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/Abstract: ZnO has long been considered as a model UV-
driven photoanode for photoelectrochemical water splitting,
but its performance has been limited by fast charge-carrier
recombination, extremely poor stability in aqueous solution,
and slow kinetics of water oxidation. These issues were ad-
dressed by applying a strategy of optimization and passiva-
tion of hydrothermally grown 1D ZnO nanowire arrays. The
length and diameter of bare ZnO nanowires were optimized
by varying the growth time and precursor concentration to
achieve optimal photoelectrochemical performance. The ad-
dition of earth-abundant cobalt phosphate (Co-Pi) and nickel
borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires
resulted in substantial cathodic shifts in onset potential to
as low as about 0.3V versus the reversible hydrogen elec-
trode (RHE) for Ni-B/ZnO, for which a maximum photocur-

rent density of 1.1 mAcm™ at 0.9V (vs. RHE) with applied\
bias photon-to-current efficiency of 0.4% and an unprece-
dented near-unity incident photon-to-current efficiency at
370 nm. In addition the potential required for saturated pho-
tocurrent was dramatically reduced from 1.6 to 0.9 V versus
RHE. Furthermore, the stability of these ZnO nanowires was
significantly enhanced by using Ni-B compared to Co-Pi due
to its superior chemical robustness, and it thus has addition-
al functionality as a stable protecting layer on the ZnO sur-
face. These remarkable enhancements in both photocatalytic
activity and stability directly address the current severe limi-
tations in the use of ZnO-based photoelectrodes for water-
splitting applications, and can be applied to other photoan-
odes for efficient solar-driven fuel synthesis.

/

Introduction

The development of efficient methods for generating clean
and sustainable energy is critically important to limit harmful
greenhouse-gas emissions from burning of fossil fuels and to
meet the rapid increase in global energy demand. Therefore,
considerable research has been conducted, spanning several
decades, to find alternative, clean, and more efficient energy
resources and conversion pathways to replace finite resources
such as fossil fuels.!" Artificial photosynthesis (water splitting)
is an attractive approach to meet current targets to efficiently
and inexpensively convert solar energy to a storable and trans-
portable form of energy. Splitting of water by direct sunlight
into molecular oxygen and hydrogen in a photoelectrochemical
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(PEC) cell is one such promising method to produce a chemical
fuel (hydrogen) that can be utilized in a fuel cell or by direct
combustion.” Of the two half-reactions, water oxidation is
widely considered to be more challenging, given the fact that
generation of one molecule of O, requires four holes, generat-
ed on a timescale five orders of magnitude slower than the re-
duction reaction.” Therefore, the search for stable, efficient
water-oxidation photocatalysts is widely regarded to be signifi-
cant for large-scale water photolysis. Since the discovery of
TiO, as a stable photoanode for photoelectrochemical water
cleavage by Honda and Fujishima in 1972," considerable ef-
forts have been made to seek an efficient and stable photoa-
node for water oxidation. Studies have focused on semicon-
ductor metal oxides such as TiO,” zZnO© wo,” BivVO,?,
Fe,0, and Ag;P0,.*¥ However overcoming their poor stabili-
ties and/or poor utilization of solar energy still remains a signifi-
cant challenge. Furthermore, the efficiency of these semicon-
ductor photocatalysts is seriously limited by factors including,
but not limited to, low charge-carrier mobility, poor conductivi-
ty, low rates of surface reactions, and high charge-carrier re-
combination. Studies have shown that photogenerated elec-
trons and holes recombine rapidly, on the scale of nano-micro-
seconds for colloidal TiO,,*'” and on the order of picoseconds
for a-Fe,0,." Despite this, carrier recombination could be alle-
viated by applying a small external bias to the light-absorbing
photoanode to provide sufficient overpotential to transfer elec-
trons to the counter electrode in a PEC. Zinc oxide (ZnO), with
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a bandgap energy of 3.2 eV, has been reported to be a suitable
model semiconductor for solar water oxidation due to its low
onset potential® and high electron mobility. The latter is sever-
al orders of magnitude higher than that of TiO,, and thus its
electrical resistance is lower and its electron-transfer efficiency
higher." However, the drawbacks of utilizing ZnO include low
hole mobility™ and slow kinetics at the ZnO/electrolyte inter-
face, which result in fast electron-hole recombination and thus
limit the overall applied bias photon-to-current efficiency
(ABPE). Additionally, the extremely poor photostability of ZnO
in aqueous solution limits the performance of ZnO-based pho-
toanodes significantly, and has restricted their widespread em-
ployment in commercial devices."" To date, numerous strat-
egies have been developed to overcome its poor activity, in-
cluding 1) fabricating a multisemiconductor system (e.g., Si/
ZnO core/shell nanowires) to reduce hole-electron recombina-
tion,™™ 2) constructing 1D nanostructured ZnO-based electro-
des with various morphologies (e.g., nanotubes,® nanorods/
nanowires''”) for increased surface area and improved charge
transport and light trapping, and 3) loading of oxygen-evolu-
tion catalysts (OECs) such as cobalt phosphate (Co-Pi) to im-
prove the electron-hole separation and O, evolution kinet-
ics."® To address the issue of poor stability, it has been demon-
strated that a thin layer of SnO, can act as a partial passivating
layer for ZnO nanowires."” However, in all cases the ABPE ()
and incident photon-to-current conversion efficiency (IPCE) are
still moderate, for example, nitrogen-doped ZnO (1=0.35%,
IPCE=35% at 350 nm)*® and Si/ZnO core/shell nanowires (7=
0.38%).""! The poor stability of the photoanode still remains
a significant challenge.

In our material-design strategy, employing a 1D nanostruc-
tured morphology for ZnO offers the potential advantage of
improved charge transport over a flat surface, while simultane-
ously suppressing light scattering due to the light-trapping ef-
fect.**2" Furthermore, the optimization of their length and di-
ameter will maximize light absorption and provide a short
charge-carrier diffusion length, and the use of cheap, earth-
abundant OECs on the surface of ZnO nanowires could im-
prove the photoanodic performance by their acting as hole-
trapping sites for water oxidation and in situ charge separa-
tion. We also expect that employing high surface area ZnO
nanowires would result in signif-
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ed for ZnO-based photoelectrodes and unprecedented stability
were achieved.

Results and Discussion

The effect of deposition time and the concentration of precur-
sor were investigated for growth of bare ZnO nanowire arrays.
XRD (Figure 1a) revealed that the as-prepared ZnO film has
a wurtzite structure, with the strongest ZnO (002) peak indicat-
ing strong preferred orientation in the c-axis direction, as ex-
pected.??

The UV/Vis transmittance spectra and SEM images of bare
ZnO films prepared with different reaction times are shown in
Figures S1 and S2 (Supporting Information). All films exhibited
good transparency in the visible range (380-500 nm); for ex-
ample, the sample grown for 1 h displayed close to 90% trans-
mittance in this wavelength range. The bandgap energy of
ZnO nanowires was estimated to be about 3.3 eV from the UV/
Vis absorption spectra (Supporting Information Figure S1,
inset), and as expected, did not vary with reaction time. The
SEM images obtained for bare ZnO nanowires synthesized
with varying deposition time (Supporting Information Fig-
ure S2) clearly show that all nanowires had an average diame-
ter of about 50 nm independent of deposition time, whereas
their lengths increased with time, similar to previous re-
ports.?*®! However, only a slight increase in length was ob-
served when the reaction time increased to 5 h, which indicat-
ed that the dissolution/precipitation equilibrium was at-
tained.”® Figure S3 (Supporting Information) shows the -V
curves for ZnO films prepared with 0.025m precursor at 90°C
as a function of growth time in 0.2m Na,SO, with phosphate
buffer (pH 7) electrolyte under 100 mWcm~2 illumination. The
dark current was negligible over the entire potential range
from 0.2 to 1.6V (vs. RHE). The maximum photocurrent is
strongly dependent on the length of the nanowires. Longer
nanowires maximize the light absorption and provide more re-
action sites, and thus higher photocurrent. ZnO nanowires pre-
pared at 4 and 5h, which had similar lengths of about
1300 nm, both resulted in similarly high photocurrents.

Next, we investigated the effect of precursor concentration
while keeping the reaction time fixed (4 h). Table 1 summarizes

icantly increased cocatalyst dep-
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Figure 1. a) XRD pattern of ZnO nanowire array grown on FTO glass substrate at 90°C for 4 h. Asterisks indicate
peaks of SnO, (FTO substrate). b) UV/Vis transmittance spectra of ZnO films fabricated at 90°C for 4 h as a function
of precursor concentration. The inset shows the transmittance spectrum of a bare FTO glass substrate.
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Table 1. Effect of precursor concentration c on the length / and diameter
d of the ZnO nanowires.

c[molL™"] I [nm] d[nm]
0.025 1300 50
0.05 1400 70
0.075 1800 110
0.1 1500 250

the effect of precursor concentration on the length and diame-
ter of the nanowires. Both the average length and diameter in-
creased as a function of precursor concentration, the length
from 1300 nm (0.025 m) to 1800 nm (0.075 M) and the diameter
from about 50 to about 110 nm (Figure 2). However, SEM

Figure 2. SEM images of ZnO nanowire arrays grown by hydrolysis/conden-
sation reaction at 90°C for 4 h as a function of precursor concentration.
a) 0.025, b) 0.05, ¢) 0.075 M, and d) 0.1 M. Insets: top-view SEM images.

images of ZnO nanowires grown with a zinc nitrate concentra-
tion of 0.1 M show a significant morphology change to a mix-
ture of nanowires and nanoflakes that results in a condensed
structure (1500 nm length). The UV/Vis transmittance spectra
of ZnO films as a function of precursor concentration are
shown in Figure 1b. As a reference, the transmittance spec-
trum of an uncoated fluorine-doped tin oxide (FTO) glass sub-
strate was recorded (Figure 1b inset). As expected, all ZnO
films showed closed to zero transmittance in the UV range and
exhibited no variation in bandgap (= 3.3 eV). The /-V curves of
ZnO nanowires prepared at 90 °C for 4 h with various precursor
concentrations (Figure 3) indicate the dramatic effect of nano-
wire length and diameter on the photocurrent. Since ZnO-
based semiconductors have a high electron mobility (ca.
400 cm?V~'s™' at 300K)"“? but low hole mobility (1-
15 cm?V~"'s™' at 300 K),* efficient charge-carrier separation
and activity are highly dependent on the hole diffusion length.

Chem. Eur. J. 2014, 20, 12954 - 12961 www.chemeurj.org
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Figure 3. |-V curves measured in a 0.2 m Na,SO, solution with phosphate
buffer (pH 7) for ZnO films synthesized at 90 °C for 4 h with varying precur-
sor concentration.

Although longer and wider nanowires can absorb more pho-
tons, as indicated by the UV/Vis absorption spectra, and likely
provide a larger surface area, a larger diameter also leads to
a longer hole diffusion length, which would increase charge re-
combination and then lower reactivity. Therefore, the best-per-
forming ZnO nanowire arrays should have optimized length
and diameter to balance these key factors related to the pho-
toreaction.

Our optimization procedure resulted in a ZnO nanowire
array with a length of 1400 nm and diameter of 70 nm pre-
pared with 0.05m precursor concentration at 90°C for 4 h,
which gave a photocurrent density of 0.62 mAcm™ at 1V (vs.
RHE) and highest photocurrent density of 1.2 mAcm™2 at 1.6 V
(vs. RHE) due to its optimized surface area, light absorption,
and hole diffusion length, which is much higher than the pho-
tocurrent density of bare ZnO nanowires reported recently
(0.4 mAcm~2 at 1.0 V vs. RHE).2

To improve the kinetics for water oxidation and electron-
hole separation, the OECs Co-Pi and Ni-B were deposited on
the optimized ZnO nanowire arrays by a simple photoassisted
electrodeposition procedure.”?® Figure 4 shows typical SEM
images of Co-Pi/ZnO and Ni-B/ZnO films before PEC tests, as
well as that of a bare ZnO film (Figure 4e, prepared with
0.05 M precursor concentration at 90°C for 4 h) for comparison.
Deposition of Co-Pi or Ni-B on the ZnO surface resulted in uni-
form coverage along the entire length of the nanowires. In ad-
dition, compared with bare ZnO nanowires, the average length
of the Co-Pi/ZnO and Ni-B/ZnO nanowires is maintained, but
their average diameter increased slightly from 70 nm for bare
ZnO to 120 nm and 100 nm for Co-Pi/ZnO and Ni-B/ZnO nano-
wires, respectively, which is attributed to addition of the cata-
lyst layer and formation of catalyst/ZnO core/shell-type arrays.

The UV/Vis transmittance spectra of optimized bare ZnO
and cocatalyst-modified ZnO films are shown in Figure 5. All
ZnO-based films exhibited good transparency in the visible
range but almost zero transmittance in the UV range. The

12956  © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4. Typical SEM images of ZnO nanowires before PEC measurement.
a) Top view of Co-Pi/ZnO. b) Top view of Ni-B/ZnO. c) Side view of Co-Pi/
ZnO0. d) Side view of Ni-B/ZnO. e) Side view of bare ZnO.
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Figure 5. UV/Vis transmittance spectra of bare ZnO, Co-Pi/ZnO, and Ni-B/
ZnO. Inset: corresponding absorption spectra.

bandgap energy E, of as-prepared ZnO films was estimated
from the absorption spectra. (Figure 5 inset).”® The E4 value
was calculated to be about 3.3 eV for both bare and cocata-
lyst-modified ZnO films; thus, addition of cocatalysts did not
alter the bandgap or light absorption of ZnO significantly.
High-resolution X-ray photoelectron spectroscopy (XPS) was
used to ascertain the presence and exact valence states of the
elements of the cocatalyst-loaded ZnO nanowire arrays. In all
cases Zn 2p peaks were seen at 1022 and 1045 eV due to Zn**
(Supporting information Figure S4). For Co-Pi-loaded ZnO, the
presence of the Co 2p peaks at 781.1 and 796.3 eV are in good
agreement with those previously reported for Co-Pi OECs
loaded on the surface of semiconductors (Figure 6a).” Fur-
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thermore, the P 2p peak was observed at 133.4 eV, but in addi-
tion another P peak was observed at 140.1 eV (marked with
a star), which is characteristic of P absorption on defect states
in ZnO but is not part of the OEC (Figure 6b).*” However, due
to peak overlap, it is possible that this could be due to contri-
butions from the Zn 3s peak and the Sn 4s peak (from the FTO
substrate), both commonly found in the same region, as we
also observed a similar peak in the XPS spectrum of bare ZnO
(Supporting Information Figure S4b). For Ni-B-loaded ZnO, two
clear Ni 2p peaks were observed at 855.2 and 872.8 eV, which
likely correspond to Ni*™ or Ni** (Figure 6¢); however, as the
binding energies of these two states suffer from a high degree
of overlap, it is difficult to distinguish the exact nature of Ni
with confidence?” The two corresponding Ni 2p satellite
peaks (marked with stars) were also found, at 860.7 and
878.6 eV, respectively. For boron, the expected singlet peak
was found at 191.1 eV (Figure 6d), indicative of a B>" environ-
ment and in agreement with recently reported XPS spectra of
Ni-B catalysts.”®

Figure 7a shows the -V curves of optimized ZnO (length
1400 nm, diameter 70 nm), Co-Pi/ZnO, and Ni-B/ZnO photo-
electrodes in sodium sulfate or potassium borate electrolyte. In
comparison with bare ZnO, which has an onset potential of
0.5V (vs. RHE), the photocurrent onset is cathodically shifted
by about 0.1V (vs. RHE) for Co-Pi-modified ZnO, which is at-
tributed to the Co-Pi catalyst mitigating hole-electron recom-
bination by acting as a hole-trapping site to increase charge-
separation efficiency. Surprisingly, the onset potential for Ni-B/
Zn0 is shifted cathodically by as much as 0.2V compared to
bare ZnO to about 0.3V (vs. RHE). A low onset potential is cru-
cial for widening the operating window and therefore achiev-
ing a high ABPE. Similar to the Co-Pi cocatalyst, Ni-B also ap-
pears to act as a hole-trapping site that can facilitate hole
transfer on the semiconductor surface and thus decrease elec-
tron-hole recombination. The overall photocurrent density is
also increased by loading of Co-Pi and Ni-B onto ZnO, which
results in photocurrent densities of 0.72 and 1.22 mAcm™? at
1.0V (vs. RHE) for Co-Pi/ZnO and Ni-B/ZnO, respectively. More
interestingly, a saturated photocurrent density of about
1.1 mA/cm? was achieved at 0.9V (vs. RHE) for Ni-B/ZnO in-
stead of 1.6V (vs. RHE) for both bare ZnO and Co-Pi/ZnO
nanowires.

Recent studies have reported that the deposition of Co-Pi
OEC onto n-type semiconductors such as Fe,0;,%*? BiVO,
WO,,B4 n-type silicon (n-Si),%* and ZnO"” can enhance the PEC
performance under neutral conditions, because the Co-Pi com-
plex functions as a hole-trapping site for in situ charge separa-
tion, and thus reduces surface recombination and improves
the kinetics for water oxidation. For example, Zhong et al. re-
ported a simple photoassisted electrodeposition strategy to
deposit Co-Pi OEC on a-Fe,O; (hematite) photoanodes in an
aqueous, neutral phosphate medium containing Co?* ions.””
In this process, photogenerated holes from hematite are used
to oxidize Co®* to Co**, which results in deposition of Co-Pi
on the surface of the semiconductor. Ni-B has a similar catalytic
mechanism for water oxidation to Co-Pi. The electron-hole
pairs generated by the light-absorbing semiconductor are sep-
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arated by an internal electric field,”” and conduction-band
(CB) electrons move towards to the back contact (FTO sub-
strate), through the external circuit to the Pt counter electrode
under external bias (for hydrogen evolution). Photogenerated
holes migrate to the Ni-B surface and oxidize Ni from 2+ to
3+, and then O, evolution occurs by withdrawal of electrons
from water, accompanied by a change in Ni oxidation state
back to 2+4. On the other hand, it has recently been reported
that the active site in the Ni-B catalyst has an intermediate oxi-
dation state of 3.6, which indicates that the Ni center is in
a formal oxidation state of 4+ .59

To compare the light-conversion efficiency of bare ZnO and
cocatalyst-modified ZnO, IPCE spectra were measured for all
samples (Figure 7b). The IPCE of optimized bare ZnO nano-
wires (1400 nm length) is, as expected, near-zero in the visible

Chem. Eur. J. 2014, 20, 12954 - 12961 www.chemeurj.org

quires a higher electrical bias to

obtain a saturated photocurrent.
The early saturated photocurrent observed for Ni-B/ZnO but
not Co-Pi/Zn0O strongly indicates that Ni-B is a much more effi-
cient surface cocatalyst and hole acceptor than Co-Pi. The high
IPCE of Ni-B/ZnO can be attributed to increased light trapping
by ZnO nanowires, efficient separation of photogenerated
electrons and holes through loading with an improved surface
OEC, fast rectifying electron transport through 1D ZnO nano-
wires to the counter electrode, and efficient surface catalysis.
Furthermore the ABPE of Ni-B/ZnO was measured to be 0.4 %,
which is considerably higher than recently reported values for
nitrogen-doped ZnO nanowires (0.15%),” Si/ZnO core/shell
nanowires (0.38%),"” and even some visible-light-driven semi-
conductor-based photoanodes, such as WO,/C;N,/Co0,,®
However, it is lower than that of the recently reported bench-
mark Co-Pi/W:BiVO, photoelectrode.®™ Thus, a new visible-
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Figure 8. a) Current density-time curves of bare ZnO, Co-Pi/Zn0O, and Ni-B/ZnO photo-
electrodes measured at 1.0 V (vs. RHE) for 1 h. b)-d) Typical side-on SEM images of Ni-B/
Zn0, Co-Pi/ZnO and bare ZnO nanowire arrays, respectively, after 1 h of PEC measure-

ments.

light-driven junction based on 1-D ZnO, such as C;N, is under-
way for more efficient utilization of solar energy.**”!

An important consideration in the employment of photoan-
odes for water cleavage on a commercial scale is their stability
under prolonged illumination in aqueous solution, which is
a problem for ZnO-based photoanodes. Therefore, the stabili-
ties of ZnO, Co-Pi/Zn0O, and Ni-B/ZnO were investigated at a po-
tential of 1.0 V (vs. RHE) for 1 h (Figure 8a). For bare ZnO nano-
wires, very poor stability was observed with continuous decay
of photocurrent; only 34% residual photocurrent remained at
the end of the experiment. A slight improvement in stability
was observed for Co-Pi/ZnO, as Co-Pi itself appears to have
some short-term stability in solution, followed by a relatively
stable stage (65% photocurrent remaining at the end of the
experiment). This is most likely due to facile exchange of
cobalt and phosphorus ions directly between the film and so-
lution.”® Most significantly, Ni-B/ZnO exhibited unprecedented
retention of photocurrent over 1 h, which, to the best of our
knowledge, is the first such observation for ZnO photoelectro-
des. Similarly, a recent report also mentioned that a nickel film
deposited by electron beam evaporation on an otherwise low-
stability n-Si photoanode results in an unprecedented im-
provement in stability during PEC measurements in aqueous
solution and a major shift in onset potential on immersion in
potassium borate electrolyte.®”

To confirm the improved stability of our Ni-B/ZnO junction,
the morphologies of these ZnO-based photoelectrodes were
examined by SEM after prolonged PEC testing (Figure 8 b-d).
In agreement with the stability test, no photocorrosion was
observed for Ni-B/ZnO, but the images of the bare ZnO and
Co-Pi/ZnO electrodes revealed significant transformation of the
structures into dense, compact films with very few distinct fea-
tures and, significantly, they no longer resembled nanowire
arrays. The side-on views of these samples before and after
PEC testing clearly show the effect of photocorrosion on their
morphologies. Only Ni-B/ZnO retains the vertically aligned
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nanowire morphology (Figure 4 and Figure 8b-d).
Furthermore, XRD analysis of the ZnO and Co-Pi/ZnO
photoelectrodes after water-oxidation experiments
(Figure S5, Supporting Information) revealed the
emergence of a Zn,(PO,), phase (JCPDS card No. 33-
1474) due to reaction with phosphate ions and is
consistent with ZnO photocorrosion.*”  Similarly,
high-resolution XPS analysis of these samples (Sup-
porting Information Figure S6) revealed that the O 1s
peak of bare ZnO shifted to 531.3 eV with only
a small contribution from ZnO at 529.7 eV, whereas
extreme broadening of both the Zn 2p and P 2p
peaks was observed for Co-Pi/ZnO after PEC meas-
urements, commensurate with the formation of
Zn,(PO,), species.*? At the same sample, the signal
for Co 2p is barely observed above the background;
this indicates desorption of cobalt from the OEC. In
contrast, the XP spectra of Ni-B/ZnO after PEC meas-
urements revealed no obvious changes in positions
and intensities of Zn, Ni, and B peaks, which is also in
agreement with the recently reported enhanced sta-
bility of Ni-protected n-Si photoelectrodes.®” Overall, this
study demonstrates the application of Ni-B not only as an effi-
cient surface water-oxidation catalyst, but also as an effective
passivation layer for semiconductor electrodes.

Conclusion

We have reported a mild and efficient approach to significantly
improve the photoelectrochemical performance of 1D ZnO
nanowire arrays through optimization of their length and di-
ameter followed by surface modification with cheap, earth-
abundant cocatalysts. Optimized bare ZnO nanowires
(1400 nm length, 70 nm diameter) exhibit a photocurrent den-
sity of 0.62 mAcm™2 at 1.0V and 1.2 mAcm™2 at 1.6 V (vs. RHE)
under 1 sun illumination. Loading of Co-Pi cocatalyst onto the
surface of these optimized ZnO nanowires by photoassisted
electrodeposition resulted in a higher steady-state photocur-
rent (0.75 mAcm™2 at 1.0V vs. RHE) and improved IPCE (72%
at 370 nm) for Co-Pi/ZnO compared to bare ZnO. Furthermore,
Ni-B/ZnO exhibited twofold higher steady-state photocurrent
density (1.22 mAcm™2 at 1.0V vs. RHE) compared to unmodi-
fied ZnO, which resulted in an IPCE of about 90% at 370 nm.
More importantly, a significant cathodic shift in onset potential
(by 0.2V) and potential for saturated photocurrent (by nearly
0.7 V) were observed after modification with Ni-B. The stability
of ZnO was improved significantly on introduction of these
surface oxidation catalysts, and Ni-B/ZnO exhibited an unpre-
cedented zero loss of photocurrent over a 1h test period,
which demonstrates the dual functionality of Ni-B as a benign
water-oxidation catalyst and robust surface-protection layer
that can inhibit photocorrosion. The overall enhancement in
current is due to efficient hole trapping by the surface cocata-
lyst and its catalytic effect. Besides, fast electron transfer along
highly charge mobile, well aligned ZnO wires to the counter
electrode also plays an important role. This simple strategy
that dramatically improved the efficiency of ZnO may be appli-
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cable to other photoanodes, for example, BiVO,, a-Fe,0,, as
well as to those that exhibit poor stability that limits their prac-
tical use in water-splitting devices. A potential heterojunction
architecture would likely involve the coupling of a visible-light-
driven photocatalyst to a ZnO nanowire charge acceptor to
achieve efficient photocatalytic water cleavage.

Experimental Section
Preparation of ZnO electrodes

ZnO nanowire arrays were fabricated on FTO glass substrates from
Zn0O seeds by a hydrothermal (hydrolysis/condensation) method
described by Greene et al.”? Firstly, ZnO seed crystals were depos-
ited onto FTO glass (TEC 15, Pilkington NSG) by spray pyrolysis
(nozzle size 2 cm?, at a distance of 15 cm) from a solution contain-
ing 0.005m zinc acetate dihydrate (98%, Aldrich) in ethanol fol-
lowed by an annealing process in air at 350°C for 20 min. This pro-
cedure was repeated twice to obtain a uniform coverage of ZnO
seed crystals with density and size similar to those already reporte-
d.??? Secondly, a precursor solution with 0.025m Zn(NO);-6 H,0
(98 %, Sigma) and hexamethylenetetramine (HMT, >99.5%, Sigma)
was heated in an open water bath at 90°C. In our optimized pro-
cedure, ZnO films were synthesized by varying the growth time
from 0.5 to 5 h, and then by varying the concentration of the pre-
cursor solution from 0.025 to 0.01wm in intervals of 0.025m. The
concentration ratio of Zn(NO);:6H,0 and HMT was kept constant
at 1:1 while varying the concentration of precursor.

Both Co-Pi and Ni-B catalysts were deposited onto optimized ZnO
films by photoassisted electrodeposition.”?# A three-electrode
system with as-prepared ZnO films as working electrode, Ag/AgCl
as reference electrode, and a Pt mesh as counter electrode were
used for the photoassisted electrodeposition process. Co-Pi/ZnO
and Ni-B/ZnO junctions were synthesized by applying a constant
potential of 0.4V (vs. Ag/AgCl) in a solution of 0.5 mm cobalt ni-
trate containing 0.1M potassium phosphate buffer at pH 7 and
a solution of 0.1 M potassium borate at pH 9.2 containing 1 mm
Ni(NO;),, respectively, for 600 s under AM 1.5G light (100 mWcm™)
illumination.

Characterization

X-ray diffraction (XRD) was carried out on a Bruker D8 Advance X-
ray diffractometer (40 kV, 30 mA) with Cuy, radiation (1=1.54 A)
equipped with a PSD LynxEye silicon-strip detector. UV/Vis spectra
were obtained on a Shimadzu UV-2550 UV/Vis spectrometer. The
bandgap energy was estimated by using Equation (1)

(ahv)" = A(hv—E,) M

where a is the absorption coefficient, hv the photon energy (h is
Planck’s constant, v is the frequency), n a constant with a value of
2 for direct-bandgap semiconductors, A a proportionality constant
related to the material, and E; the bandgap energy. The morpholo-
gies of the samples were studied on a Jeol JSM-7401F scanning
electron microscope. High-resolution XPS was performed by using
a Thermo Scientific K-alpha photoelectron spectrometer with mon-
ochromatic Aly, radiation; peak positions were calibrated to
carbon (284.5 eV) and plotted with the CasaXPS software.
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PEC measurements

The PEC measurements were conducted in a three-electrode cell
equipped with a quartz window and potentiostat (lvium technolo-
gy). As-prepared films were used as the working electrode. A Pt
mesh and Ag/AgCl were used as a counter electrode and reference
electrode, respectively. The scan speed was 20 mVs™' between
—0.4 and 1.0V (vs. Ag/AgCl) All measurements were carried out
with a Ag/AgCl (3m KCI) reference electrode, but results reported
in this study are presented against the reversible hydrogen elec-
trode (RHE) for ease of comparison with the H, and O, redox levels
and with other literature reports that used electrolytes with differ-
ent pH. Thus electrode potentials were converted to the RHE scale
by using Equation (2).

ERHE = EAg/AgCI + 0.059 pH + EAg/AgCI(ref) EAg/AgCI(ref) = +0199 \Y

()

The electrolyte was a 0.2 M aqueous solution of Na,SO, with 0.1m
phosphate buffer (pH7) or 0.1m potassium borate solution
(pH 9.2). All electrolytes were purged with argon for 10 min to
remove dissolved O, before PEC measurement. A 150 W xenon
lamp (Newport, USA) equipped with an AM 1.5G filter was used to
irradiate the ZnO electrodes from the front side and was calibrated
to 1 sun illumination (100 mWcm™?) by using a photodiode.

For IPCE measurements, monochromatic light was generated by
using a monochromator and the resultant photocurrent was re-
corded for wavelengths between 350 nm and 440 nm. The light in-
tensity was measured with a silicon photodiode and a Newport
Optical Meter (Model 1918-R). IPCE was calculated by using Equa-
tion (3)

1240 x photocurrentdensity/mA cm ™2

lightintensity/mW cm—2 x wavelength/nm x 100

(3)

IPCE/% =

[43,44]

The ABPE 5 was estimated by using Equation (4)

photocurrentdensity/mAcm 2 x (1.23 — E,pq/V)
lightintensity(AM1.5G)

x 100

(4)

n/% =
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