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A B S T R A C T

Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising activity in epithelial
ovarian cancers, especially relapsed platinum-sensitive high-grade serous disease. Consistent
with preclinical studies, ovarian cancers and a number of other solid tumor types occurring in
patients with deleterious germline mutations in BRCA1 or BRCA2 seem to be particularly
sensitive. However, it is also becoming clear that germline BRCA1/2 mutations are neither
necessary nor sufficient for patients to derive benefit from PARP inhibitors. We provide an
update on PARP inhibitor clinical development, describe recent advances in our understanding
of PARP inhibitor mechanism of action, and discuss current issues in the development of
these agents.

J Clin Oncol 33:1397-1406. © 2015 by American Society of Clinical Oncology

POLY (ADP-RIBOSE) POLYMERASE
INHIBITORS IN THE CLINIC

Since last reviewed in Journal of Clinical Oncology,1

poly (ADP-ribose) polymerase (PARP) inhibitors
have demonstrated efficacy in a number of settings,
including platinum-sensitive epithelial ovarian can-
cer (OC)2,3 and breast cancer (BC) with mutation in
BRCA1 or BRCA2.4

OC

PARP inhibitors have been studied most exten-
sively in high-grade serous OC, with efficacy noted
particularly in platinum-sensitive high-grade serous
OC. A pivotal phase II study demonstrated that ola-
parib induces responses in BRCA1/2 mutation car-
riers with progressive high-grade OC, with efficacy
greater in, but not restricted to, platinum-sensitive
OC.5 A subsequent study comparing olaparib main-
tenance therapy versus placebo after response of re-
lapsed high-grade serous OC to platinum-based
therapy demonstrated progression-free survival
(PFS) of 8.4 months with olaparib versus 4.8 months
without (hazard ratio, 0.35; P � .001).6 A pre-
planned subset analysis showed greatest benefit in
OC with BRCA1/2 mutations (either germline or
somatic), with PFS extended from 4.3 to 11.2
months (hazard ratio, 0.18; P � .001).7 These data
and additional results led to approval of olaparib by
the European Commission as maintenance therapy
for platinum-responsive advanced OC and by the
US Food and Drug Administration as fourth-line

monotherapy, with both approvals limited to the
subset of cases with BRCA1/2 mutations.

Importantly, women whose OC lacked
BRCA1/2 mutations also derived benefit in the ran-
domized olaparib maintenance trial (hazard ratio,
0.53; 95% CI, 0.33 to 0.84; P � .001),7 suggesting a
sensitive non–BRCA1/2-mutation subgroup, as pre-
dicted from preclinical studies.8 Excitingly, a large
subset of patients derived long-term benefit from
olaparib, with approximately 40% and approxi-
mately 20% of women with BRCA1/2-mutant or
BRCA1/2–wild type high-grade serous OC, respec-
tively, not requiring a different therapy within 3
years after random assignment, compared with only
approximately 10% and approximately 1% of those
receiving placebo.9 Olaparib also prolonged time to
second subsequent therapy in both BRCA1/2-
mutated OC (hazard ratio, 0.44; P � .001) and non–
BRCA1/2-mutated OC (hazard ratio, 0.64; P �
.034), suggesting that PARP inhibitor treatment did
not make OC less responsive to platinum or other
therapies, a conclusion supported by additional
studies.10 Olaparib in combination with carbopla-
tin11 or cediranib12 has also shown efficacy against
OC in phase I and II studies. Notably, however,
hematologic toxicity prevented continuous dosing
of olaparib when combined with typical carboplatin
doses (area under curve of 5 every 3 weeks).11

A number of additional PARP inhibitors, in-
cluding veliparib, rucaparib, niraparib, and BMN-
673, have also shown efficacy in high-grade serous
OC.13 On the basis of the encouraging results of the
phase II olaparib maintenance trial,6,7 phase III trials
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with the same design are ongoing in OC (Table 1). Each of these is also
attempting to improve identification of responsive patients through
analysis of biospecimens (eg, examining biomarkers of homologous
recombination [HR] deficiency [HRD]).14

BC

Overall, PARP inihibitors have been less efficacious in BC than in
high-grade serous OC,13 perhaps reflecting the biologic heterogene-
ity15,16 and low BRCA1/2 somatic mutation rate17 in triple-negative
BC. Responses were observed in 11 (41%) of 27 patients in an initial

phase II trial of olaparib in BRCA1/2-mutated BC.4 In contrast, there
were no responses in 23 patients with triple-negative BC regardless of
BRCA1/2 mutation status. Other PARP inhibitors, including the po-
tent agent BMN-673,18 have induced responses in small studies, and
phase III trials are ongoing in BRCA1/2-mutated BC and triple-
negative BC (Table 2).

Other Solid Tumor Types

Additional solid tumors contain subsets that are likely to have
HRD and potentially be PARP inhibitor responsive.19 Five percent of

Table 1. Open and Soon-to-Open Phase III Trials of PARP Inhibitors in Ovarian Cancer

Drug Sponsor
ClinicalTrials.gov

Identifier Trial
First Line or

Relapsed Ovarian Cancer Population�

BRCA1/2 WT
Allowed?

Platinum-Resistant
Patients Allowed?

Olaparib AstraZeneca NCT01844986 SOLO1; GOG3004 First line FIGO stage IIIC or IV; high-grade serous/
endometrioid; deleterious BRCA1/2
mutation†; CR or PR to initial
platinum

No No

Veliparib Abbvie GOG3005 First line High-grade serous/endometrioid;
genomic testing at enrollment

Yes NA

Olaparib AstraZeneca NCT01874363 SOLO2; ENGOT-
OV21

Relapsed High-grade serous/endometrioid;
deleterious BRCA1/2 mutation†;
sensitive to penultimate platinum
regimen; CR or PR to current
platinum

No No

Rucaparib Clovis NCT01968213 ARIEL3 Relapsed High-grade serous/endometrioid;
sensitive to penultimate platinum
regimen; CR or PR to current
platinum

Yes No

Niraparib Tesaro NCT01847274 ENGOT-OV16; NOVA;
US Oncology;
others

Relapsed Deleterious BRCA1/2 mutation or high-
grade serous with CR or PR to
current platinum

Yes No

Abbreviations: ARIEL3, Assessment of Rucaparib in Ovarian Cancer Phase 3 Trial; CR, complete response; ENGOT-OV, European Network for Gynaecological
Oncological Trial Groups-Ovarian Cancer; FIGO, International Federation of Gynecology and Obstetrics; GOG, Gynecologic Oncology Group; NA, not applicable;
NOVA, Niraparib in Ovarian Cancer; PARP, poly (ADP-ribose) polymerase; SOLO, Studies of Olaparib in Ovarian Cancer; WT, wild type.

�Ovarian, fallopian tube, and peritoneal cancers.
†Deleterious BRCA1/2 mutation includes germline or somatic.

Table 2. Phase III Trials of PARP Inhibitors in Other Solid Tumors

Sponsor
ClinicalTrials.gov

Identifier Trial Treatment Cancer Population Biomarker

Abbvie NCT02032277 Brightness standard NAC plus carboplatin/veliparib or standard
NAC plus carboplatin/placebo

Early-stage triple-negative
breast cancer

None

AstraZeneca NCT02032823 OlympiA Maintenance olaparib or placebo High-risk early-stage HER2-
nonamplified breast cancer
after adjuvant chemotherapy

BRCA1/2
mutation

AstraZeneca NCT02000622 OlympiaD Olaparib or physician’s choice Advanced breast cancer BRCA1/2 mutation
Abbvie NCT02163694 Paclitaxel/carboplatin plus veliparib or paxlitaxel/

carboplatin plus placebo
Advanced HER2-nonamplified

breast cancer
BRCA1/2 mutation

Tesaro NCT01905592 BRAVO Niraparib or physician’s choice Second-line or beyond HER2-
nonamplified breast cancer

BRCA1/2 mutation

AstraZeneca NCT02184195 POLO Maintenance olaparib or placebo Pancreatic cancer after first-line
platinum-based
chemotherapy

BRCA1/2 mutation

AstraZeneca NCT01924533 Paclitaxel/olaparib or paclitaxel/placebo followed by
maintenance olaparib or placebo

Progressive gastric cancer,
second line

None

Abbvie NCT02106546 Paclitaxel/carboplatin plus veliparib
paclitaxel/carboplatin plus placebo

First-line advanced squamous
non–small-cell lung cancer

None

Abbvie NCT02152982 Temozolamide plus veliparib or temozolomide plus
placebo

First-line glioblastoma MGMT promoter
hypermethylation

Abbreviations: BRAVO, Niraparib Versus Physician’s Choice in Her2 Negative, Germline BRCA Mutation-Positive Breast Cancer; MGMT, O6-methylguanine-DNA
methyltransferase; NAC, neoadjuvant chemotherapy; PARP, poly (ADP-ribose) polymerase; POLO, Olaparib in gBRCA Mutated Pancreatic Cancer Whose Disease
Has Not Progressed on First Line Platinum-Based Chemotherapy.
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cutaneous melanomas and gastric cancers, 5%-19% of familial pan-
creatic cancers, and 1% of prostate cancers harbor germline BRCA1/2
mutations, with encouraging reports of responses to olaparib in
BRCA1/2-mutant pancreatic and prostate cancers.20 Clinical trials of
single-agent PARP inhibitor treatment are ongoing in additional tu-
mor types, with responses reported in melanoma, PTEN-deficient
endometrial cancer, and colorectal carcinoma.19

Unanswered Questions

At present, it remains unclear how to best identify patients who
will respond to PARP inhibitors. Although tumor phenotypes can
provide rough predictions, as evidenced by responses of sporadic

triple-negative BC13,21 and high-grade serous OC to PARP inihbitor
monotherapy,21 the response rates are lower than for BRCA1/2-
mutant BC or OC.13 Accordingly, it seems that optimal clinical develop-
ment might be advanced by improved understanding of both the
mechanism of action of PARP inhibitors and mechanisms of resistance.

PRIMER ON PARP BIOLOGY

Since the initial description of poly (ADP-ribose) [pADPr] synthesis
in the 1960s,22,23 PARP biology has been extensively studied.24-28

PARP1 (Fig 1A) is the founding member of a family of enzymes24-26

that exhibit homology in their active sites, where the dinucleotide
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Fig 1. Summary of poly (ADP-ribose)
[pADPr] polymerase 1 (PARP1) structure,
function, and proposed contribution to
synthetic lethality. (A) Schematic of PARP1
structure. (B) On binding to damaged DNA,
PARP1 undergoes conformation change that
increases its catalytic activity, leading to
cleavage of NAD� and addition of ADP-
ribose units to various proteins, including
its own automodification domain. Result-
ing pADPr polymers (depicted as chains of
yellow circles) alter function of proteins
that are modified (eg, by decreasing affin-
ity of PARP1 for damaged DNA)29 and
also recruit additional proteins that bind
to polymer noncovalently.30,31 (C-F) Mod-
els proposed to explain observed syn-
thetic lethality between homologous
recombination (HR) deficiency and PARP
inhibition. These models emphasize (C)
role of PARP1 in base excision repair, (D)
recruitment of DNA repair proteins, (E)
recruitment of BARD1-BRCA1 complex,
and (F) suppression of nonhomologous
end joining (NHEJ). AD, automodification
domain; BRCT, BRCA1 C-terminal do-
main; DBD, DNA binding domain; FA, Fan-
coni anemia; NLS, nuclear localization signal;
PK, protein kinase; WGR, tyrptophan-glycine-
arginine-rich domain; Zn, zinc finger.
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NAD� binds and is cleaved during mono- or poly (ADP-ribosyl)ation
of protein substrates.26,32,33 Although 17 PARP family members
have been identified in mammalian cells,26,34 only six synthesize
pADPr,27,34 and only three (PARP1, PARP2, and PARP3) play iden-
tified roles in DNA repair.35,36

PARP1 is the best understood of these enzymes (Fig 1B). In cells
with certain types of DNA damage, particularly nicks and double-
strand breaks (DSBs),37 PARP1 binds to damaged DNA and under-
goes a conformational change that realigns critical residues in the
enzyme active site,38-40 producing an up to 500-fold increase in activ-
ity.39,41,42 Once activated, PARP1 synthesizes pADPr chains covalently
bound to a variety of chromatin proteins, although PARP1 itself is the
acceptor for most of the polymer.39,43 The resulting pADPr chains not
only alter the functions of the covalently modified proteins29,43-45 but
also noncovalently bind a wide variety of additional nuclear
proteins.30,31,39,46-48

Like other post-translational modifications, pADPr is highly dy-
namic. After DNA damage, polymers consisting of scores or hundreds
of subunits are detectable within seconds,41,42,49,50 resulting in rapid
recruitment of additional DNA repair proteins.49,50 Once formed,
pADPr is also rapidly degraded by pADPr glycohydrolase, assuring
that pADPr levels reflect persistent damage, and the response is extin-
guished as repair ensures.51-53

Through its synthesis of pADPr, PARP1 contributes to a number
of DNA repair pathways.27,28 In its most extensively studied role,
PARP1 is essential for base excision repair (BER),54-56 a process that
removes a single damaged base and restores DNA integrity.28,57 In
addition, PARP1 binds to DSBs and recruits the proteins MRE11 and
NBS149 to initiate HR,58-60 a high-fidelity repair process that allows
one copy of a gene to serve as a template for restoration of a second
copy of the same gene.28,61,62 PARP1 also poly (ADP-ribosyl)ates
BRCA1, further contributing to and fine-tuning HR-mediated DSB
repair in HR-competent cells.63 Moreover, PARP1 prevents binding
of the Ku proteins to free DNA ends,64 thereby preventing activation
of the competing but error-prone nonhomologous end-joining
(NHEJ) DSB repair pathway. In addition, PARP1 is essential for mi-
crohomology mediated (alternative end-joining) repair,65,66 a third
DSB repair pathway.

PARP1 also contributes to additional cellular processes. It helps
restart replication forks that stall because of nucleotide depletion or
collisions with bulky lesions,67-70 modulates gene transcription,71 reg-
ulates chromatin structure,71-73 alters cytoplasmic microRNA pro-
cessing and action,74 and affects energy metabolism.27,75,76 Despite its
involvement in all of these processes, however, PARP1 is not essential.
Parp1 knockout mice develop normally77 and do not exhibit any
phenotype until they encounter genotoxic stress.54 These observations
prompted the initial development of PARP inhibitors as agents to
enhance targeted DNA damage.28,78,79

PARP2 and PARP3 also contribute to DNA repair.27,36 PARP2
cooperates with PARP1 in synthesizing pADPr after DNA dam-
age.80,81 PARP3 suppresses error-prone NHEJ82 while simultaneously
partnering with PARP1 to enhance DSB repair.83 The observation that
the PARP inhibitors undergoing clinical testing interact strongly with
the active sites of PARP2 and PARP3 in addition to PARP184 raises the
possibility that effects of PARP inhibitors reflect inhibition of all three
family members.

HOW PARP BIOLOGY CONTRIBUTES TO SYNTHETIC LETHALITY

Current development of PARP inhibitors as anticancer agents is mo-
tivated by the hypersensitivity of HR-deficient cells to PARP inhibi-
tion85,86 and the ability of PARP inhibitors to sensitize cells to certain
types of DNA damage.27,28 There is emerging evidence that these two
effects might reflect different aspects of PARP biology.

The observation that PARP inhibitors selectively kill BRCA1/2-
deficient cells in preclinical models85,86 was rapidly followed by the
demonstration that additional changes leading to HRD also confer
PARP inhibitor hypersensitivity.8,87,88 At least four different aspects of
PARP1 biology have been invoked to explain this so-called synthetic
lethality, although each model also has limitations.

Inhibition of BER

Because PARP1 is essential for BER,36,89 initial explanations sug-
gested that DNA single-strand breaks (SSBs), which arise during nor-
mal cellular activity and are ordinarily repaired by BER, persist during
PARP inhibitor treatment and are converted to DSBs, which are
repaired by HR in HR-proficient cells but remain unrepaired in HRD
cells (Fig 1C).90,91 The inability to detect SSB accumulation during
PARP inhibitor treatment,92 however, casts doubt on this model.
Moreover, knockdown of PARP1 kills HRD cells,85,86,93 whereas
knockdown of XRCC1, the protein immediately downstream of
PARP1 in BER, does not,93 suggesting that loss of PARP1 activity is
critical for killing of HRD cells, but loss of BER is not.

Trapping of PARP1 on Damaged DNA

When DNA damage activates PARP1,40,41,94 the resulting pADPr
recruits additional repair proteins30,46,47,55 and simultaneously dimin-
ishes the affinity of PARP1 for DNA,29 allowing its dissociation so
other repair proteins can bind. Conversely, PARP1 that cannot syn-
thesize polymer remains bound to damaged DNA and inhibits DNA
repair under cell-free conditions (Fig 1D).29 Moreover, overexpres-
sion of the isolated PARP1 DNA binding domain, which also recog-
nizes damaged DNA but cannot synthesize pADPr, potentiates certain
types of DNA damage.95,96 PARP1 that is inactivated by a PARP
inhibitor would likewise be expected to bind to damaged DNA and
inhibit repair. This trapping mechanism has been implicated in the
synergy between PARP inhibitors and certain DNA damaging agents,
including temozolomide97,98 and topotecan.99 Extrapolating from
these observations, it has been suggested that cytotoxicity of PARP
inhibitors in HRD cells might result from trapping of PARP1 at sites of
endogenous damage,100 although this mechanism fails to explain the
observation that PARP1 knockdown also selectively kills BRCA1/2-
deficient cells.85,86,93

Defective BRCA1 Recruitment

BRCA1 recruitment to damaged DNA involves two steps50: first,
an interaction between pADPr at the damage site and the pADPr
binding protein BARD1, which brings along its binding partner
BRCA1, and second, an interaction of BRCA1 with �-H2AX, a mod-
ified histone formed in response to DNA damage.101 If BRCA1 muta-
tion impairs the BRCA1/�-H2AX interaction, recruitment of the
BARD1-BRCA1 complex to pADPr becomes critical for DNA re-
pair (Fig 1E). The ability of PARP inhibitors to diminish recruit-
ment of the BARD1-BRCA1 complex to damaged DNA, thereby
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impairing DSB repair, provides an explanation for the PARP in-
hibitor hypersensitivity of cells with certain BRCA1 mutations,50

but it is unclear whether this explains PARP inhibitor hypersensi-
tivity of cells with other HR defects.

NHEJ Activation

A fourth explanation for PARP inhibitor–induced killing focuses
on the role of PARP1 in suppressing the error-prone NHEJ repair
pathway (Fig 1F).93,102 Several proteins in this pathway,103 including
Ku70, Ku80, and DNA-PKcs, are pADPr binding proteins.30,46,47 The
interactions of Ku70 and Ku80 with pADPr suppress NHEJ.64,104,105

Conversely, PARP inhibitors de-repress NHEJ, which then becomes
active in HR-deficient cells.93 Importantly, chromosomal rearrange-
ments and mutations, felt to be hallmarks of error-prone NHEJ,86 are
induced by PARP inhibitors and diminished by simultaneous addi-
tion of DNA-PK inhibitors to HR-deficient cells.93 Moreover, PARP
inhibitor cytotoxicity in HR-deficient cells is diminished by manipu-
lations that inhibit NHEJ,93,106,107 suggesting that activation of error-
prone NHEJ contributes to PARPi/HRD synthetic lethality (Fig 1F).
Conversely, PARP inhibitor sensitivity of HR-deficient cells is en-
hanced by changes that inhibit alternative end joining,108 another
DSB repair pathway that functions in parallel with HR and NHEJ.
It is unclear, however, what activates the NHEJ pathway in PARP
inhibitor–treated cells or how cells survive when HR and NHEJ are
both disabled.

Potential Implications for Patient Selection

These models of PARP inhibitor–induced killing make different
predictions regarding PARP inhibitor sensitivity and resistance.102

The PARP trapping model (Fig 1D), for example, predicts that cancers
with higher PARP1 expression will be more sensitive to PARP inhib-
itors (because of increased PARP1 trapping on damaged DNA),
whereas the other models predict that cancers with lower PARP1
expression will be more sensitive. Furthermore, the NHEJ model (Fig
1F) predicts that changes affecting the rate of NHEJ will have an
impact on PARP inhibitor sensitivity, in agreement with the observa-
tion that loss of 53BP1 (protein that facilitates NHEJ) or the NHEJ
protein Ku80, DNA-PKcs, or Artemis diminishes PARP inhibitor
sensitivity,93,106,107,109-111 whereas loss of POLQ, the DNA polymerase
in the alternative end-joining pathway, enhances PARP inhibitor sen-
sitivity.108 Accordingly, sorting out which of these models accounts for
responses in the clinical setting might help identify patients more likely
to respond to PARP inhibitors.

WHICH PATIENTS ARE MOST LIKELY TO RESPOND, AND HOW
CAN WE BEST IDENTIFY THEM?

In the absence of more refined understanding of PARP inhibitor
action, BRCA1/2 mutation status has been the most extensively stud-
ied predictor of PARP inhibitor sensitivity to date. When PARP inhib-
itors are administered as single agents in the relapsed setting, BRCA1/
2-mutated OC has a 30% to 45% objective response rate.5,112,113 A
higher response rate is observed in platinum-sensitive BRCA1/2-
mutant high-grade serous OC than in platinum-resistant or
-refractory groups,112 but responses in cases of platinum-resistant
disease114 suggest that PARP inhibitors could also be useful in subsets
of patients with resistant or refractory disease. Responses to PARP

inhibitor therapy in other solid tumors that occur in families with
germline BRCA1/2 mutations, including pancreatic cancer, mela-
noma, and prostate cancer, have also been reported.20

In contrast, not all patients with deleterious BRCA1 or BRCA2
mutations at diagnosis respond to PARP inhibitors. In cell lines, sec-
ondary somatic mutations in BRCA1- or BRCA2-mutant cancer
cells can restore protein expression, reconstitute HR, and confer
resistance to PARP inhibitors and platinum.115-117 Secondary mu-
tations that restore BRCA1 and BRCA2 also predict platinum and
PARP inhibitor resistance in the clinical setting.118,119 It seems that
approximately 45% of recurrent platinum-resistant BRCA1/2-
mutated OCs have secondary somatic mutations.118 Interestingly,
clinical cancer specimens most commonly sustain secondary so-
matic mutations that revert the mutant allele to wild-type se-
quence, making secondary mutations highly predictive of response
but technically difficult to identify.118

In addition to reversion mutations, HR can be restored in other
ways. Some mutant BRCA1 alleles encode proteins that are potentially
functional but degraded rapidly (so-called hypomorphic alleles). Sta-
bilization of these mutant proteins (eg, by elevated expression of heat
shock protein 90) can restore HR and confer PARP inhibitor resis-
tance without any secondary BRCA1 mutation.120 Likewise, decreased
expression of 53BP1, which ordinarily channels DSB repair to NHEJ,
restores HR and confers PARP inhibitor resistance in BRCA1-mutant
cells despite the continued absence of BRCA1 protein.109,110,121 The
extent to which these mechanisms contribute to PARP inhibitor resis-
tance in clinical OC remains to be fully defined.

Despite the current focus on BRCA1/2 mutation carriers with
OC, responses are not limited to this group. OCs with somatic
BRCA1/2 mutations seem to be as likely to benefit from PARP
inhibitor maintenance therapy as those with inherited mutations,7

although the number of treated patients with somatic mutations is
small. Moreover, germline or somatic mutations in other genes
critical to HR correlate with platinum sensitivity in OC and might
also predict PARP inhibitor response.122 Intriguing efficacy has
been reported for olaparib in PTEN-deficient endometrial can-
cer123 and in combination with paclitaxel in gastric cancer with
ATM deficiency.124 Studies including PALB2-mutated OC and
pancreatic cancer are also under way.

In addition to mutations, other processes, including epigenetic
alterations and changes in expression of microRNAs or transcription
factors, could in principle impair HR and confer PARP inhibitor
sensitivity. BRCA1 promoter hypermethylation, which downregulates
BRCA1 expression, occurs in 10% to 15% of OCs and has been
proposed as a mechanism of HRD.125-127 However, data from The
Cancer Genome Atlas and others fail to correlate BRCA1 hypermeth-
ylation with increased platinum sensitivity or improved survival,128

suggesting that epigenetic BRCA1 downregulation may have a less
profound impact on HR and PARP inhibitor sensitivity than inacti-
vating BRCA1 mutations. In short, improved understanding of PARP
biology and HRD is providing important new clues for predicting
PARP inhibitor responders versus nonresponders.

PARP INHIBITOR–CONTAINING COMBINATION THERAPY

Improved understanding of PARP biology is also contributing in-
sights into the design of PARP inhibitor–containing combination
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therapy. PARP inhibitors have been combined with standard chemo-
therapy, such as platinum in OC and BC13 or temozolomide in mela-
noma, BC, glioblastoma, and acute leukemia, as well as with signal
transduction inhibitors (eg, gefitinib in EGFR-mutant non–small-cell
lung cancer).13,19 Mechanisms underlying these combinations fall
into two broad categories: first, induction of HRD and PARP inhibitor
hypersensitivity in cells that initially contain an intact Fanconi anemia
(FA)/HR pathway, or second, enhancement of DNA damage through
interference with one of the roles of PARP1.

Previous studies have demonstrated that HRD can be induced by
a variety of treatments, including epidermal growth factor receptor
inhibitors129 or cyclin-dependent kinase inhibitors,130 which promote
BRCA1 trafficking from the nucleus to the cytoplasm; phosphatidyl-
inositol 3-kinase inhibitors, which downregulate Rad51131 or BRCA1/
2132; ATR inhibitors, which diminish replication stress–induced
activation of cell-cycle checkpoints and repair133; or even PARP inhib-
itors themselves.134 Whether pharmacologic induction of HRD will
sensitize clinical cancers to PARP inhibitors as effectively as inactivat-
ing mutations in FA/HR pathway genes remains to be determined.

PARP inhibitors also sensitize cells to certain DNA-damaging
agents.27,28,78,79 Different modes of PARP inhibitor action depicted in
Figure 1 explain these effects. For example, PARP inhibitors acting as
inhibitors of BER (Fig 1C) sensitize cancer cells to the nucleoside
analog floxuridine.135,136 In contrast, sensitization to temozolomide
and other methylating agents reflects the PARP trapping mechanism
(Fig 1D). Not only do PARP inhibitors increase the amount of PARP1
and PARP2 bound to methylated DNA,98,100 but diminished PARP1
protein protects cells from methylating agents,97,137 as predicted by
this mechanism. Importantly, complete PARP1 inhibition might
not be required to sensitize cells through this mechanism, because
trapping of only a small amount of PARP1 on the DNA should
impede repair of some of the lesions and enhance cytotoxicity. This
might explain the severe hematologic toxicity observed when
PARP inhibitors are combined with temozolomide138 or topo-
isomerase I poisons,139 where a similar mechanism of sensitization
has been reported.99 Whether this trapping mechanism can be
harnessed to selectively increase the toxicity of DNA damage in
cancer cells as compared with normal tissues in the clinical setting
remains to be established.

PREVIOUS BARRIERS TO CLINICAL IMPLEMENTATION

Despite the promising clinical results observed thus far, there have
been a number of barriers to clinical development of PARP inhibitors,
including confusion about what constitutes a bona fide PARP inhibi-
tor as well as problems with predictive biomarkers, pharmacodynamic
end points, and ideal trial design.

Implications of Accurate Mechanism of Action

PARP inhibitor development was delayed by inaccurate classifi-
cation of earlier compounds. In particular, iniparib was classified as a
PARP inhibitor based on its inhibition of purified PARP1.140 When
iniparib failed to enhance the efficacy of the gemcitabine/oxaliplatin
doublet in triple-negative BC,141 the entire class of PARP inhibitors
was considered by many to have failed.142 It turned out, however, that
iniparib does not inhibit PARP in intact cells.143,144 Until this was

realized, the inaccurate classification of iniparib as a PARP inhibitor
slowed pivotal testing of bone fide PARP inhibitors.

Identification of Predictive Biomarkers

At the present time, BRCA1/2 loss-of-function mutations, either
germline or somatic, have been the most extensively studied biomark-
ers of PARP inhibitor response. However, restricting PARP inhibitor
development to BRCA1/2-mutated cancers would exclude additional
cancers that may benefit. Because not all of the genes that affect DNA
repair are currently known, a functional test of DNA repair capability
that could be applied in the clinical setting would accelerate the iden-
tification of cancers appropriate for PARP inhibitor therapy. Initially,
static tests such as immunohistochemistry or immunofluorescence
for RAD51 pathway components, including RAD51 itself, were sug-
gested as a way to determine whether DNA repair was occurring.
However, antibodies to RAD51 have not proven sufficiently specific,
sensitive, or reliable for clinical application.

At present, there is substantial interest in assays of genomic scar-
ring (ie, subchromosomal amplifications and deletions thought to
reflect HRD).128,145-149 Preliminary data from both patient-derived
xenografts and the ARIEL2 (Assessment of Rucaparib in Ovarian
Cancer Phase 2 Trial) trial suggest that an assay using loss of heterozy-
gosity to identify genomic scarring may be useful to predict PARP
inhibitor response in OC without BRCA1/2 mutations.150,151 In con-
trast, it is important to emphasize that genomic scarring will not
disappear when HR is restored by these secondary mutations, suggest-
ing that assays of genomic scarring might need to be supplemented
with assays for resistance mechanisms.149

Limitations of Pharmacodynamic Assays

Most early-phase PARP inhibitor trials have included measure-
ment of pADPr to assess PARP1 inhibition. Because PARP activity can
increase up to 500-fold after DNA damage,39,41,42 it is important that
50% or even 90% PARP inhibition not be viewed as satisfactory
suppression of pADPr synthesis. In early reports of failed efficacy, for
example, the dose of veliparib guided by pADPr assays was 20 to 60 mg
per day, which is much less than the 200 to 400 mg twice daily being
delivered in veliparib trials now showing efficacy.

Limitations of Combination Trial Design

Most existing combination trials have started with the premise of
adding PARP inhibitors to standard-dose chemotherapy. This has
often led to administration of low doses of PARP inhibitors, which is
concerning given evidence suggesting a dose-response relationship for
PARP inhibitors. The alternative of using a low-dose chemotherapeu-
tic regimen such as oral metronomic cyclophosphamide has been
explored, but a standard dose of cyclophosphamide (50 mg daily) was
again used, resulting in a relatively low veliparib dose (60 mg twice
daily) at the maximum-tolerated dose.152 An alternative approach of
combining a near-maximal PARP inhibitor dose with lower, intermit-
tent doses of a DNA-damaging agent such as oral cyclophosphamide
should be considered.

PERSPECTIVE ON FUTURE DEVELOPMENT

With the previous considerations in mind, we offer suggestions that
we hope will advance the development of PARP inhibitors.
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How Can We Most Efficiently Identify Patients Who

Will Benefit From PARP Inhibitors?

Patients are currently considered for PARP inhibitor trials if they
have a particular tumor type (eg, high-grade serous OC or triple-
negative BC) or their cancer could belong to a relevant molecular
subtype (eg, BRCA1/2-mutated breast, ovarian, pancreatic, or pros-
tate cancer). Given the known relationship between BRCA1/2 muta-
tions and PARP inhibitor responsiveness, we suggest that all PARP
inhibitor trials enrolling these patients should report BRCA1/2 muta-
tion status for all participants (both germline and somatic), analogous
to trials of any other therapy with a known molecular target.

The current focus on BRCA1- and BRCA2-mutated BC or OC
should also be reexamined. Other cancers (eg, a substantial fraction of
BRCA1/2–wild type high-grade nonserous OCs) have hallmarks of
HRD and might respond to PARP inhibitors. Although it is currently
unclear how to best identify PARP inhibitor–responsive cancers, bio-
marker development trials such as ARIEL214 should inform this issue.
Patients could then be selected for subsequent trials using promising
biomarkers (including FA/HR pathway–mutation testing) rather than
cancer type, thereby allowing PARP inhibitors to be tested in various
rare cancer subtypes that might never be studied on their own.

Can We Learn More About Drug Resistance in the

Clinical Setting?

At present, there is little information about the causes of disease
progression after initial clinical response to PARP inhibitors. Optional
tumor biopsies on progression that have been incorporated into sev-
eral PARP inhibitor trials14,153 should help address this issue. The
ability of the off-study biopsies to help guide the next therapy for some
patients is an added benefit. Until HRD can be reliably identified
through analysis of circulating tumor cells or circulating tumor DNA,
we strongly advocate both on- and off-study biopsies in the setting of
trials that can productively use them to better understand resistance
and ways to circumvent it.

Are Current Expectations Reasonable?

In view of the initial high expectations for PARP inhibitors90 and
disappointment after the negative iniparib phase III trial in BC,142 it is

important to ask what can reasonably be expected of PARP inhibitors.
All current models (Fig 1) suggest that these agents kill susceptible
cancer cells by perpetuating DNA damage. Thus, their efficacy might
be similar to that of other DNA-damaging agents in the same cancers.
Accordingly, the similar response rates of olaparib and liposomal
doxorubicin in relapsed BRCA1/2-mutant OC, albeit with lower tox-
icity in the olaparib arm,114 should not be a surprise. Moreover, PARP
inhibitors would be expected to select for pre-existing resistant sub-
clones154,155 just as conventional chemotherapeutic agents do, ex-
plaining why the majority of relapsed platinum-responsive OCs
progress during PARP inhibitor treatment over the first 18 months.7

These considerations suggest that PARP inhibitors will benefit suitably
chosen patients but will not be curative in advanced disease, even if
BRCA1 or BRCA2 is mutated. Thus, it will be important to study
cancers with prolonged responses to PARP inhibitors9 to search for
even better predictive markers. Moreover, PARP inhibitors will need
to be tested in settings of lower disease burden, where their benefit
might be even greater (eg, chemoprevention in suitable high-risk
groups156) as maintenance therapy (Table 1) or in combination with
other agents in the advanced-disease setting. Only in this way will the
tantalizing activity of these agents be optimized for clinical benefit.
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■ ■ ■

GLOSSARY TERMS

base excision repair (BER): one of the major DNA repair
pathways that repairs simple DNA base lesions, such as the prod-
ucts of deamination, oxidation, and alkylation. In BER, a dam-
aged base is removed by a DNA glycosylase, followed by excision
of the resulting sugar phosphate. The small gap left in the DNA
helix is then filled in by the sequential action of DNA polymerase
and DNA ligase.

BRCA1: a tumor suppressor gene known to play a role in re-
pairing DNA breaks. Mutations in this gene are associated with
increased risks of developing breast or ovarian cancer.

BRCA2: a tumor suppressor gene whose protein product is
involved in repairing chromosomal damage. Although structur-
ally different from BRCA1, BRCA2 has cellular functions similar

to BRCA1. BRCA2 binds to RAD51 to fix DNA breaks caused by irradia-
tion and other environmental agents. Also known as the breast cancer 2
early onset gene.

homologous recombination: genetic recombination whereby
nucleotide sequences are exchanged between two similar or identical
strands of DNA to facilitate accurate repair of DNA double-strand
breaks.

promoter hypermethylation: methylation of the promoter re-
gion of a gene, which can lead to DNA silencing as a consequence of the
inability of activating transcriptional factors to bind to the promoter
region, a process important in gene transcription. In addition, repressor
complexes may be attracted to sites of promoter methylation, leading to
the formation of inactive chromatin structures.
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