In-
terestingly, hypothesis-generating data from single-arm phase II trials
in nGBM and rGBM revealed that patients whose tumor blood per-
fusion, volume, and/or oxygenation increased during treatment with
these agents might survive longer than those without such an
increase.16-19 A retrospective study of two independent cohorts of
high-grade glioma suggested lower doses of bevacizumab than the
currently recommended dosage (5 mg/kg per week) may be supe-
rior.50 This could indicate that tumor vascular normalization rather
than vascular pruning may be an important therapeutic mechanism in
GBM. Whether this strategy could provide a means for patient strati-
fication for anti-VEGF/anti-VEGFR therapeutics is unknown and
should be tested prospectively. However, these findings support the
notion that there may be patients who derive more substantial benefit
than others. Here, we discuss the lessons learned from clinical trials
and how we could use this knowledge to potentially improve the OS of
patients with GBM who receive anti-VEGF/anti-VEGFR therapy.

ANGIOGENESIS IN GBM

Currently, six mechanisms of tumor vessel formation have been pos-
tulated: vasculogenesis, sprouting angiogenesis, vessel co-option, in-
tussusception, vascular mimicry, and transdifferentiation of tumor
cells into endothelial cells.20 These modes of new vessel formation may
be regulated by VEGF but also by myriad other molecules and signal
transduction pathways (Appendix, online only). Endogenous antian-
giogenic factors, such as soluble fms-like tyrosine kinase-1 (FLT1 or
soluble VEGFR-1 [sVEGFR-1], a blocker of VEGF and placental
growth factor [PlGF]), angiostatin, endostatin, interferon-� and
interferon-�, and thrombospondin-1 and -2, counterbalance the ac-
tivity of proangiogenic factors to maintain homeostasis.21 A disrup-
tion of this balance results in the pathologic angiogenesis associated
with tumor formation and progression.

GBM is associated with increased levels of VEGF expression that
result in highly angiogenic tumors leading to abnormal vasculature.
Morphologically, GBM vessels are disorganized and tortuous with
decreased pericyte coverage, larger vessel diameter, and thicker base-
ment membranes than those of normal brain vessels.22-27 Function-
ally, this results in increased tumor vessel permeability, which leads to
nonuniform delivery of oxygen and nutrients.28 Consequently, tu-
mors develop regions of localized hypoxia with ensuing pseudopali-
sading necrosis. Hypoxia leads to further increase in VEGF expression,
contributing to the creation of a vicious cycle.

RATIONALE FOR USE OF ANTIANGIOGENIC AGENTS IN GBM

Although there is a strong biologic rationale for using antiangiogenic
agents against GBM, the mechanisms of potential benefit remain
unclear. This is a key issue for the successful implementation of this
therapeutic modality in GBM. Prevention of new blood vessel forma-
tion in a growing tumor should theoretically lead to increased hypoxia
and nutrient deprivation, thereby limiting growth of the tumor or
even causing regression. However, it is well established that increased
hypoxia fuels tumor progression by promoting angiogenesis, cancer
cell invasion, genetic instability, stem-like phenotype, epithelial-to-
mesenchymal transition, resistance to apoptosis/autophagy, altered
metabolism, and creation of an immunosuppressive microenviron-
ment.6 In addition, hypoxia may promote treatment resistance be-
cause radiation and some chemotherapeutics depend on oxygen to
achieve antitumor effects.

More than a decade ago, we proposed an alternative use of anti-
angiogenic agents—normalization of abnormal tumor vessels—to
increase tumor blood perfusion and decrease hypoxia.29 Indeed, sev-
eral preclinical studies support this notion.24,26,30,31 More impor-
tantly, outcomes supportive of vascular normalization have been
observed in human patients with a variety of solid tumors enrolled
onto clinical trials of various antiangiogenic agents. As an example for
GBM, cediranib induced a time window of tumor vascular normal-
ization with vasogenic edema control in patients with rGBM or
nGBM.16,32 However, the duration and extent of vascular normaliza-
tion and of clinical benefit differed significantly between individual
patients.32 Importantly, the patients with rGBM or nGBM whose
tumor blood perfusion and oxygenation increased as a result of vas-
cular normalization survived longer.16,17 It is conceivable that en-
hanced delivery of therapeutics and oxygen accounted for the OS
benefit.16 Future studies will determine whether vascular normaliza-
tion played a beneficial role by decreasing immunosuppression, as
observed in preclinical models.33 A second benefit of anti-VEGF
agents is reduction in vasogenic brain edema, a major cause of neuro-
logic morbidity in all patients with GBM.32 Future studies should also
address whether and how vascular normalization alters the cancer cell
phenotype. It has been proposed that stem-like GBM cells initiate and
maintain the malignant growth of GBMs.34 Stem-like GBM cells,
located in the perivascular niche, appear to be regulated by surround-
ing endothelial cells, which may maintain them in an undifferentiated
and self-renewing state.35 Application of antiangiogenic agents may
thus disrupt the tumor vasculature–associated stem-like GBM cells,
thereby arresting tumor growth, as seen in mouse models of brain
tumor.35 This link between angiogenesis and stem-like GBM cells
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needs to be validated in humans, but it could provide another ratio-
nale for the use of antiangiogenic agents.36 Finally, some of the anti-
angiogenic agents could directly target GBM cells.37 Limited clinical
evidence for this mechanism has emerged from a phase II trial with
cediranib in patients with rGBM.38

SUMMARY OF CLINICAL STUDIES OF ANTIANGIOGENIC
AGENTS IN GBM

Antiangiogenic strategies tested in the clinic include targeting
VEGF and/or VEGFR with antibodies or small-molecule TKIs.
A summary of this clinical experience is presented in Tables 1
and 2 and in the Appendix.

Bevacizumab is the most thoroughly studied anti-VEGF agent in
GBM. Promising data from phase II studies of bevacizumab led to two
randomized, placebo-controlled phase III trials of bevacizumab with
standard chemoradiotherapy in patients with nGBM.12,13 These trials
demonstrated improvement in PFS with the addition of bevacizumab
to radiotherapy and temozolomide versus chemoradiotherapy alone
but no improvement in median OS. However, the Single-Agent Bev-
acizumab or Lomustine Versus a Combination of Bevacizumab Plus
Lomustine in Patients With Recurrent Glioblastoma Study (BELOB)
showed an increased OS in the combination arm.49 That led to a
randomized phase III study to test whether there is a role for bevaci-
zumab at recurrence if not at first diagnosis. There are more than 15
active trials of bevacizumab for patients with nGBM and more than 35
active trials for patients with rGBM, some in combination with other
agents in an attempt to avoid resistance to anti-VEGF therapy (Table 1
and Appendix).

Another anti-VEGF strategy, clinically validated for other solid
cancers, has been the use of orally bioavailable VEGFR TKIs (Table 2).
However, these agents typically lack specificity, impact other kinases,
and result in undesirable off-target adverse effects. Of these, cediranib,
a relatively selective pan-VEGFR TKI,68 has been most extensively
evaluated in GBM. In a randomized, placebo-controlled phase III
study, cediranib was assessed either as monotherapy or in combina-
tion with lomustine versus lomustine alone in patients with rGBM.14

There were no significant differences in PFS or OS between the
cediranib-containing arms and the lomustine arm in this clinical
trial.14 Similar studies of other anti-VEGFR TKIs (eg, vatalanib, pazo-
panib, cabozantinib, sorafenib, vandetanib) have shown limited effi-
cacy in phase II studies in nGBM or rGBM (Table 1 and Appendix).

There is emerging interest in targeting other non-VEGF proan-
giogenic pathways. For example, inhibitors of angiopoietin-2 (Ang-2)
have attracted attention as an alternative or complementary antian-
giogenic strategy to VEGF inhibition.83 Preclinical studies have shown
improved antitumor efficacy when VEGF and Ang-2–targeting ther-
apies are combined.85 Moreover, it has been demonstrated that anti-
VEGF therapy only transiently decreases circulating Ang-2 in patients
with nGBM and rGBM and that Ang-2 overexpression can interfere
with the vascular normalizing effect of anti-VEGF agents in GBM
models in mice.69,84 Several anti-Ang-2 agents are currently being
evaluated in clinical trials in extra-CNS cancers.

In summary, the last decade has witnessed an enormous effort to
develop various agents targeting VEGF or its receptors for GBM as
well as to translate exciting preclinical findings into the clinic. How-
ever, despite measurable radiographic responses, reduction in vaso-

genic brain edema, and delay in radiographic tumor progression
observed for some of these agents, so far there has been no OS benefit
observed in populations of unselected patients with GBM with the
exception of preliminary data from the BELOB study. This empha-
sizes the critical importance of identifying biomarkers of response to
allow selection of patients most likely to benefit from this expensive
and potentially toxic class of antitumor treatment.

BIOMARKERS OF RESPONSE TO ANTIANGIOGENIC AGENTS
IN GBM

Biomarker discovery efforts have focused on tumor, blood, and radio-
graphic parameters (Tables 3, 4, and 5).

Tumor Tissue Biomarkers

Several studies have prospectively evaluated tumor tissue bio-
markers of response to antiangiogenic therapy in GBM (Table 3).
Most of these studies were performed with bevacizumab. Thus,
whether the data are relevant for anti-VEGFR agents remains to be
demonstrated. In the Radiation Therapy Oncology Group 0825
(RTOG-0825) trial, the patients with nGBM who have O-6-
methylguanine-DNA methyltransferase (MGMT) methylation in
their tumors had superior OS (23.2 v 14.3 months; P � .001) and PFS
(14.1 v 8.2 months; P � .001), confirming the prognostic utility of this
epigenetic marker. However, results showed that neither a prespeci-
fied nine-gene signature nor MGMT methylation status predicted
selective benefit for bevacizumab treatment.86 Unpublished data sug-
gest that another 10-gene expression signature termed Pro-GBM may
identify a subset of patients with nGBM in whom bevacizumab may be
detrimental; however, these data will require prospective validation.86

It has been observed in tissue studies conducted in patients with
recurrent high-grade glioma treated with bevacizumab and irinotecan
that high expression of VEGF correlates with a higher likelihood of
achieving a radiographic response but not increased survival.87 It was
also observed in this same study that elevated levels of carbonic anhy-
drase 9, a marker of hypoxia, were significantly associated with poor
1-year survival.87 In another tumor tissue study in patients with ma-
lignant glioma, it was observed that low carbonic anhydrase 9 expres-
sion and increased VEGF expression were associated with better PFS
among patients with GBM treated with metronomic etoposide and
bevacizumab.46 In contrast, in a study of patients with GBM treated
with bevacizumab and irinotecan with or without cetuximab (an
EGFR inhibitor), no biomarker was predictive of response or prolon-
gation of PFS.136 Finally, a retrospective autopsy study of patients with
rGBM treated with various anti-VEGF agents including bevacizumab
showed that elevated numbers of CD68� and CD11� tumor-
associated macrophages (TAMs) were associated with poor survival,
indicating a potential biomarker of escape.137

In other retrospective studies, the established prognostic
markers—MGMT promoter methylation and IDH1—did not corre-
late with response to antiangiogenic therapy in rGBM.138,139 EGFR, a
tyrosine kinase frequently amplified in GBM, also did not correlate
with response to bevacizumab in rGBM on the basis of retrospective
studies.138 In a prospective phase II study of patients with nGBM
treated with cediranib and chemoradiotherapy, no association was
observed between amplifications of the common tyrosine kinase re-
ceptors (EGFR, PDGFR-�, and c-KIT) and outcome.16
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Several single nucleotide polymorphisms in the VEGF and
VEGFR-2 promoters correlated with improved 6-month progression-
free survival in a phase II study of bevacizumab and sorafenib for
rGBM. Single nucleotide polymorphisms in the VEGF promoter also
correlated with more severe toxicities.140

In summary, several studies have identified different tumor
tissue markers that may serve as biomarkers for response. How-
ever, larger prospective studies are required to validate these
preliminary results.

Circulating Blood Biomarkers

Similar efforts have been conducted for circulating (blood) bio-
markers (Table 4). Several studies with various anti-VEGF/anti-
VEGFR agents have failed to identify a correlation between baseline or
pretreatment VEGF or sVEGFR-2 levels with outcomes.14,32,69,73,89

The AVAglio study, which included evaluation of pretreatment
plasma VEGF and sVEGFR-2, found no association with PFS.90 Sim-
ilar lack of associations between pretreatment biomarkers, including
VEGF and sVEGFR-2, and treatment outcome in patients with GBM
were reported with cediranib, vatalanib, and vandetanib.32,69,73,89

However, akin to the experience with anti-VEGF agents in
extra-CNS tumors, the actual change in levels of various soluble
factors may function as pharmacodynamic biomarkers, reflecting
the actual biologic activity of the agents. For instance, increased
levels of VEGF, stromal-derived factor 1� (SDF-1�), and PlGF and
decreased levels of sVEGFR-2 after treatment with cediranib, vata-
lanib, and vandetanib were consistently observed in patients with
either nGBM or rGBM.32,69,73,89 These changes seem to be specific
to anti-VEGFR treatment because the changes in SDF-1�, PlGF,
and sVEGFR-2 were significantly different in patients with nGBM
treated with cediranib and chemoradiotherapy compared with a
contemporary control group of patients with nGBM treated with
chemoradiotherapy alone.16 Whether similar findings from these
trials of anti-VEGFR TKIs can be translated to patients treated with
bevacizumab is unknown.

More importantly, some studies have reported an association
between the biomarker changes and treatment outcome, suggesting
that these dynamic changes should be pursued as potential response or
resistance biomarkers. For example, increases in sVEGFR-1 have been
associated with poor survival in patients treated with cediranib.69 We
previously proposed that sVEGFR-1, a negative regulator of the VEGF

pathway, is a potential resistance biomarker to anti-VEGF therapy.141

A phase II trial of cediranib in patients with rGBM found that elevated
SDF-1� was associated with tumor progression; however, this was not
consistently observed across trials.69 The same trial also reported that
an increase in plasma matrix metalloproteinase 2 (MMP-2), a key
enzyme in angiogenesis, was associated with decreased PFS and OS
after cediranib treatment. However, a recent study of 26 patients
found that elevated plasma levels of MMP-2 after bevacizumab ad-
ministration were associated with prolonged tumor control and sur-
vival in recurrent high-grade glioma.142 These differences may be
attributable to an anti-VEGF agent versus an anti-VEGFR agent or to
the unknown enzyme activation level of the measured MMP-2. Fur-
ther prospective studies are needed to clarify these conflicting findings.
Finally, increased levels of MMP-9 at 28 days compared with baseline
were associated with tumor progression in patients with GBM treated
with aflibercept.91

Exploratory studies also identified potential biomarkers of re-
sponse. A phase I study reported an association between changes in
plasma collagen IV and circulating progenitor cells with response after
treatment with vatalanib and chemoradiotherapy.73 Similarly, greater
increases in collagen IV levels were associated with extended PFS in
patients with rGBM treated with cediranib.92 Surprisingly, aflibercept,
which rapidly sequesters VEGF and PlGF with significant and rapid
decrease in circulating levels, found no association between the de-
crease in plasma VEGF and radiographic responses.91 Instead, high
baseline expression of monocyte-associated factors such as cutaneous
T-cell–attracting chemokine (CCL27), macrophage chemotactic
protein-3 (CCL7), macrophage migratory inhibitory factor, and inter-
feron gamma–inducible protein 10 (IP-10) were associated with ra-
diographic response. Finally, greater decreases in VEGFR-1–
expressing monocytes at day 1 from baseline were correlated with
response to aflibercept.91

These hypothesis-generating studies suggest that there may be a
role for the use of circulating biomarkers as biomarkers of response to
therapy, and there are several potential candidates. The limitation is
that most of these candidates have resulted from single-arm studies
and from studies that did not meet their prespecified end points.
Placebo-controlled prospective studies are required to validate these
candidates as predictive biomarkers. Lack of these studies remains a
major unmet need in antiangiogenic drug development in GBM.

Table 3. Potential Tissue Biomarkers of Antiangiogenic Therapy

Tissue Biomarkers Effect, Agent, and Trial Type Challenges and Comments Reference

ProB-GBM (mesenchymal-like
genes)

Predicted survival advantage in subset of patients
from phase III trials of bevacizumab in nGBM

Needs to be prospectively validated in larger
studies

Not predictive for response at recurrence

Sulman et al86

VEGF Radiographic response to bevacizumab correlated
with increased tissue expression in phase II
trials in rGBM

No correlation was seen with survival
Prospective studies are lacking

Sathornsumetee et al87

MGMT promoter methylation Failed to predict response to bevacizumab in
phase III trials in nGBM

Prognostic value validated
Several recent studies in Europe are investigating

bevacizumab in patients with unmethylated
MGMT

Sulman et al86;
DePrimo et al88

EGFR, PDGFR-�, c-KIT Failed to correlate with outcome in phase II trials
of cediranib in nGBM or bevacizumab in rGBM

Needs to be prospectively investigated Batchelor et al16

Abbreviations: EGFR epidermal growth factor receptor; MGMT, O-6-methylguanine-DNA methyltransferase; nGBM, newly diagnosed glioblastoma; PDGFR-�,
platelet-derived growth factor receptor alpha; rGBM, recurrent glioblastoma; VEGF, vascular endothelial growth factor.
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Table 4. Potential Biomarkers of Antiangiogenic Therapy Measured in Blood Circulation in Patients With Glioblastoma

Plasma
Biomarkers Agent and Regimen Effect on Biomarker Comments

VEGF Bevacizumab with chemoradiation (phase III
study)

Not available Baseline VEGF does not correlate with survival outcomes90

Unclear when the optimal time is for evaluation as
pharmacodynamic biomarker after anti-VEGF treatment

VEGF Cediranib alone and with chemotherapy in
patients with rGBM (phase II and III
studies)

Cediranib with chemoradiation in patients
with nGBM (phase II study)

Increase in plasma VEGF Seen only in cediranib-containing arms in phase III study16

Does not correlate with survival outcomes14,16,69

VEGF Vandetanib in patients with nGBM (phase II
study)

Increase in plasma VEGF Minor increases at some but not all time-points (weak
VEGFR inhibition?)89

VEGF Vatalanib with chemoradiation in patients
with nGBM (phase I study)

Increase in plasma VEGF Agent has short half-life (weak VEGFR inhibition?)73

VEGF Aflibercept alone in patients with rGBM
(phase II study)

Decrease in free plasma VEGF Potential accumulation of bound VEGF in blood circulation91

VEGF Cabozantinib alone in patients with rGBM
(phase II study)

Increase in plasma VEGF Mature data not available93

PlGF Cediranib alone in patients with rGBM
(phase II study)

Cediranib with chemoradiation in patients
with nGBM (phase II)

Increase in plasma PlGF Substantial increases (by 30% to 386% from 8 hours to 112
days) but unclear when the optimal time is for evaluation
as pharmacodynamic biomarker after anti-VEGF
treatment

Does not correlate with survival outcomes16,69

Correlates with perfusion changes measured by MRI16

PlGF Vandetanib with chemoradiation in patients
with nGBM (phase II study)

Increase in plasma PlGF PlGF initially decreases (at 4 hours) but then increases (by
6% to 40% from day 1 to 22; weak VEGFR inhibition?)89

PlGF Vatalanib with chemoradiation in patients
with nGBM (phase I study)

Increase in plasma PlGF Sustained but minor increases (by 54% to 61% from 8
hours to 70 days). Agent has short half-life (weak VEGFR
inhibition?)73

PlGF Aflibercept alone in rGBM patients (phase II
study)

Increase in plasma PlGF Dramatic increase in PlGF91; potential accumulation of
bound PlGF in blood circulation?

Inverse correlation with response91

PlGF Cabozantinib alone increases plasma PlGF
(phase II study)

Increase in plasma PlGF Mature data not available93

sVEGFR-1 Cediranib alone in patients with rGBM
(phase II study)

Cediranib with chemoradiation in patients
with nGBM (phase II)

No change in plasma sVEGFR-1
Decrease in plasma sVEGFR-1

An increase in sVEGFR-1 on treatment correlates with
survival outcomes in nGBM and rGBM patients16,69

Correlates with perfusion changes measured by MRI69

Unclear whether sVEGFR-1 is a pharmacodynamic or
predictive biomarker for anti-VEGF therapy16

sVEGFR-1 Vandetanib with chemoradiation in patients
with nGBM (phase II study)

No change in plasma sVEGFR-1 High sVEGFR-1 at baseline correlated with survival
outcomes in nGBM patients89

sVEGFR-1 Vatalanib with chemoradiation in patients
with nGBM (phase I study)

Increase in plasma sVEGFR-1 No significant correlation with survival73

sVEGFR-2 Bevacizumab with chemoradiation (phase III
study)

Not available Baseline sVEGFR-2 does not correlate with survival
outcomes90

Bevacizumab may not decrease the plasma VEGFR-2
levels94

sVEGFR-2 Cediranib alone and with chemotherapy in
patients with rGBM (phase II and III
studies)

Decrease in plasma sVEGFR-2 Seen only in cediranib-containing arms in phase III study14

Unclear when the optimal time of evaluation is as
pharmacodynamic biomarker after anti-VEGF treatment
with TKIs

Does not correlate with survival outcomes14,16,69

Correlates with perfusion changes measured by MRI16

sVEGFR-2 Vandetanib with chemoradiation in patients
with nGBM (phase II study)

Decrease in plasma sVEGFR-2 Change inversely correlated with overall survival89

sVEGFR-2 Vatalanib with chemoradiation in patients
with nGBM (phase I study)

Decrease in plasma sVEGFR-2 Does not correlate with survival outcomes73

sVEGFR-2 Cabozantinib alone in patients with rGBM
(phase II study)

Decrease in plasma sVEGFR-2 Mature data not available93

Collagen IV Cediranib alone in patients with rGBM
(phase II study)

Decrease in plasma collagen IV Early change (at day 1) inversely correlates with PFS92

Collagen IV Vandetanib with chemoradiation in patients
with nGBM (phase II study)

No change in plasma collagen IV Early change (at day 1) inversely correlates with response
(RECIST)89

Collagen IV Vatalanib with chemoradiation in patients
with nGBM (phase I study)

Decrease in plasma collagen IV Early change (at day 1) inversely correlates with PFS73

bFGF Cediranib alone or with chemotherapy in
patients with nGBM (phase III study)

Cediranib with chemoradiation in patients
with nGBM (phase II study)

No consistent change in plasma
bFGF

Decrease in plasma bFGF

Does not correlate with survival outcomes16,69

(continued on following page)
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Imaging Biomarkers

Imaging parameters are particularly promising as potential predic-
tive biomarkers of response to antiangiogenic therapy in GBM.143-145

Conventional magnetic resonance imaging (MRI), the preferred
imaging modality of choice in brain tumors, provides important in
vivo information regarding the anatomy of the tumor and surround-

ing brain but reveals little information on metabolic and hemody-
namic status and function.146 However, dynamic contrast-enhanced
and dynamic susceptibility contrast MRI techniques may shed light on
baseline and dynamic features of GBM vasculature. Positron emission
tomography (PET) techniques such as 2-[18F]-fluoro-2-deoxy-d-
glucose PET, [18F]-fluorothymidine PET, [18F]-fluoromisonidazole

Table 4. Potential Biomarkers of Antiangiogenic Therapy Measured in Blood Circulation in Patients With Glioblastoma (continued)

Plasma
Biomarkers Agent and Regimen Effect on Biomarker Comments

bFGF Vandetanib with chemoradiation in patients
with nGBM (phase II study)

No change in plasma bFGF Does not correlate with survival outcomes; baseline plasma
bFGF inversely associated with increase responses (by
RECIST)89

bFGF Vatalanib with chemoradiation in patients
with nGBM (phase I study)

No change in plasma bFGF Does not correlate with survival outcomes73

Ang-2 Cediranib alone in patients with rGBM
(phase II study)

Cediranib with chemoradiation in patients
with nGBM (phase II study)

Decrease in plasma Ang-2
Decrease in plasma Ang-2

Decrease is transient in patients with nGBM after cediranib
alone69 but more sustained in nGBM after cediranib with
chemoradiation16

Does not correlate with survival outcomes16,69

sTie-2 Cediranib alone in patients with rGBM
(phase II study)

Decrease in plasma sTie-2 Low levels associated with radiographic response; high
levels associated with progression69

sTie-2 Cediranib with chemoradiation in patients
with nGBM (phase II study)

No change in plasma sTie-2

sTie-2 Vandetanib with chemoradiation in patients
with nGBM (phase II study)

Increase in plasma sTie-2

sTie-2 Vatalanib with chemoradiation in patients
with nGBM (phase I study)

Transient decrease in plasma
sTie-2

Does not correlate with survival outcomes89

CA-9 Cediranib with chemoradiation in patients
with nGBM (phase II study)

Increase in plasma CA-9

CA-9 Aflibercept alone in patients with rGBM
(phase II study)

Not reported Plasma CA-9 correlated with plasma VEGF at baseline91

CA-9 Vandetanib with chemoradiation in patients
with nGBM (phase II study)

No change in plasma CA-9 A rapid decrease in CA-9 (at 4 hours) associated with
response (RECIST)89

MMP-9 Cediranib alone in patients with rGBM
(phase II study)

No change in plasma MMP-9 No association with outcome69

MMP-9 Aflibercept alone in patients with rGBM
(phase II study)

Not reported An increase at day 28 associated with disease
progression91

MMP-2 Cediranib alone in patients with rGBM
(phase II study)

Transient decrease in plasma
MMP-2

An increase in plasma MMP-2 at 8 hours after first
administration of cediranib correlated with reduced PFS
and OS69

MMP-10 Cediranib alone in patients with rGBM
(phase II study)

Transient decrease and then
sustained increase in plasma
MMP-10

No association with outcome69

SDF-1� Cediranib alone in patients with rGBM
(phase II study)

Cediranib with chemoradiation in patients
with nGBM (phase II study)

Increase in plasma SDF-1�
Increase in plasma SDF-1�

No association with survival outcomes16,69

Increased levels of SDF-1� associated with radiographic
progression69

SDF-1� Vandetanib with chemoradiation in patients
with nGBM (phase II study)

Transient decrease followed by
increase in plasma SDF-1�

A subtle drop at 4 hours and a small increase at day 2289

No association with survival outcomes89

SDF-1� Vatalanib with chemoradiation in patients
with nGBM (phase I study)

No change in plasma SDF-1�

IL-8 Cediranib alone in patients with rGBM
(phase II study)

Cediranib with chemoradiation in patients
with nGBM (phase II study)

No change in plasma IL-8
Transient increase in plasma

IL-8

High levels associated with radiographic response after
cediranib alone69

Late increase in IL-8 (at day 43) after cediranib and
chemoradiation correlated with poor PFS and showed a
nonsignificant trend for association with poor OS16

IL-8 Vatalanib with chemoradiation in patients
with nGBM (phase I study)

No change in plasma IL-8 No association with survival outcomes73

MCP3/CCL7 Aflibercept in patients with rGBM (phase II
study)

Not reported High baseline levels of CCL7 were associated with
improved response91

MIF Aflibercept in patients with rGBM (phase II
study)

Transient decrease in plasma
MIF

High baseline levels of MIF were associated with improved
response91

CTACK/CCL27 Aflibercept in patients with rGBM (phase II
study)

Not reported High baseline levels of CCL27 were associated with
improved response91

IP-10/CXCL10 Aflibercept in patients with rGBM (phase II
study)

Not reported High baseline levels of CXCL10 were associated with
improved response91

Abbreviations: Ang-2, angiopoietin 2; bFGF, basic fibroblast growth factor; CA-9, carbonic anhydrase 9; IL-8, interleukin-8; MMP-2, matrix metalloproteinase 2; MRI,
magnetic resonance imaging; nGBM, newly diagnosed glioblastoma; OS, overall survival; PFS, progression-free survival; PlGF, placental-derived growth factor;
rGBM, recurrent glioblastoma; SDF-1�, stromal-derived factor 1 alpha; sVEGFR-1, soluble vascular endothelial growth factor receptor 1; TKI, tyrosine kinase inhibitor;
VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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Table 5. Potential Imaging Biomarkers of Antiangiogenic Therapy in Glioblastoma

Drug Combination
Disease

Type No. of Patients
Imaging
Modality Technique

Response
Biomarker� Day(s) of Imaging Reference

Bevacizumab — rGBM 16 MRI DSC 2CBVHPV† 42 Sawlani et al94

Bevacizumab — rGBM 9 MRI DWI 2ADC
2RSI

16-112 Kothari et al156

Bevacizumab Irinotecan rGBM 14 MRI DSC 2CBV 56 Reiger et al181

Bevacizumab Irinotecan rGBM 42 MRI DSC 1CBV† 56 Eoli et al19

Bevacizumab Irinotecan rGBM 20 MRI DCE 2Ktrans
2Ve

1-14
1

Ferl et al182

Bevacizumab Irinotecan rGBM 20 MRI DCE 2Ktrans
2Ve

1-14
1

Hsu et al187

Bevacizumab Irinotecan rGBM 13 MRI DCE 2Ktrans 1-14 Desjardins et al188

Bevacizumab Irinotecan rGBM 41§ MRI DWI 1ADCL† baseline Pope et al189

Bevacizumab Irinotecan rGBM 14 MRI DWI 2ADC 56 Rieger et al181

Bevacizumab Irinotecan rGBM 16‡ MRI DWI 1ADCNEL† 42 Jain et al183

Bevacizumab Irinotecan rGBM 6 MRI DWI 1ADChist† 56-84 Nowosielski et al184

Bevacizumab Irinotecan rGBM 16 MRI DWI 2fDM† 30-90 Ellingson et al189a,189b

70‡
Bevacizumab Irinotecan rGBM 22 MRI DWI 2LADC† 40 Hwang et al189c

Bevacizumab Irinotecan rGBM 13‡ MRS 1NAA/Cho†
2Cho/Cr†
1NAA/Cr†

56-168 Ratai et al186

112
112

Bevacizumab Irinotecan rGBM 41 MRI DWI 1ADCL† baseline Pope et al155

Bevacizumab Irinotecan rGBM 36‡§ CT Cal ¡ Not present† 56 Bähr et al122

Bevacizumab Irinotecan rGBM 17 PET [18F]-FLT 2SUV† 7-49 Chen et al et al190

Bevacizumab Irinotecan rGBM 11 PET [18F]-FLT 2SUV† 7-49 Schiepers et al191

Bevacizumab Irinotecan rGBM 16 PET [18F]-FLT 2SUV† 7-49 Wardak et al192

Bevacizumab Irinotecan rGBM 24‡ PET [18F]-FLT 2SUV† 7-49 Schwarzenberg et al134

Bevacizumab Irinotecan rGBM 18‡ PET [18F]-FLT 2SUV† 7-49 Harris et al135

Bevacizumab Irinotecan rGBM 5 PET [18F]-FET 2SUV† 56-96 Hutterer et al193

Bevacizumab Irinotecan rGBM 5 PET [18F]-FET 2SUVvol† 20 Galldiks et al195

Bevacizumab Irinotecan rGBM 20 PET [18F]-FDG 2SUVmax† baseline Colavolpe et al194

Bevacizumab Irinotecan rGBM 18‡ PET [18F]-FDOPA 2SUV† 7-49 Harris et al135

Bevacizumab Fotemustine rGBM 9‡ CT PCT 2CBV 21 Vidiri et al196

Bevacizumab Carboplatin rGBM 26‡ MRI DQT2 2�T2† 28-42 Ellingson et al196a

Bevacizumab Temozolomide rGBM 27‡ MRI DSC 2CBV 60 Gupta et al197

Bevacizumab Temozolomide rGBM 23§ MRI DSC 2�AVOL† 38 LaViolette et al199

Bevacizumab Temozolomide rGBM 14‡ MRI DWI ¡RDL (yes)† baseline, control Mong et al198

Bevacizumab Temozolomide nGBM 40§ MRI DSC 2CBV 42-120 Grommes et al200

Bevacizumab Temozolomide nGBM 56§ MRI DWI 2ADCL† baseline, control Pope et al200a

Bevacizumab Temozolomide nGBM 40§ MRI [18F]-FDG 2SUV† 180 Grommes et al200

Cediranib — rGBM 16 MRI DSC 2CBV 1-28 Batchelor et al32

Cediranib — rGBM 30 MRI DSC 1CBV†
1CBF†

1 Sorensen et al17

1-56
Cediranib — rGBM 16 MRI DSC 2VCI† 1 Batchelor et al32

Cediranib — rGBM 30 MRI DSC 2VCI†
1VNI†

1 Sorensen et al92

Cediranib — rGBM 30 MRI DSC 2VCI†
1VNI†
1A/V†
2�SO2†

1 Emblem et al151,200b

1
1-56
1-56

Cediranib — rGBM 30 MRI DCE 2Ktrans† 1-112 Sorensen et al92

Cediranib — rGBM 16 MRI DCE 2Ktrans†
2Ve

1-112
1-56

Batchelor et al32

Cediranib — rGBM 30 MRI DCE 2Ktrans† 1-112 Gerstner et al159

Cediranib — rGBM 30 MRI ASL 1CBF† 1-56 Sorensen et al17

Cediranib — rGBM 30 MRI MRS 1NAA/Cho† 1-56 Kim et al38

Cediranib — rGBM 30 MRI DWI 2ADC 1-112 Batchelor et al32

Cediranib — rGBM 30 MRI DWI 2ADC 1-112 Gerstner et al159

Cediranib — rGBM 30 MRI DWI 1ADCsub† 1-112 Gerstner et al159

(continued on following page)
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PET, or O-(2-[18F]-fluoroethyl)-l-tyrosine PET are being studied as
biomarkers of response (Appendix).

Historically, the preferred method for assessing radiographic re-
sponse in high-grade gliomas was based on the Macdonald criteria,
which provided an objective measure of tumor response based on the
product of the maximal cross-sectional diameters of the contrast-
enhanced tumor margins from a disrupted blood-brain barrier.124

However, Macdonald criteria have several limitations125,126 (Ap-
pendix). To address some of these limitations, a Response Assess-
ment in Neuro-Oncology Working Group proposed revised
response criteria that are more useful for the assessment of antian-
giogenic agents147 (Appendix).

With the advent of antiangiogenic therapies in clinical trials of
GBMs, conventional imaging techniques are limited in their ability to
detect antitumor activity.126 Blockade of VEGF results in decreased
vascular permeability and thus reduced tumor contrast enhancement

as early as 1 day after the start of therapy.92 These pseudoresponses do
not translate into prolonged OS.148,149 To this end, advanced imaging
techniques beyond traditional structural imaging have been intro-
duced. Perfusion and diffusion MRI, as well as magnetic resonance
spectroscopy and PET better reveal the functional and hemodynamic
status of the tumor and may identify patients with GBM who are likely
to benefit from antiangiogenic therapy (Table 5).

Measures of vascular permeability from dynamic contrast-
enhanced MRI complements traditional imaging by estimating the
restoration of the blood-brain barrier whereas tumor perfusion by
dynamic susceptibility contrast MRI is sensitive to perfused regions
outside a disrupted blood-brain barrier and can therefore assess blood
volume, blood flow, and vessel calibers in both tumor and surround-
ing tissue.143,146,150 In a phase II study of cediranib in patients with
rGBM, the decrease in vascular permeability (Ktrans) and increase in
microvessel volume correlated with OS.92 Combining these imaging

Table 5. Potential Imaging Biomarkers of Antiangiogenic Therapy in Glioblastoma (continued)

Drug Combination
Disease

Type No. of Patients
Imaging
Modality Technique

Response
Biomarker� Day(s) of Imaging Reference

Cediranib Temozolomide nGBM 40§ MRI DSC 1CBF†
2VCI
2�SO2†

1-50 Batchelor et al16

Cediranib Temozolomide nGBM 40§ MRI DSC 2�SO2†
2A/V†

1-50 Emblem et al200c

1-50, control
Cediranib Temozolomide nGBM 40§ MRI DCE 2Ktrans 1-50 Batchelor et al16

Cediranib Temozolomide nGBM 40§ MRI DWI 2ADC 1-50 Batchelor et al16

Vatalanib — rGBM 47 MRI DSC 2CBV 2-30 Conrad et al18

Vatalanib — rGBM 47 MRI DCE 2Ktrans 2-30 Conrad et al18

Ramucirumab — rGBM MRI DSC 2CBV 1 O’Neill Blakeley et al202

Ramucirumab — rGBM MRI DWI 2ADC 28 O’Neill Blakeley et al202

Cabozantinib — rGBM 38 MRI DCE 2Ktrans 28 Sorensen et al202a

Cabozantinib — rGBM 38 MRI MRS 1NAA/Cho
2Lipids

28 Sorensen et al202a

Pazopanib — rGBM 11 MRI DSC 2CBV† 28-56 Iwamoto et al75

Pazopanib — rGBM 11 MRI DCE 2Ktrans† 28-56 Iwamoto et al75

Enzastaurin Temozolomide nGBM 35§ MRI DSC 2PH†
1PR†

60 Essok-Burns et al204

Enzastaurin Temozolomide nGBM 25§ MRI SWI 1%SWI-h† baseline Lupo et al203

Thalidomide Carboplatin rGBM 15 MRI DSC 2CBV 60 Cha et al205

Cilengitide — rGBM 24 MRI DSC 2CBF 56-280 Akella et al206

Cilengitide — rGBM 37 MRI DSC 2CBF 56-280 Nabors et al207

Olaratumab — rGBM 17 MRI DSC 2CBV 28 O’Neill Blakeley et al202

Sunitinib — rGBM 7 MRI DSC 2CBF 28 Chaskis et al134

Sunitinib — rGBM 14 MRI DSC 2CBV
2CBF

28
28

Neyns et al209

Aflibercept — rGBM 14 MRI DCE 2Ktrans 1 De Groot et al62

NOTE. 1, increase; ¡, no change/presence; 2, decrease.
Abbreviations: A/V, arteriovenous ratio; ADC, apparent diffusion coefficient; ADChist, ADC histogram features; ADCL, lower curve mean of two-peak ADC histogram;

ADCNEL, ADC in nonenhancing lesion; ADCsub, volume of subthreshold ADC in tumor; ASL, arterial spin labeling; Cal, calcifications; CBF, cerebral blood flow; CBV,
cerebral blood volume; CBVHPV, CBV hyperperfusion volume; Cho, choline; Cr, creatinine; CT, computed tomography; DCE, dynamic contrast-enhanced [MRI]; DQT2,
differential quantitative T2 relaxometry mapping; DSC, dynamic susceptibility contrast [MRI]; DWI, diffusion weighted imaging; fDM, functional diffusion map;
[18F]-FLT, [18F]fluorothymidine; [18F]-FET, O-(2-18F-fluoroethyl)-l-tyrosine; [18F]-FDG, [18F]fluorodeoxyglucose; [18F]-FDOPA, 3,4-dihydroxy-6-[18F]-fluoro-l-phenylala-
nine; Ktrans, capillary permeability transfer constant; LADC, tumor ADC lower-than-normal cortex; MRI, magnetic resonance imaging; MRS, magnetic resonance
spectroscopy; NAA, N-acetylaspartate; nGBM, newly diagnosed glioblastoma; PCT, perfusion computed tomography; PET, positron emission tomography; PH, peak
height of tissue relaxivity (a pseudoestimate of vascular density); PR, percent recovery of tissue relaxivity (a pseudoestimate of leakage); RDL, restricted-diffusion
lesions with well-demarcated high signal intensity on DWI; rGBM, recurrent glioblastoma; RSI, restriction spectrum imaging; SUV, standardized uptake value (g/mL);
SUVvol, tumor volume by SUV; SWI, susceptibility-weighted imaging; SWI-h, fraction of SWI hypointensity in total contrast-enhanced volume; T2, transverse (proton
spin-spin) magnetic relaxation; VCI, vessel caliber imaging; Ve, extravascular extracellular space volume; VNI, vascular normalization index; �AVOL, change in
arteriovenous overlap; �SO2, change in relative oxygen saturation.

�Limited to antiangiogenic studies reporting significant patient group effects from univariable advanced imaging parameters (beyond Macdonald’s/RANO criteria)
and compared with pretherapy baseline or controls.
†Response in a subgroup of patients with favorable outcome (radiologic response, progression-free survival, or overall survival).
‡Other combination drugs used in some patients.
§Radiotherapy.

Lu-Emerson et al

1206 © 2015 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY



parameters with circulating levels of collagen IV, a composite vascular
normalization index correlated with OS and PFS. In addition, increase
in tumor blood perfusion on MRI in patients with rGBM treated with
cediranib was associated with a 6-month increase in OS when com-
pared with patients whose tumor blood perfusion did not increase.17

A similar correlation was found in patients with nGBM treated
with cediranib and chemoradiotherapy.16 These studies suggest
that it might be possible to select patients with nGBM or rGBM
who are likely to optimally benefit from anti-VEGF therapy on the
basis of early changes in tumor perfusion after treatment with
cediranib.6 This work has been augmented by vessel architectural
imaging, which represents a noninvasive MRI technique for the
estimation of brain and brain tumor oxygenation status.151 Appli-
cation of the vessel architectural imaging technique to patients
with rGBM or nGBM treated with cediranib demonstrated that
patients with the longest survival had reduction of abnormal vessel
calibers, normalization of the microvascular architecture, and im-
proved oxygen saturation levels.16,151

Diffusion MRI monitors the Brownian movement of water in
tissue without the use of a contrast agent and provides information on
tissue cellularity, which is a useful indicator of tumor grade and re-
sponse to chemoradiotherapy.152 Before the advent of antiangiogenic
agents, functional diffusion imaging was examined as a potential pre-

dictor of survival,153,154 but this approach may be unreliable in the
setting of antiangiogenic therapy because of the antipermeability
properties of anti-VEGF therapeutics, which reduce water content in
the brain. However, this hurdle can be addressed by using distribution
analysis of the apparent diffusion coefficient signature155 or an alter-
native method known as “restriction spectrum imaging” that is also
less sensitive to reductions in vasogenic edema and pseudoprogres-
sion.156 An overview of the advantages and limitations of various
imaging modalities used for in vivo monitoring of antiangiogenic
therapy response in patients with GBM is provided in Appendix Table
A1 (online only). Collectively, these advanced imaging biomarkers
may help shed light on how antiangiogenic therapy arrests tumor
development in vivo and distinguish which patients’ tumors are more
likely to respond to antiangiogenic agents.

POTENTIAL MECHANISMS OF RESISTANCE

Despite improvements in PFS, patients with GBM treated with anti-
angiogenic therapy eventually develop tumor progression. Two main
types of resistance to antiangiogenic therapy have been proposed:
adaptive (evasive), in which the tumor acquires the ability to function-
ally evade the effects of angiogenic blockade, and inherent (intrinsic),
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Fig 1. Resistance to anti–vascular endothelial growth factor (VEGF)/anti–VEGF receptor (VEGFR) strategies in glioblastoma (GBM): (1) Angiogenesis is a critical
process in GBM progression, which is accompanied by endothelial cell hyperproliferation and abnormal vascular structure and function. (2) VEGF is
overexpressed in GBM and is a validated target for antiangiogenic therapy. (3) Anti-VEGF/anti-VEGFR therapy induces high rates of radiographic response and
reduces vasogenic edema in GBM, but these benefits do not translate into increased overall survival in all patients. (4) An increase in survival will likely require
patient stratification based on biomarkers, and promising circulating and imaging biomarkers have emerged from small phase II studies. (5) Identifying escape
biomarkers may help in designing trials that combine antiangiogenic agents with agents targeting these evasion pathways. (6) These biomarkers should be
prospectively tested in large clinical studies. Potential mechanisms of resistance to targeted VEGF therapy in cancer. Different mechanisms underlie the
resistance to VEGF blockade seen in some patients with cancer. These mechanisms are not exclusive, and it is likely that several occur simultaneously in a single
tumor: (1) vessel co-option: tumor cell migration and growth along the existing vasculature without generation of new vessels; (2) vascular intussusception:
vascular network expansion through enlargement of existing vessels; (3) vasculogenic mimicry: incorporation of tumor cells into the endothelial lining of the
vasculature, potentially via endothelial differentiation from putative tumor stem cells; (4) pericyte-covered vessels: persistence of more mature vessels
characterized by coverage by pericytes of mesenchymal origin or differentiated from putative tumor stem cells; (5) bone marrow– derived cell (BMDCs) and
cancer associated fibroblast (CAF) activation: paracrine support of tumor vascularization through increased recruitment of angiogenic BMDCs and CAFs; and (6)
hypoxia-driven production of angiogenic factors: in established tumors, VEGF blockade aggravates hypoxia, which upregulates the production of other angiogenic
factors. Figure courtesy of Giorgio Seano, PhD, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
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which describes primary resistance to antiangiogenic therapy.157 Po-
tential mechanisms of resistance include upregulation of alternative
proangiogenic pathways, leading to revascularization; recruitment of
bone marrow–derived proangiogenic cells, thereby precluding the
need for VEGF signaling; increased fibrosis and pericyte coverage to
provide stabilization to the vessels; and change to an invasive pheno-
type to co-opt host vasculature20,157 (Fig 1).

Clinical Evidence

A clinical study of cediranib in patients with rGBM observed that
elevated levels of fibroblast growth factor correlated with tumor pro-
gression.32 But the relevance of this pathway in escape after anti-
VEGF/anti-VEGFR treatment in patients with GBM is unknown. In
addition to growth factors, chemokines and cytokines may be elevated
after VEGF pathway inhibition. Among these, in line with preclinical
evidence (Appendix), we have shown that elevated levels of SDF-1�
correlated with tumor progression.32,69 In addition, an autopsy study
in patients with rGBM treated with cediranib also demonstrated an
increase in TAMs and CD11b� myeloid cells in both the tumor bulk
and infiltrative edge when compared with control autopsy specimens
from patients who did not receive cediranib, suggesting that TAMs
mediate resistance to antiangiogenic therapy.137 Moreover, studies in
autopsy GBM specimens have begun to shed some light on the role of
vascular co-option as an evasion mechanism. Tissue studies from
patients with rGBM who were treated with cediranib demonstrated a
change in growth pattern with persistent normalized vasculature, sug-
gestive of increased infiltration rather than rebound revascularization
from a second wave of angiogenesis, even after cessation of treat-
ment.158 Radiographic and tissue studies in patients with GBM treated
with bevacizumab or cediranib demonstrate (in a subset of patients)
that there is a shift to a predominantly infiltrative phenotype as evi-
denced by an increase in T2-weighted hyperintensity on MRI with
concurrent infiltrative growth on histology.159-161 Unfortunately, a
phase II trial of cediranib and cilengitide (an anti-invasive agent)
conducted in patients with rGBM had disappointing results.162 Possi-
ble explanations include ineffective targeting of invasion, excessive
vascular pruning, or limited CNS penetration of cilengitide.

Inconclusion,angiogenesis isahighlycomplexprocessconsistingof
redundant proangiogenic pathways that are both VEGF dependent and
VEGF independent. Thus far, with the exception of the BELOB phase II
study,theresultsofanti-VEGF/anti-VEGFRtrialshavebeenmodest,with
improvements inradiographicresponses, tumor-associatedbrainedema,
and PFS without an increase in OS.163 Decreased perfusion after excessive
tumor vessel pruning could block the clearance of chemotherapuetic
drugs, and this may enhance the efficacy of drugs that are more toxic

under hypoxic and/or acidic conditions such as lomustine.180 Studies are
now incorporating biomarkers as an end point in an effort to identify
thosepatientswhomayrespondtoparticular treatments.Circulatingand
imaging biomarkers have shown promising potential as biomarkers of
response. In uncontrolled studies of anti-VEGF/anti-VEGFR agents,
those patients in whom tumor perfusion increased survived longer. Fur-
ther trialsarewarrantedtovalidate thiscounterintuitivefindingbecause it
could represent an opportunity to define patients most likely to benefit
fromanti-VEGF/anti-VEGFRtherapy.Itisclearthatcomplexacquiredor
intrinsic mechanisms might underlie the resumption of tumor growth
and progression after the temporary delay induced by antiangiogenic
therapies.Futurestudiesshoulddeterminewhether thesephenomenaare
specific to anti-VEGF/anti-VEGFR versus other treatments or whether
they reflect the natural history of GBM. Clearly, only a better understand-
ing of how tumors escape from anti-VEGF therapy will allow the devel-
opment of more effective strategies to improve patient outcomes.
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Appendix

ANGIOGENESIS IN GLIOBLASTOMA

Mechanisms of Tumor Vessel Formation

Currently, six mechanisms of tumor vessel formation have been postulated: (1) vasculogenesis, (2) sprouting angiogenesis, (3) vessel
co-option, (4) intussusception, (5) vascular mimicry, and (6) transdifferentiation of tumor cells into endothelial cells.20 Vasculogenesis
occurs in the developing embryo when endothelial precursor cells (EPCs [angioblasts]) differentiate into endothelial cells and form a de
novo vasculature (Coultas L, et al: Nature 438:937-945, 2005). Subsequent vessel sprouting from existing vessels (angiogenesis) expands
the vascular network, which, in normal physiologic conditions, contributes to organ development, wound healing, and other specific
processes such as placenta development (Carmeliet P: Nature 438:932-936, 2005). In pathologic conditions such as tumors, this
angiogenic switch confers the malignant phenotype of unrestricted growth.20 There are three main steps involved in angiogenesis:
quiescence, activation, and resolution.20 Normally, endothelial cells remain quiescent, covered by pericytes, which suppress endothelial
cell proliferation and maintain cell survival. In response to a proangiogenic signal, the pericytes detach from the vessels, and endothelial
cell tight junctions become loose, resulting in increased permeability. Extravasation of proteins creates a provisional extracellular matrix
scaffold to which endothelial cells, led by a specific endothelial cell—the tip cell—migrate. Together with neighboring endothelial cells (the
stalk cells), these endothelial cells migrate and elongate the vessel. Phalanx cells, the most quiescent of the endothelial cells, line the vessel
as a smooth monolayer, re-establish tight junctions and full pericyte coverage, and render the vessel mature and functional. The role of
vasculogenesis in tumors and in the origin of EPCs is not as well characterized.

In addition to growing by angiogenesis, glioblastomas (GBMs) can grow through vessel co-option by which tumor cells migrate along
existing blood vessels, thereby compressing and destabilizing them (Holash J, et al: Science 284:1994-1998, 1999; Leenders WP, et al:
Endothelium 9:83-87, 2002; De Spiegelaere W, et al: J Vasc Res 49:390-404, 2012). Vessel regression, decreased perfusion, cell death, and
increased hypoxia ensue, triggering the secretion of proangiogenic factors (Carmeliet P: Nature 438:932-936, 2005).20,27 Intussusception
is another mode of neovascularization that is not well understood but is thought to represent vessel formation through the split of
pre-existing vessels into daughter vessels (De Spiegelaere W, et al: J Vasc Res 49:390-404, 2012; Kurz H, et al: News Physiol Sci 18:65-70,
2003).20 Vascular mimicry describes the formation of fluid-conducting channels lined by tumor cells. These “vessels” may or may not
resemble true endothelial-lined blood vessels.39 Finally, stem-like GBM cells are able to transdifferentiate into endothelial cells, generating
tumor-derived vessels, which may be less sensitive to anti-vascular endothelial growth factor (anti-VEGF) therapies.40,42,51 Of note,
anti-VEGF therapy seems to promote a change in GBM neovascularization that is more consistent with brain vessel co-option than with
abnormal angiogenesis.50

Molecular Mechanisms of Angiogenesis: Potential Targets for Therapy

Several proangiogenic molecules such as VEGF, hepatocyte growth factor/scatter factor, basic fibroblast growth factor (bFGF), and
angiopoietin 2 (Ang-2) have been implicated in the angiogenic switch.27,67,82,95-97 VEGF and its tyrosine kinase receptors (VEGFRs) are
the most extensively studied by virtue of being the targets of various antiangiogenic agents in GBM. Although VEGF binds with a higher
affinity to VEGFR-1 (FLT-1), it is widely believed that the main driver of tumor neovascularization is the interaction between VEGF and
VEGFR-2 (KDR). Binding of VEGF to VEGFR-2 results in dimerization of the receptor, activating a variety of different pathways,
including the phosphatidylinositol 3=-kinase (PI3K)/AKT and Ras/mitogen-activated protein kinase (MAPK) pathways (Maity A, et al:
Cancer Res 60:5879-5886, 2000; Pore N, et al: Cancer Res 63:236-241, 2003; Yoshino Y, et al: Int J Oncol 29:981-987, 2006).98

This in turn results in endothelial proliferation, migration, formation of vascular networks, and survival. Interactions of VEGF with
VEGFRs can be modulated by coreceptors such as neuropilin 1 (Klagsbrun M, et al: Adv Exp Med Biol 515:33-48, 2002). Another pathway
upregulated by VEGF is the Delta-like ligand 4 (DLL4)-Notch pathway, a pathway important in many biologic processes including
angiogenesis (Li JL, et al: Front Biosci 14:3094-3110, 2009). Under physiologic conditions, DLL4/Notch signaling inhibits tip cell
formation, resulting in decreased angiogenic sprouting (Hellström M, et al: Nature 445:776-780, 2007; Siekmann AF, et al: Nature
445:781-784, 2007). In tumors, DLL4/Notch signaling affects tumor growth and improves vascular function by stabilizing the vasculature
and decreasing angiogenesis (Li JL, et al: Cancer Res 67:11244-11253, 2007). Paradoxically, blockade of this pathway results in decreased
tumor growth by stimulation of abnormal (inefficient) angiogenesis (Noguera-Troise I, et al: Nature 444:1032-1037, 2006; Ridgway J, et
al: Nature 444:1083-1087, 2006).

Several molecules either act in concert with VEGF to stimulate angiogenesis or upregulate VEGF itself. For instance, in the presence
of VEGF, Ang-2 promotes the detachment of pericytes from the vasculature, resulting in vessel instability (Augustin HG, et al: Nat Rev
Mol Cell Biol 10:165-177, 2009). Platelet-derived growth factor B (PDGF-B), epidermal growth factor, tumor necrosis factor �, and bFGF
have the ability to upregulate VEGF expression in gliomas (Goldman CK, et al: Mol Biol Cell 4:121-133, 1993; Ryuto M, et al: J Biol Chem
271:28220-28228, 1996; Tsai JC, et al: J Neurosurg 82:864-873, 1995).99 Placental growth factor (PlGF) is a member of the VEGF family
that binds to VEGFR-1 and neuropilin 1 and is thought to affect tumor angiogenesis directly by amplifying overall responsiveness to VEGF
through a synergism between PlGF and VEGF (Maglione D, et al: Proc Natl Acad Sci U S A 88:9267-9271, 1991; Carmeliet P, et al: Nat Med
7:575-583, 2001) and indirectly by recruitment of type 2 (tumor-promoting) tumor-associated macrophages (TAMs; Loges S, et al: Clin
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Cancer Res 15:3648-3653, 2009). The relevance of this mechanism remains unclear because agents such as aflibercept (a dual VEGF/PlGF
blocker) and VEGFR-1 tyrosine kinase inhibitors (TKIs) have yet to show efficacy in clinical trials.100 Chemokines, including interleukin-8
(IL-8) and stromal-derived factor 1� (SDF-1�)/CXC chemokine ligand 12 (CXCL12) are also implicated in angiogenesis. IL-8, which is
highly expressed and secreted by gliomas, is known to have proangiogenic properties and has been implicated in the invasiveness of glioma
cells (Raychaudhuri B, et al: J Neurooncol 101:227-235, 2011).48 SDF-1�, through its interactions with its receptors—CXC chemokine
receptor 4 (CXCR4) and CXCR7—seems to promote tumor cell survival and invasion and facilitate angiogenesis by recruiting immu-
nosuppressive and proangiogenic myeloid cells to support tumor growth and spread (Duda DG, et al: Clin Cancer Res 17:2074-2080,
2011).

In addition to local vasculature and various stromal cells (local stroma), solid tumors recruit bone marrow–derived cells (BMDCs)
(distal stroma) to sustain their growth. BMDCs may include EPCs, pericyte progenitor cells, and vascular modulatory myeloid cells, such
as TAMs, monocytes and neutrophils, VEGFR-1� hemangiocytes, or Tie-2�–expressing monocytes (TEMs; Aghi M, et al: Mol Ther
12:994-1005, 2005; De Palma M, et al: Cancer Cell 8:211-226, 2005; Lin EY, et al: Cancer Res 67:5064-5066, 2007; Yang L, et al: Cancer Cell
6:409-421, 2004; Hattori K, et al: Nat Med 8:841-849, 2002).43,66 EPCs and pericyte progenitor cells are thought to incorporate into the
vasculature as endothelial cells and pericytes or vascular smooth muscle cells, respectively, but this issue remains controversial. Vascular
modulatory myeloid cells are not physically part of the vascular structure, but they seem to be recruited from circulation to promote
neovascularization in tumor tissue. For example, it is believed that they serve as one of the main sources of matrix metalloproteinase 9
(MMP-9), a crucial component in neovascularization and the angiogenic switch (Du R, et al: Cancer Cell 13:206-220, 2008). Cytokines
involved in chemoattraction of these cells to the tumor site include VEGF, granulocyte-macrophage colony-stimulating factor, Bv8, IL-17,
and SDF-1� (Rempel SA, et al: Clin Cancer Res 6:102-111, 2000; Santarelli JG, et al: Neurosurgery 59:374-382, 2006; Kozin SV, et al:
Cancer Res 70:5679-5685, 2010; Chung AS, et al: Nat Med 19:1114-1123, 2013; Shojaei F, et al: Proc Natl Acad Sci U S A 106:6742-6747,
2009; Shojaei F, et al: Nature 450:825-831, 2007; Pyonteck SM, et al: Nat Med 19:1264-1272, 2013). Recruitment of BMDCs intensifies
with increased hypoxia in part through upregulation of SDF-1� by hypoxia-inducible factor 1�, a transcription factor critical for
hypoxia-induced angiogenesis (Du R, et al: Cancer Cell 13:206-220, 2008; Giaccia AJ, et al: Genes Dev 18:2183-2194, 2004; Chen Y, et al:
Hepatology 59:1435-1447, 2014).

To expand and create new vascular networks, tumors need to actively remodel their extracellular matrix to allow for endothelial
migration during angiogenesis. Endothelial migration factors include proteinases such as MMPs, plasminogen-activator factor 1,
cathepsin B1, and urokinase type plasminogen activator (Lakka SS, et al: J Biol Chem 280:21882-21892, 2005; Lakka SS, et al: Brain Pathol
15:327-341, 2005; Wang D, et al: Brain Pathol 15:318-326, 2005).101

In addition, MMPs are involved in recruitment of progenitor cells from the bone marrow through the release of various cytokines
(Heissig B, et al: Cell 109:625-637, 2002). Integrins mediate the ability of vascular cells to adhere to the extracellular matrix proteins,
providing local survival cues and a path for the invading endothelial cells.20 They influence the behavior of endothelial cells and pericytes
by binding to growth factors and/or their receptors, upregulating proteases, regulating interactions between the structural components of
vessel walls, and binding BMDCs to vascular endothelium.20 Integrins are also implicated in the activation of transforming growth factor
beta (TGF-�), a key molecule that controls migration, invasion, angiogenesis, and maintenance of glioma-initiating cells in GBM (Anido
J, et al: Cancer Cell 18:655-668, 2010; Peñuelas S, et al: Cancer Cell 15:315-327, 2009; Wick W, et al: Curr Pharm Des 12:341-349, 2006).
Inhibition of the TGF-� pathway with a TGF-� receptor 1 inhibitor resulted in decreased neurosphere formation potential by decreasing
expression of Id1 and Id3, transcription regulators involved in the self-renewal capacity of stem cells (Anido J, et al: Cancer Cell
18:655-668, 2010; Nam HS, et al: Cell Stem Cell 5:515-526, 2009). Blockade of the TGF-� pathway downregulated insulin-like growth
factor-binding protein 7–dependent proangiogenic pathways in GBM-U87 cells (Pen A, et al: Oncogene 27:6834-6844, 2008). In
addition, knockdown of TGF-� receptor 2 with short hairpin RNA diminished the invasiveness of glioma cells.102 Finally, the immuno-
suppressive effects of TGF-� have been effectively neutralized with TGF-� receptor 1 inhibitors, which resulted in increased tumor
infiltration by natural killer cells, CD8 T cells, and TAMs with concurrent enhanced release of proinflammatory cytokines and improved
median survival (Uhl M, et al: Cancer Res 64:7954-7961, 2004). Taken together, the preclinical data suggest that TGF-� targeted therapy
is an attractive option in the treatment of malignant gliomas. Several clinical trials of TGF-� inhibitors have been conducted. Two studies
evaluated trabedersen (AP-12009), a TGF-�–specific antisense oligodeoxynucleotide, in malignant gliomas (Hau P, et al: Oligonucleo-
tides 17:201-212, 2007).103 Although neither study demonstrated a significant effect on median survival, there was evidence of increased
response rates in patients with recurrent GBM (rGBM). Ongoing studies involve a TGF-� receptor kinase inhibitor (NCT01582269 [A
Study in Recurrent Glioblastoma (GB)] and NCT01220271 [A Study Combining LY2157299 With Temozolomide-based Radiochemo-
therapy in Patients With Newly Diagnosed Malignant Glioma]) and a neutralizing antibody against TGF-� (NCT 01472731 [Safety and
Imaging Study of GC1008 in Glioma]).

LESSONS FROM CLINICAL STUDIES OF ANTIANGIOGENIC AGENTS IN GLIOBLASTOMA

Antibodies

Bevacizumab. Bevacizumab, a recombinant humanized monoclonal antibody against VEGF, has been studied extensively in patients
with GBM (Table 1).8 A pilot retrospective study of 21 patients with malignant glioma (11 rGBM) had one patient with a complete
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response (CR), eight with partial responses (PRs), and 11 with stable disease (SD) after treatment with bevacizumab and irinotecan.171

Furthermore, this study demonstrated an acceptable toxicity profile associated with this regimen.
Several prospective phase II studies were subsequently conducted. In one phase II study, 35 patients with rGBM were treated with

bevacizumab and irinotecan with a radiographic response rate of 57%.11 In another study of 32 patients with malignant gliomas (23
rGBM), a response rate of 60.9% was achieved in the rGBM subpopulation.104 Together, these two studies showed a 6-month
progression-free survival (PFS6) rate of 30% to 46% and median overall survival (OS) of 9 to 10 months. These results demonstrated
improvement over the historical radiographic response rates of 5% to 10%, PFS6 rates of 9% to 25%, and median OS of 5 to 6 months,
respectively, in patients with rGBM after salvage therapy.2-4

Two additional phase II prospective studies eventually resulted in the accelerated approval of bevacizumab for patients with rGBM.
The first study was a single-arm phase II trial of single-agent bevacizumab in 48 patients with rGBM.10 Study results showed a radiographic
response rate of 35%, PFS6 rate of 29%, and median OS of 7.2 months. The second was the multicenter BRAIN study (A Study to Evaluate
Bevacizumab Alone or in Combination With Irinotecan for Treatment of Glioblastoma Multiforme [BRAIN]), in which 167 patients with
rGBM were randomly assigned to either bevacizumab combined with irinotecan (n � 85) or bevacizumab monotherapy (n � 82).9

Radiographic response rates were 37.8% and 28.2% for the combination group and monotherapy arm, respectively. The primary end
point was PFS6, which compared favorably with historical controls and was comparable between the groups at 50.3% and 42.6%. Of note,
this study was not originally designed to detect superiority between the two arms, and patients were allowed to cross over to the
combination arm on progression during bevacizumab monotherapy. In both studies, the toxicity profiles were similar and consistent with
previously reported studies.9,10,104 Several other retrospective studies of bevacizumab and irinotecan reported largely similar data.41,167-169

Subsequent studies have evaluated bevacizumab in combination with other chemotherapies or with different dosing schedules. Four
phase II studies evaluated bevacizumab with other chemotherapeutic agents such as irinotecan combined with carboplatin, etoposide, or
temozolomide.44-47 No additional benefit was conferred with the addition of metronomic etoposide to bevacizumab when compared
with bevacizumab alone or bevacizumab combined with irinotecan in bevacizumab-naive patients with rGBM, but toxicity was
increased.46 Similarly, the addition of etoposide or temozolomide to bevacizumab in patients with rGBM who progressed on prior
bevacizumab therapy was also ineffective.44 The combination of bevacizumab with carboplatin and irinotecan resulted only in increased
toxicity without any additional antitumor effect when compared with bevacizumab alone.45 More recently, the BELOB study reported
promising results with bevacizumab combined with lomustine.49 Improved OS at 9 months (59% v 43% v 38%) and PFS6 (41% v 13%
v 16%) were seen with the combination arm compared with single-agent lomustine and single-agent bevacizumab, respectively. Several
studies have tested various schedules of bevacizumab dosing. Thus far, doses of 5 mg/kg or 10 mg/kg once every 2 weeks or 15 mg/kg once
every 3 weeks have been reported (Kozin SV, et al: Cancer Res 70:5679-5685, 2010; Bergers G, et al: J Clin Invest 111:1287-1295, 2003).39,62

Dose adjustments are made on the basis of toxicity and duration of therapy, but the optimal dose remains unclear.
Bevacizumab has also been used in conjunction with other biologic drugs. In one study, 43 patients with rGBM were treated with

bevacizumab, irinotecan, and cetuximab, an antibody against epidermal growth factor receptor (EGFR).53 Of the 32 evaluable patients,
34% had a radiographic response with a PFS6 of 30% and median OS of 6.7 months. Although the combination was generally well
tolerated, it was not deemed superior to bevacizumab monotherapy. Another phase II study used erlotinib, an EGFR TKI, with
bevacizumab in 57 patients with malignant glioma, 25 of whom had rGBM.54 Once again, although the regimen was generally well
tolerated, response rates and PFS6 were similar to those of historical bevacizumab-containing regimens.

Although the majority of studies of bevacizumab in GBM have been conducted in patients with rGBM, a growing number of clinical
trials in patients with newly diagnosed GBM (nGBM) have evaluated bevacizumab in combination with standard radiation and
temozolomide55,56 (Table 1). Results from two such studies were similar with a PFS6 of 85% to 88% and median OS of 20 to 23 months.
In a third study, 75 patients with nGBM were treated with bevacizumab, temozolomide, and radiation followed by postradiation
temozolomide, bevacizumab, and irinotecan.57 Results showed moderate toxicity and a median OS of 21.2 months, suggestive of possible
benefit over that of standard chemoradiotherapy.1

These nonrandomized studies were followed by two phase III trials of bevacizumab or placebo in combination with radiation and
temozolomide in patients with nGBM.12,13,58 The results from the phase III AVAglio study (A Study of Avastin [Bevacizumab] in
Combination With Temozolomide and Radiotherapy in Patients With Newly Diagnosed Glioblastoma) showed a significant improve-
ment in PFS with the addition of bevacizumab to radiotherapy and temozolomide chemotherapy versus chemoradiotherapy alone
(hazard ratio, 0.64; P � .001), but median OS was not significantly improved (16.8 v 16.7 months). A similar phase III trial (RTOG 0825)
was conducted by the Radiation Therapy Oncology Group (RTOG), North Central Cancer Treatment Group, and Eastern Cooperative
Oncology Group to test bevacizumab with standard chemoradiotherapy versus chemoradiotherapy alone for nGBM. Once again, the
addition of bevacizumab to chemoradiotherapy improved PFS (hazard ratio, 0.79; P � .007) but did not meet the prespecified threshold
of a 30% reduction in the hazard of failure. In addition, there was no significant difference in median OS (16.1 v 15.7 months).

Despite these disappointing data, more than 50 trials of bevacizumab are still ongoing in patients with nGBM and rGBM. Some of
these trials are testing bevacizumab in combination with other agents in an attempt to avoid resistance to anti-VEGF therapy (Table 1).
These include a phase II study (NCT01339039 [Plerixafor (AMD3100) and Bevacizumab for Recurrent High-Grade Glioma]) of
bevacizumab with plerixafor (a CXCR4 inhibitor approved for liquid malignancies).
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Aflibercept. Aflibercept (or VEGF Trap) is a chimeric soluble decoy receptor for VEGF, VEGF-B, and PlGF, with a higher affinity for
VEGF than bevacizumab.59,60 On the basis of promising efficacy data in orthotopic GBM mouse models, a phase I study in advanced solid
tumors (including GBM) was conducted.61,100 Dose-limiting toxicities were rectal ulcerations and proteinuria and mechanistic toxicities
included dysphonia, hypertension, and proteinuria.100 Three of the 47 patients (none with glioma) demonstrated a PR suggestive of an
antitumor effect. A phase II study in patients with malignant glioma (42 rGBM) reported a response rate of 18% and PFS6 of 7.7% in
patients with rGBM.62 Moreover, 14% of the patients with GBM had to discontinue the drug secondary to toxicity. A phase I trial for
patients with nGBM that evaluated the maximum-tolerated dose for the drug when given in conjunction with chemoradiotherapy
(NCT00650923 [Aflibercept, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblas-
toma Multiforme, Gliosarcoma, or Other Malignant Glioma]) recently completed accrual (Table 1).

Olaratumab (IMC-3G3) and ramucirumab (IMC-1121B). Olaratumab is a human immunoglobulin G monoclonal antibody
against PDGF receptor � (PDGFR-�).63 Preliminary data from a phase I study in patients with advanced solid tumors (none with glioma)
suggested that this agent is well tolerated.64 Ramucirumab is a human monoclonal antibody that specifically blocks the interaction of
VEGFR-2 with its ligands.65 A phase II study of these two antibodies has been completed in patients with rGBM, and the results are
pending (NCT00895180 [Ramucirumab or Anti-PDGFR Alpha Monoclonal Antibody IMC-3G3 in Treating Patients With Recurrent
Glioblastoma Multiforme]; Table 1).

VEGFR TKIs

Cediranib. Cediranib (AZD2171) is a relatively selective pan-VEGFR TKI, with additional activity against PDGF receptor �
(PDGFR-�) and c-KIT.68 A phase II study of cediranib monotherapy (45 mg per day) in 31 patients with rGBM reported a radiographic
response rate of 27% and PFS6 of 25.8%.69 In addition, the agent reduced or eliminated steroid requirements in these patients.
Mechanistically, cediranib rapidly normalizes the vasculature by decreasing microvessel diameter and permeability thereby reducing
edema.32 Associated grade 3 or 4 drug toxicities included hypertension, diarrhea, and fatigue.69

These encouraging results prompted a randomized phase III study comparing cediranib monotherapy (30 mg per day), cediranib (20
mg per day) combined with lomustine, and lomustine monotherapy in patients with rGBM.14 There was no significant difference in
median PFS between the cediranib monotherapy arm (92 days) and cediranib combined with lomustine arm (125 days) when compared
with lomustine monotherapy (82 days).14 It is unclear whether the lower dose of cediranib used in this trial, the interaction between
cediranib and lomustine, or the steep dose reduction in lomustine over the course of the trial played any role in this lack of benefit. We
recently reported on a phase I/II trial of cediranib with standard chemoradiotherapy in patients with nGBM (NCT00662506 [Cediranib,
Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Glioblastoma]). The median PFS was 15.6 months
and median OS was 20.2 months for all 46 study patients. These results in the population of patients with nGBM who were undergoing
biopsy only or subtotal resection compared favorably with the results from historical controls treated with radiation and temozolomide
alone or with bevacizumab.1,13 However, as observed in other trials of antiangiogenic therapies in GBM, the beneficial clinical impact is
primarily on PFS, and disease progression is typically rapid after conventional radiographic progression, which would account for the lack
of OS improvement.13,55,70 Currently, there are ongoing trials evaluating the efficacy of cediranib alone or in combination with other
therapies in both rGBM and nGBM, including a randomized, placebo-controlled phase II trial of cediranib in combination with
chemoradiotherapy in patients with nGBM (NCT01062425 [Temozolomide and Radiation Therapy With or Without Cediranib Maleate
in Treating Patients With Newly Diagnosed Glioblastoma]).

Vatalanib. Similar to cediranib, vatalanib (PTK787) is a pan-VEGFR, c-KIT, and PDGFR TKI that showed promising antitumor
activity in preclinical models.71 A phase I/II study in patients with rGBM of vatalanib combined with either temozolomide or lomustine
showed radiographic response of 8% with temozolomide and 4% with lomustine.72 Median time to progression was 15.7 weeks in the
vatalanib plus temozolomide arm and 10.4 weeks in the vatalanib plus lomustine arm.

Two studies have been performed in the nGBM population. A phase I trial of vatalanib with radiation, temozolomide, and an
enzyme-inducing antiepileptic drug in 19 patients reported a radiographic response rate of 15% with a median PFS of 7.2 months and
median OS of 16.2 months.73 The drug was well tolerated with dose-limiting toxicities of thrombocytopenia and transaminitis. The
European Organisation for Research and Treatment of Cancer phase I/II trial of vatalanib with standard concomitant and adjuvant
therapy also showed that vatalanib in combination with radiation and temozolomide was safe and feasible.74 Median PFS was 6.8 months
and median OS was 17 months. However, the development of this agent was halted because of an industry decision.

Pazopanib. A phase II study of pazopanib, another pan-VEGFR, c-KIT, and PDGFR-� and PDGFR-� TKI, by the North American
Brain Tumor Consortium in patients with rGBM demonstrated a radiographic response rate of 5.9%, PFS6 of 3 months, and median OS
of 8.1 months.75 Toxicities were consistent with those associated with other anti-VEGF agents and included fatigue, leukopenia,
lymphopenia, transaminitis, hemorrhage in the CNS, and thromboembolic events. A phase II trial of pazopanib with topotecan for rGBM
is ongoing (NCT01931098 [Phase II Pazopanib Plus Topotecan for Recurrent Glioblastoma Multiforme (GBM)]).

Cabozantinib (XL-184). Cabozantinib, a VEGFR-2 and MET TKI, was recently evaluated in a phase II study of 105 patients with
rGBM.76 This drug is of particular interest because it may target both angiogenesis and invasion. Forty-six patients were treated at 175 mg
per day, and 59 patients were treated at 125 mg per day.76 Response rates were comparable at 21% and 30%, respectively, in
antiangiogenic-naive patients. There was less toxicity at the lower dose without significantly compromising efficacy. Finally, there was a

Antiangiogenesis for Glioblastoma

www.jco.org © 2015 by American Society of Clinical Oncology



suggestion of modest activity of the drug in patients treated with prior antiangiogenic therapy. Active trials of cabozantinib include phase
II trials in rGBM and grade 4 astrocytic tumors (NCT00704288 [Study of XL184 (Cabozantinib) in Adults With Glioblastoma Multi-
forme] and NCT01068782 [Study of Multiple Doses and Regimens of XL184 (Cabozantinib) in Subjects With Grade IV Astrocytic
Tumors in First or Second Relapse]) and a phase I trial in nGBM with chemoradiotherapy (NCT00960492 [Safety Study of XL184
(Cabozantinib) in Combination With Temozolomide and Radiation Therapy in the Initial Treatment of Adults With Glioblastoma]).

Sunitinib. Sunitinib is a multitargeted TKI with activity against VEGFRs, PDGFR-� and PDGFR-�, c-KIT, and FLT-3. Two phase II
studies of the drug in patients with recurrent malignant glioma did not show any objective radiographic responses.77,78 Authors of both
studies concluded that sunitinib did not demonstrate significant activity in this setting. Similarly, a phase I study of sunitinib with
irinotecan showed that the combination was associated with moderate toxicity but limited antitumor activity.79

Sorafenib. Sorafenib is another multitargeted TKI with a profile similar to that of sunitinib but with additional activity against RAF
kinases. The North American Brain Tumor Consortium phase I/II study of sorafenib with temsirolimus, an inhibitor of mammalian
target of rapamycin (mTOR), in patients with rGBM reported that 12% of patients had a partial radiographic response but no patients
remained progression free at 6 months, and median PFS was 8 weeks.80 The NABTT 0502 (Erlotinib and Sorafenib in Treating Patients
With Progressive or Recurrent Glioblastoma Multiforme) phase II study evaluated sorafenib and erlotinib in patients with rGBM.81 Study
data showed a median OS of 5.7 months with a PFS6 of 14%, which failed to meet the prespecified objective of a 30% increase in OS
compared with historical controls. A third phase II study of 32 patients with rGBM treated with sorafenib and daily temozolomide
reported a PFS6 of 9.4% with only one patient achieving a PR, suggesting limited activity of this regimen.178 Finally, a phase II study of
adjuvant sorafenib and temozolomide in patients with nGBM reported a median OS of 12 months with a median PFS of 6 months.179 This
suggested that the addition of sorafenib did not improve treatment efficacy when compared with standard therapy.

Vandetanib. Vandetanib is a dual TKI of VEGFR-2 and EGFR. The latter is frequently amplified in GBMs. Four of 32 patients
demonstrated a radiographic response after vandetanib in a phase II study in rGBM; PFS6 was 6.5% and median OS was 6.3 months.177

Interestingly, the study reported seizures as an unexpected toxicity of the drug. At this time, an open-label phase I study of vandetanib and
sirolimus (mTOR inhibitor) is recruiting patients with rGBM (NCT00821080 [Vandetanib and Sirolimus in Patients With Recurrent
Glioblastoma]). A phase I study of vandetanib in patients with nGBM established that the agent could be safely combined with radiation
and temozolomide.105 This led to a randomized phase II study of standard chemoradiotherapy with or without vandetanib in patients
with nGBM or gliosarcoma (NCT00441142 [Zactima With Temodar During Radiation Treatment for Newly Diagnosed Stage IV Brain
Tumors]). The study was terminated early for futility based on the results of an unplanned interim analysis. Median OS and PFS were 15.9
and 6.2 months, respectively, in the control treatment arm and 16.6 and 7.7 months, respectively, in the combination arm.89 Study results
suggested that addition of vandetanib to standard chemoradiotherapy was reasonably well tolerated but lacked efficacy in nGBM.

Other TKIs

AEE788 is another dual VEGFR and EGFR TKI. A phase I dose-escalation study of AEE788 in rGBM enrolled 64 patients; the best
overall response was SD in 17% of the patients.106 Because the drug was associated with unacceptable toxicity and minimal antitumor
activity, the study was discontinued prematurely. Lenvatinib (E7080) is a multitargeted TKI of VEGFR-2 and VEGFR-3, fibroblast growth
factor receptor 1, c-KIT, and PDGFR-�.107 A phase Ib/II study of this agent in patients with rGBM is ongoing (NCT01433991 [E7050 in
Combination With E7080 in Subjects With Advanced Solid Tumors (Dose Escalation) and in Subjects With Recurrent Glioblastoma or
Unresectable Stage III or Stage IV Melanoma After Prior Systemic Therapy (Expansion Cohort and Phase 2)]). Tivozanib, a more selective
pan-VEGFR TKI is also being evaluated in a phase II trial in patients with rGBM (NCT01846871 [Tivozanib for Recurrent Glioblas-
toma]).

Enzastaurin was developed as an ATP-competitive inhibitor of protein kinase C beta. At concentrations reached in the plasma of
patients in clinical trials (1 to 4 �mol/L), enzastaurin also suppresses signaling through the PI3K/AKT/mTOR/p70S6K pathway.108 The
protein kinase C beta and PI3K/AKT pathways have previously been implicated in tumor angiogenesis through promotion of VEGF
expression.109,110 An open-label phase III study compared the efficacy and safety of enzastaurin versus lomustine in patients with rGBM.15

Enrollment was terminated at 266 patients (enzastaurin, n � 174; lomustine, n � 92) after a planned interim analysis for futility. Median
PFS (1.5 v 1.6 months) and OS (6.6 v 7.1 months) did not significantly differ between enzastaurin and lomustine, respectively. SD rates
were 38.5% and 35.9%, and objective response rates were 2.9% and 4.3%, respectively. The study concluded that enzastaurin, although it
was well tolerated, did not show superior efficacy compared with lomustine in rGBM.

Other Antiangiogenic Agents

Thalidomide and lenalidomide may have antiangiogenic properties via inhibition of VEGF, integrins, and bFGF expression. Several
studies have evaluated their effects in combination with various cytotoxic chemotherapeutics in both nGBM and rGBM.111-118 Unfortu-
nately, the outcomes of these studies suggested that their efficacy against GBM is limited, especially in light of the advent of chemoradio-
therapy with temozolomide in nGBM. Rofecoxib, a cyclooxygenase 2, bFGF, and VEGF inhibitor, was studied in combination with
various doses of temozolomide in patients with nGBM treated with surgery and radiotherapy.119 PFS and OS were 8 months and 16
months, respectively. These outcomes were comparable to those seen after standard chemoradiotherapy.1 ABT-510 is a thrombospondin
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1 (ie, an endogenous inhibitor of angiogenesis) mimetic.120 ABT-510 was tested with standard chemoradiotherapy in a study in 23 patients
with nGBM. There was no significant improvement in survival with an OS of 64.4 weeks when compared with standard therapy.

BIOMARKERS OF RESPONSE TO ANTIANGIOGENIC AGENTS IN GBM

Conventional imaging with magnetic resonance imaging (MRI) is currently the preferred modality of choice in brain tumors.
Computed tomography (CT) can no longer be accepted as a sufficient imaging standard for monitoring of tumor status and response to
treatment. Its use in GBM is limited to emergency situations or in aiding surgical interventions. At some institutions, CT is also used to
detect or exclude the existence of bevacizumab-induced intracranial hemorrhage or calcifications.121,122

The traditional method for assessing radiographic response to treatment in cancers is using RECIST criteria.123 In high-grade
gliomas, the most often used are the Macdonald criteria, which provide an objective measure of tumor response based on the product of
the maximal cross-sectional diameters of the contrast-enhanced tumor margins from a disrupted blood-brain barrier.124 Developed in the
late 1980s, the Macdonald criteria were originally designed for CT images, but the method is now best performed using cocalled
T1-weighted MRI. The criteria consist of a set of rules based on radiologic findings that define whether a tumor has completely or partially
responded, stabilized, or progressed during therapy. A CR requires disappearance of all contrast-enhanced tumor for a minimum of 4
weeks, including no corticosteroid use and a stable or improved clinical status. A PR requires a � 50% reduction in contrast-enhanced
tumor size compared with baseline for at least 4 weeks, no new lesions, and improved clinical status. Progressive disease requires a 35%
increase in the sum of the products of perpendicular diameters of enhanced lesions, the appearance of new lesions, or clinical deteriora-
tion. An SD response is appropriate for patients who do not qualify for CR, PR, or progressive disease. In addition, to best compare
response rates between clinical trials, the Macdonald report proposed a set of guidelines for patient selection based on neurologic status
and steroid use.

The original Macdonald criteria have several limitations.125,126 These relate to operator variability, multifocal tumors, surgical cavities
and recurrence, irregular tumor shapes, and nonspecific changes in contrast enhancement, all of which have severely limited the
usefulness of the method.127-129 In particular, the level and appearance of tumor enhancement are determined by the image acquisition
technique and type of contrast agent used, as well as surgery and changes in steroid dosage. Furthermore, postsurgical and therapy changes
may induce non–tumor-related changes in enhancement, of which the concept of pseudoprogression versus true tumor progression after
radiotherapy has received much attention.130,131 Up to 30% of patients show signs of increased tumor enhancement from irradiation-
damaged vasculature after radiotherapy that can be mistaken for real tumor progression. Contrast enhancement from pseudoprogression,
however, typically subsides without intervention within a few weeks or months of radiation.

The Response Assessment in Neuro-Oncology Working Group proposed updated standards for imaging definitions and, most
importantly, revised the response criteria by including measures of nonenhanced lesions and vasogenic edema estimated by hyperinten-
sities on T2-weighted and fluid-attenuated inversion recovery MRI scans. CR and PR are defined as stable or reduced nonenhanced lesions
(on the same or lower dose of corticosteroids) compared with baseline scans. The simplicity of the Macdonald criteria combined with the
added value of the updated response assessment by the Response Assessment in Neuro-Oncology Working Group have made this
radiographic method widely accepted by the oncologic community; therefore, the Macdonald criteria are used extensively to report
radiographic response in clinical trials (Table 2).

A completely different approach to functional imaging of GBMs is use of the radionuclide positron emission tomography (PET)
technique, which provides highly sensitive molecular information on metabolic status and ligand interactions from radiolabeled
tracers.132,133 Imaging studies using 2-[18F]-fluoro-2-deoxy-d-glucose—a direct measure of the glucose metabolic activity of tumor
cells—have been largely inconclusive in bevacizumab-treated GBMs.10,46 However, other studies using [18F]fluorothymidine PET, or
O-(2-[18F]-fluoroethyl)-l-tyrosine have shown that PET is indeed sensitive to cell proliferation and is therefore predictive of response and
OS after therapy with bevacizumab plus irinotecan.134,135,196 Furthermore, several studies indicate that PET may predict survival and
detect treatment failure earlier than MRI.191,194,196

Potential Mechanisms of Resistance

Several of these mechanisms play a role in tumor recurrence after anti-VEGF therapy, whether targeting VEGF or its receptors.
Alternative proangiogenic pathways may allow maintenance of a functional tumor vascularization (Lucio-Eterovic AK, et al: Clin Cancer
Res 15:4589-4599, 2009; Relf M, et al: Cancer Res 57:963-969, 1997). For instance, mouse xenograft studies demonstrate that bFGF
promotes tumor growth and angiogenesis even after loss of VEGF (Yoshiji H, et al: Cancer Res 57:3924-3928, 1997). Other preclinical
studies of islet pancreatic tumors reported an upregulation of members of the FGF family as a means of evading VEGF blockade and
promoting tumor growth (Casanovas O, et al: Cancer Cell 8:299-309, 2005). In addition, activation of the chemokine SDF-1� pathway has
been implicated in promotion of cancer cell survival, invasion, and stem/tumor initiation cell phenotype; promotion of angiogenesis; and
recruitment of myeloid BMDCs to indirectly facilitate tumor growth and metastasis (Duda DG, et al: Clin Cancer Res 17:2074-2080,
2011). Recruitment of BMDCs, especially TAMs, has emerged as a potential key mediator of tumor growth and progression through
antiangiogenic therapy. Subpopulations of TAMs, traditionally classified as M1 (classically activated) and M2 (alternatively activated), are
implicated in multiple functions such as inflammation, immune regulation, angiogenesis, metastasis, intravasation, and invasion (Qian
BZ, et al: Cell 141:39-51, 2010). A subset of these TAMs is the TEMs. These monocytes express the cognate angiopoietin receptor TIE2,
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which is typically expressed by endothelial cells. Activation of the Ang-2/TIE2 pathway results in vascular regrowth following treatment-
induced vascular damage (Kozin SV, et al: Cancer Res 70:5679-5685, 2010). It is thought that TEMs perform their proangiogenic function
by effecting tumor angiogenesis downstream of the VEGF activation pathway. Several preclinical murine studies have supported the role
of TAMs and TEMs in tumor progression after antiangiogenic therapy. In vivo experiments with mice have shown that TAMs promote
gliomagenesis and that tumor infiltration by CD11b�Gr1� myeloid cells was associated with resistance to anti-VEGF therapy (Pyonteck
SM, et al: Nat Med 19:1264-1272, 2013; Shojaei F, et al: Nat Biotechnol 25:911-920, 2007; Piao Y, et al: Neuro Oncol 14:1379-1392, 2012).
In another preclinical study, blockade of Ang-2 disabled proangiogenic functions of TEMs, thereby preventing tumor growth in murine
models that traditionally develop resistance to antiangiogenic therapy (Mazzieri R, et al: Cancer Cell 19:512-526, 2011).

Increased pericyte coverage of tumor vessels and increased vessel invasion and co-option are other postulated tumor escape
mechanisms (Fig 1). Anti-VEGF therapy may selectively cause the regression of immature and/or abnormal vessels such that the
remaining vessels may be more mature and tightly covered by pericytes (Bergers G, et al: J Clin Invest 111:1287-1295, 2003).43 Pericytes
secrete factors that support endothelial cell survival and can attenuate the proliferation rate of endothelial cells, important for vessel
maturation and stabilization (Darland DC, et al: Dev Biol 264:275-288, 2003; Hirschi KK, et al: Cardiovasc Res 32:687-698, 1996).43 By
maintaining quiescence, it is conceivable that the pericytes render the vasculature less susceptible to the effects of anti-VEGF therapy, but
this hypothesis remains to be confirmed clinically.

Vessel co-option with subsequent tumor invasion was first documented as a mechanism of escape from the inhibitory effects of
anti-VEGF therapy in orthotopic mouse GBM models that were genetically deficient in hypoxia-inducible factor 1� and VEGF or in
which VEGF was pharmacologically inhibited (Blouw B, et al: Oncogene 26:4531-4540, 2007; Rubenstein JL, et al: Neoplasia 2:306-314,
2000). Despite blockade of neovascularization, the tumors were still able to grow by invading along the existing brain vasculature, resulting
in a more invasive phenotype and vascular sufficiency. Factors that have been proposed as mediators of the increased invasiveness after
anti-VEGF therapy include MMP-2, MMP-9, MMP-12, secreted protein acidic and rich in cysteine, and tissue inhibitor of metallopro-
teinases (TIMPs; Lucio-Eterovic AK, et al: Clin Cancer Res 15:4589-4599, 2009). The relevance of vessel co-option remains unclear and
difficult to explore given the lack of access to tumor tissue during anti-VEGF therapy.

Table A1. Comparison of Imaging Modalities for Human Glioblastoma Studies

Imaging
Modality Sensitivity

Spatial
Resolution

Temporal
Resolution

Speed of
Examination Radiation Hazard Complexity�

CT Low, unfavorable Intermediate,
acceptable

High, favorable High, favorable Intermediate, acceptable Low, favorable

MRI Intermediate,
acceptable

High, favorable Intermediate,
acceptable

Intermediate,
acceptable

Low, favorable Intermediate, acceptable

PET High, favorable Low, unfavorable Low, unfavorable Low, unfavorable High, unfavorable Intermediate, acceptable

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; PET, positron emission tomography.
�Sum of image acquisition and image analysis.
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