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The crystallographic reliability index Rcomplete is based on a method
proposed more than two decades ago. Because its calculation is
computationally expensive its use did not spread into the crystal-
lographic community in favor of the cross-validation method
known as Rfree. The importance of Rfree has grown beyond a pure
validation tool. However, its application requires a sufficiently
large dataset. In this work we assess the reliability of Rcomplete

and we compare it with k-fold cross-validation, bootstrapping,
and jackknifing. As opposed to proper cross-validation as realized
with Rfree, Rcomplete relies on a method of reducing bias from the
structural model. We compare two different methods reducing
model bias and question the widely spread notion that random
parameter shifts are required for this purpose. We show that
Rcomplete has as little statistical bias as Rfree with the benefit of a
much smaller variance. Because the calculation of Rcomplete is based
on the entire dataset instead of a small subset, it allows the esti-
mation of maximum likelihood parameters even for small data-
sets. Rcomplete enables maximum likelihood-based refinement to
be extended to virtually all areas of crystallographic structure de-
termination including high-pressure studies, neutron diffraction
studies, and datasets from free electron lasers.
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The quality of crystallographic models is described by several
quality indicators. Both for small and macromolecular struc-

ture deposition, the crystallographic reliability index R1 must be
provided (1, 2). It is calculated for the dataset H of observations
and a structural model as

R1=
P

h∈H

��FobsðhÞj− jFcalcðhÞ
��P

h∈H jFobsðhÞj . [1]

Depending on the data-to-parameter ratio, R1 is affected by
more or less severe overfitting (3, 4). To overcome this problem,
cross-validation was introduced into crystallography (5–9). For
cross-validation in crystallography, a certain fraction of the ob-
servations, typically 5–10%, are withheld as test set T and never
used for model building and refinement. They are only used to
calculate the reliability index Rfree:

Rfree =

P
h∈T

��FobsðhÞj− jFcalcðhÞ
��P

h∈T jFobsðhÞj . [2]

Rfree is much less affected by overfitting and since its introduc-
tion it has gained importance beyond validation of the structural
model. It is used to optimize weights for restrained refinement
(4, 10–13). The concept of Rfree paved the way for maximum
likelihood methods in crystallography. It was shown that the esti-
mation of maximum likelihood parameters based on the test set T
provides much better accuracy than that based on the data used
during refinement (14–16).

Cross-validation reduces the bias of a statistic (17, 18) but
can show large variance, especially when T is small (8, 17). The
relative error of the crystallographic Rfree was established as
σðRfreeÞ=Rfree=

ffiffiffiffiffiffiffiffiffi
2jTjp

(19). The test set should hold at least 500
data points so that σðRfreeÞ=Rfree ≤ 0.032. Maximum likelihood
methods estimate parameters in resolution bins, and a total of
jTj= 2,000 may be required for robust estimation. To assess the
accuracy of a statistic such as Rfree one could apply k-fold cross-
validation, the bootstrap method, and the jackknife method (7, 8,
17, 20). k-fold cross-validation divides the dataset into k approxi-
mately equally sized and pairwise disjoint subsets H =∪k

i= 1Ti
 and

cross-validation is carried out for each of the parts separately.
hRfreei and σðRfreeÞ are calculated from the k resulting Rfree. As
mentioned above, for small test sets, that is, k→ jHj⇔ jTij→ 1,
σðRfreeÞ becomes very large. Both the bootstrap and the jackknife
method reduce the variance of an estimator like Rfree. The jack-
knife artificially creates jHj datasets HidH nfhig, that is, with the
ith data point removed, so that

Ri
jack =

P
h∈Hi

��FobsðhÞj− jFcalcðhÞ
��P

h∈Hi
jFobsðhÞj . [3]

The estimator is calculated as arithmetic mean

Rjack =
1
jHj

X
i

Ri
jack [4]

with the jackknife estimate of variance (8)

Significance

Modern crystallographic structure determination uses maxi-
mum likelihood methods. They rely on error estimates be-
tween the work model and the unknown target based on a
small fraction of the data. This can introduce a large un-
certainty and, even worse, restricts the method to projects
where sufficient data are available. We investigate the Rcomplete

method. It enables the use of all data for error estimation. It
reduces the uncertainty associated with the conventional Rfree

approach for small datasets. We show that our approach re-
duces the effect of overfitting. This enables maximum likeli-
hood methods to be extended to a much wider field of
applications, including free electron laser experiments, high-
pressure crystallography, and low-resolution structures.
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σ2jack =
jHj− 1
jHj

X
i

�
Ri
jack −Rjack

�2
. [5]

Bootstrapping differs from jackknifing in that the bootstrap
datasets Hi are generated from H by random sampling with re-
placement with jHij= jHj  ∀i. Thus, one could calculate Ri

boot up
to ð2jHj− 1Þ!=ðjHj!ðjHj− 1Þ!Þ times, although a few thousand
samples are usually sufficient. Let b the number of bootstrap
samples. The bootstrap R value and its estimate of variance are
defined as (8)

Rboot =
1
b

X
i

Ri
boot [6]

σ2boot =
1

b− 1

X
i

�
Ri
boot −Rboot

�2
. [7]

None of these methods avoids the deficiency that the variance
of the respective R value is large when the test sets Ti are very
small. This was already shown in ref. 6 and can be seen in SI
Appendix, Fig. S1: Because the R value has a lower bound of 0,
large outliers will drag any mean up from its real value. Our
interest in alternative ways to calculate Rfree arose during the
project in ref. 21. Macromolecular neutron datasets are often
small with low data completeness. Leaving out 500 or more data
points during model building and refinement would destabilize
these processes and thus impede the quality of the final model.
In high-pressure crystallography the situation is even worse be-
cause the incompleteness of the data owing to shadows from the
experimental setup is systematic and leads to data-to-parameter
ratios too low to rely on R1 alone. The entire dataset may have
fewer than 500 observations (22).
To circumvent these difficulties, Brünger (6) suggested the

method of Rcomplete validation: Instead of creating the test sets
required for k-fold cross-validation at the very beginning after
data collection, they are created only when the calculation of a
reliable R value is needed. Strictly speaking, the Rcomplete method
is not cross-validation because the statistic of interest, the R
value, is not calculated as mean from a number of refinement
runs, but in analogy to Eq. 1 from the entire dataset, as will be
detailed below. The critical point for using Rcomplete is the
question of how to reduce the effect of overfitting from the
structural model after it was refined against all data points.
Proper cross-validation as realized with Rfree does not share this
problem because the data from the test set are never used during
refinement and model building throughout the entire process
from data acquisition to publication. Brünger (6) suggested
simulated annealing. Others apply random parameter perturba-
tion (13, 23, 24). A third option that has been discussed in the
crystallographic community was suggested by Tickle (25): Re-
finement of a structural model to convergence should reduce the
effect of overfitting against any observation not used during such
a refinement run. Here we concentrate on “Tickle’s conjecture”
for its obvious advantage: Both simulated annealing and pa-
rameter perturbation introduce random shifts into the structural
model. In the worst case this may result in a nonchemical
structure shown in SI Appendix, Fig. S4. It may result in several
structures that differ significantly, that is, so that a biologist or
chemist would speak of different structures. Hence, one could
no longer speak of the structural model and its R value. In this
article we present a series of experimental approaches that
show that the Rcomplete method results in as little bias as Rfree.
We show that Rcomplete varies much less than Rfree in the case
of very small datasets. We confirm Tickle’s conjecture and,
thus, in the light of ref. 15, our work enables maximum likeli-
hood-based refinement of crystallographic models against small

datasets as in neutron diffraction, high-pressure crystallography,
low-resolution macromolecular studies, supramolecular chemistry,
and, at its current state, structural data from free electron lasers.
This manuscript is structured as follows. The Methods section

first describes how we calculate Rcomplete. The following sub-
sections describe the experiments we carried out. The Results
section repeats all of the subsections with the respective results.
The description is held as general as possible. The details about
programs and parameters are given in SI Appendix.

Methods
The datasets used in this work are summarized in Table 1 including their IDs
used throughout this manuscript. Throughout this manuscript we use the
terms “working set” and “test set,” defined below. These terms are com-
monly used in crystallography. In other contexts the equivalent terms
“training set” and “validation set” are used, respectively. In the presence of
a test set, the reliability index R1 defined in Eq. 1 is calculated only from the
observations used in refinement, that is, only for h∈H \T.

Data Preparation and Calculation of Rcomplete. The starting point is a merged
dataset H and the structural model P (i.e., the set of parameters for which
Rcomplete is to be calculated). The model should have been refined against the
entire dataset until convergence. The dataset is randomly partitioned into k
test sets Ti so that H=∪Ti and Ti ∩ Tj =Ø  ∀i, j. If k does not divide jHj, the last
test set is smaller than the other test sets. For better readability of the
manuscript we generally do not point out this fact when abbreviating the
test set size as jTi j. The structural model is refined until convergence against
each of the working sets WidH \Ti, resulting in the structural models Pi.
Then, related to equation 16 in ref. 6,

Rcomplete :=

P
i

P
h∈Ti

��FobsðhÞj− jFcalcðhÞ
��P

i

P
h∈Ti jFobsðhÞj

. [8]

By construction, Rcomplete is calculated from the entire dataset. In the
numerator of Eq. 8 jFcalcðhÞj is calculated from from the model Pi for an
observation h, which was not used in the refinement of model Pi.

Note the difference to k-fold cross-validation:

ÆRfreeæ :=
1
k

Xk
i=1

P
h∈Ti

��FobsðhÞj− jFcalcðhÞ
��P

h∈Ti jFobsðhÞj
. [9]

The following subsections describe the experiments we carried out.

Stability with Respect to the Test Set Size. Both Rcomplete and ÆRfreeæ were calcu-
lated for datasets 5 and 6′. The partition size was varied between 1 and 500 (see
SI Appendix, Fig. S1 and Tables S1 and S2).

Stability of Rcomplete with Partition. Unless k= jHj, Rcomplete may depend on the
partitioning of the dataset. We randomly partitioned datasets 6′, 4, and 7 20
times and calculated Rcomplete for each partition to assess how much it varies
with the partitioning. Results are listed in SI Appendix, Tables S3–S5.

Validation I: How “free” Is Rcomplete? Dataset 8 was partitioned into 90 test sets
Ti. The test sets and the working sets Wi =H \Ti were separated to ensure the
test sets were not used in any of the subsequent steps. For each working set,
the structure was automatically solved with standard single-wavelength
anomalous dispersion of S atoms (S-SAD) and expanded to a poly-Alanine
model. Each poly-Alanine model was subsequently further completed by
automated model building with the amino acid sequence as input. These
models were finally refined with 200 cycles conjugate gradient least-squares
refinement. Ri

free was calculated with each model against its test set. Because
the test set was never used during the creation of the structural model, Ri

free
is free from overfitting. For each structural model, Ri

complete was calculated as
described above. Results are listed in SI Appendix, Tables S7–S9.

As a second type of experiment the small-molecule datasets 2 and 3 were
each partitioned into 20 test sets Ti and solved by standard direct methods
against the working sets Wi =H \Ti. Dataset 3 is similar to dataset 2 except
for a disordered solvent molecule, resulting in greater fluctuations. Each of
the 20 resulting structural models was refined against its respective work set
Wi with 10 cycles of least-squares minimization. The Rfree values were cal-
culated from each structural model against its test set. Results are listed in SI
Appendix, Tables S10 and S11.
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Validation II: Comparison with Calculated Data. Diffraction data were calcu-
lated from the structural model of dataset 6′ to dmin = 1.9 Å and from the
structural model of dataset 4 to dmin = 0.7 Å. Hydrogen atoms were not in-
cluded for the calculations. We checked that in both cases R1= 0.0 against the
calculated data without refinement. For the structural model of dataset 6′, the
oxygen atoms of four water molecules were removed and two oxygen atoms
were replaced as sodium atoms. For the structural model of dataset 4, the
oxygen atom of one water molecule was replaced as sodium atom (i.e., the
model contains three electrons too many compared with the data). The R1
values were calculated without refinement, thus representing the real R1
value. The small molecule from dataset 4 was refined with 50 cycles of least-
squares minimization, and the macromolecule from dataset 6′ was refined
with 30 cycles of conjugate gradient least-squares minimization. Rcomplete was
calculated with jTi j= 10 for dataset 4 and jTi j= 30 for dataset 6′. Whereas the
experiments of the previous subsection address the resistance of Rcomplete

against overfitting, the experiments of this subsection also address the effects
of structural model bias. The R values are listed in SI Appendix, Table S12.

Effect of Parameter Perturbation. We use the symbol X for the amount of
random perturbation of coordinates and atomic displacement parameters of
the structural models Pi. Coordinates of atoms not on special positions were
displaced by an average distance X Å in a random direction. When appli-
cable hydrogen atoms were generated after the application of shifts. No
shifts were applied to fixed coordinates (e.g., for special positions). Isotropic
atomic displacement parameters and the main diagonal elements Uii were
multiplied by a random factor so that they change by an average of X Å2.
Off-diagonal atomic displacement parameters U12, U13, and U23 for aniso-
tropic atoms were not modified to avoid the generation of matrices with
physically impossible nonpositive eigenvalues.

To investigate how random parameter perturbation reduces the effect of
overfitting from the structural model, we created a regular grid of dummy
atoms. We used the cell from dataset 6 as an example of a noncentro-
symmetric space group and from dataset 1 as an example of a centrosym-
metric space group. The number of grid points corresponds roughly to the
number of atoms for the respective structure. This ensures realistic data-to-
parameter ratios. To introduce overfitting the set of parameters was refined
to convergence without restraints against the respective data at various
resolution cut-offs (see SI Appendix, Tables S13 and S14, respectively). The
parameters of both overfitted structural models were randomly perturbed
with an amplitude X varying from 0.1 to 1.0 and their R1 values was calcu-
lated against all data up to the given resolution. The perturbation was re-
peated 500 times and the R1 values averaged.

The numerical results are listed per resolution cut-off in SI Appendix,
Tables S15–S20 for dataset 6 and in SI Appendix, Tables S21–26 for dataset 1.

Influence of Parameter Perturbation on Convergence Rate. The value Rcomplete

was monitored for the structural model of dataset 6′ with varying ampli-
tudes X ∈ f0.0, 0.1, 0.2, 0.3, 0.4g of perturbation. The number of least-squares
refinement cycles is listed in SI Appendix, Table S27; 4,000 and 10,000 cycles
were calculated only for X = 0.0 and X = 0.3.

Results
Stability with Respect to the Test Set Size. Cross-validation and
especially k-fold cross-validation are known to produce values
with theoretically little bias, yet with small test sets they suffer
from large variance (17). In addition to the large variance, the
averaged mean of any value with a lower bound but no upper
bound such as the crystallographic reliability index will probably

be pushed up by very large outliers. We compared the behavior
of hRfreei with that of Rcomplete for small test set sizes. For this
purpose we calculated both values for the structural models of
datasets 5 and 6′ in dependence of the test set size. Our results
show that Rcomplete is independent of the test set size. The mean
value averaged over all tested set sizes is 0.1653 ± 0.0003 for
dataset 5 and 0.2239 ± 0.0006 for dataset 6′. hRfreei, on the
contrary, shows the expected extremely large variance. More
importantly, its value rises when the test set size is below 20, a
behavior known since the introduction of Rfree (6). The boot-
strapped values Rboot are listed in SI Appendix, Tables S1 and S2,
respectively. They replicate the values of hRfreei with an SE one
order of magnitude smaller. Hence, bootstrapping does not
avoid the instability of hRfreei for small test sets. However,
Rcomplete is reliable even when the entire dataset except a single
observation is used for refinement. At the suggested lower limit
for the test set size jTij= 500 (6), Rfree has a reasonably nar-
row range within 15.5% < Rfree < 17.7% for dataset 5 and
19.3% < Rfree < 24.5% for dataset 6′. However, with jTij= 100,
the range increases to 13.2% < Rfree < 20.5% for dataset 5 and
15.5% < Rfree < 33.2% for dataset 6′. Note that these are the
ranges for one particular partition. They do not cover all possible
test sets except for jTij= 1. Because for the conventional Rfree the
free set is chosen randomly, one might have ended up with any
such value for the same model. This illustrates why we describe
Rfree as unstable. Rcomplete can be calculated from any convenient
test set size to optimally balance between computation time and
data completeness used for refinement.

Stability of Rcomplete with Partition. Except for jTij= 1 there are a
large number of possible partitions for a dataset, and Rcomplete
might vary depending on which partition is used. We computed
hRcompletei and σ(Rcomplete) from 20 different partitionings.
We find hRcompletei= 21.92 % ± 0.02% for dataset 6′,
32.64 % ± 0.09 % for dataset 7, and 4.88 % ± 0.01 % for
dataset 4 (i.e., Rcomplete does not depend on the choice of parti-
tion). We conclude that Rcomplete can be calculated from a single
partitioning. In combination with the previous subsection, the
size of the subsets of the partitioning of the dataset can be
chosen as convenient and only a single partition needs to
be considered.

Validation I: How “free” Is Rcomplete? One of the basic questions for
the relevance of our work is whether the procedure described
above really reduces the effect of overfitting (i.e., whether
Rcomplete is really “free”). We carried out proper k-fold cross-
validation in the sense that we calculated hRfreei from test sets
that were never used for model building or refinement through-
out the entire process.
Dataset 8 was solved from 90 different working sets by SAD

phasing, density modification, and model completion by auto-
building. Each of the resulting 90 structural models was refined
to convergence. For each structural model a proper Rfree was

Table 1. List of datasets

Dataset 1 2 3 4 5 6 7 8

Name n/a n/a n/a Ciprofloxacin Hormaomycin Insulin Insulin Elastase
SG P1 P1 P21=c P1 P21 I213 I213 P212121
dmin, Å 0.44 1.00 1.00 0.70 1.02 1.10 2.30 1.37
No. of atoms 56 60 60 60 215 436 802 2,163
No. of data 42,997 5,117 5,069 6,227 7,800 32,598 3,747 44,784
Source 31 32 32 33 34 SI 35 SI

Dataset 6′ is identical to dataset 6 but with dmin reduced to 1.9 Å with 6,533 observations. Dataset 7 is the
neutron dataset. n/a, not applicable. No. of atoms, number of non-H atoms per asymmetric unit; for dataset 7,
number of all atoms. No. of data, number of unique observations; SG, space group; SI, see SI Appendix.
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calculated against its respective test set and Rcomplete was calcu-
lated as described above.
Our calculations resulted in

�
Rcomplete

Rfree

	
= 0.9866 σ



Rcomplete

Rfree

�
= 0.0427 [10]

�
Rcomplete

R1

	
= 1.1195 σ



Rcomplete

R1

�
= 0.0040. [11]

Note that 90 structural models can have significant differences
in the number of amino acids, the orientation of side chains, and
so on. Therefore, the calculation of hRcompletei=hRfreei is not
meaningful. Within less than half an SD, Rcomplete =Rfree so that
we consider Rcomplete as free from overfitting as Rfree. The ratio
1.12 between Rcomplete and R1 indicates the effect of overfitting
present in R1, as one would expect. When bootstrapping is ap-
plied to the ratio Rcomplete=Rfree, the average value remains at
0.9866 with σboot = 0.00439 and Rcomplete =Rfree only within
3.1σboot (see SI Appendix). With bootstrapping as criterion we
can consider Rcomplete to slightly suffer from overfitting compared
with proper cross-validation, but still much less than R1, under-
lining the value of Rcomplete for validation.
To assess whether Rcomplete correlates with the quality of the

respective structural models, we calculated the average phase dif-
ference between each structural model and the fully refined struc-
ture. The correlation between hΔΦii and Ri

complete for all 90 models
is 99.1%, compared with only 74.1% between hΔΦii and Ri

free. The
correlation between hΔΦii and R1i is 98.9% (i.e., for these high-
quality data it compares with Rcomplete). We conclude that Rcomplete is
a good estimator for the quality of a structural model.
We repeated a similar experiment with the small molecule

dataset 2. Despite two independent approaches the results are
remarkably similar:

�
Rcomplete

Rfree

	
= 0.9900 σ



Rcomplete

Rfree

�
= 0.0815 [12]

�
Rcomplete

R1

	
= 1.1064 σ



Rcomplete

R1

�
= 0.0049. [13]

The large variation for the ratio with Rfree once more un-
derlines the greater stability of Rcomplete compared with Rfree for
small test sets, jTij= 256 in this case. Bootstrapping the ratio
between Rcomplete and Rfree with 20,000-fold resampling results in
the same average ratio 0.9900 with σboot = 0.0178 (i.e., in this case
Rcomplete =Rfree within 0.6σboot).
Similarly, for dataset 3:

�
Rcomplete

Rfree

	
= 0.9983 σ



Rcomplete

Rfree

�
= 0.0875 [14]

�
Rcomplete

R1

	
= 1.1149 σ



Rcomplete

R1

�
= 0.0067. [15]

In this case, bootstrapping provides σboot = 0.0190 and thus
Rcomplete =Rfree within only 0.09σ.
The Rcomplete values for dataset 2, listed in SI Appendix, Table

S10, clearly cluster about two values, 12.04% and 12.12%. In-
spection of the structural models revealed that the structure
solution step wrongly assigned one particular carbon atom,
having six electrons, as a nitrogen atom, having seven electrons,
in exactly those models with Rcomplete = 12.12 %. Neither Rfree
nor R1 reveal the same. This is an example where Rcomplete is
superior to both Rfree and R1.

For dataset 3, Rcomplete displays a similar sensitivity. It points at
two outlier runs that neither R1 nor Rfree make obvious. The
disordered solvent molecule is a tetrahydrofuran, a five-membered
ring with four carbon atoms and one oxygen atom. In all cases with
Rcomplete = 12.73% as well as the run with Rcomplete = 12.91%, an
incorrect six-membered all-carbon ring was modeled. In the run
with Rcomplete = 13.23%, a five-membered all-carbon ring was
modeled. The decreased value of Rcomplete for the six-membered
ring might be due to a better modeling of the disorder, but it may
also be due to the addition of four parameters by the extra carbon
atom. The run with Rcomplete = 12.91% contains another error: The
oxygen of a second, ordered tetrahydrofuran molecule was
assigned as nitrogen. Hence, in this case, Rcomplete is capable of
distinguishing two types of structures different by only one elec-
tron out of 385 in total.

Validation II: Comparison with Calculated Data. The computation of
Rcomplete provides a set of calculated structure factor amplitudes
jFcalcðhÞj for the entire dataset H. With the Rcomplete method
jFcalcðhÞj is computed from a structural model that was not re-
fined against the particular observation h. We were interested in
whether the structure factor amplitudes from the computation of
Rcomplete result in better electron density maps. Electron density
maps are difficult to compare, the differences may be very subtle,
and the map quality is affected by Fourier truncation errors as
well as noise from missing low-resolution observations. For this
reason we used calculated data from the structural models for
datasets 4 and 6′, modified as described above.
The Rcomplete-based electron density map from dataset 4 has a

stronger signal for the wrongly placed sodium than the conventional
electron density map (see SI Appendix, Fig. S3A). Similar results are
shown for dataset 6′ in SI Appendix, Fig. S3B. In both cases the
Rcomplete-based map is less biased toward the structural model.
Because we were interested in whether parameter perturba-

tion might have a different effect, we produced SI Appendix, Fig.
S4, a nonchemical structure resulting from a perturbation am-
plitude of only X = 0.6. It illustrates why we do not recommend
applying random parameter perturbation if one wishes to cal-
culate the reliability index of one particular structural model.
The next two sections illustrate this further.

Effect of Parameter Perturbation. The previous examples show that
Rcomplete is as good a quality indicator as Rfree with the benefit
that it can be computed for datasets with very few data at con-
stant reliability. The Rcomplete method we propose and assessed in
this work uses refinement to convergence to reduce the effect of
overfitting from the structural model. As mentioned in the in-
troduction, alternatives have been suggested such as simulated
annealing and random parameter perturbation (6, 13, 23). We
addressed the question as to what extent random parameter
perturbation affects the reduction of the effect of overfitting. For
this purpose we created one set of parameters aligned on a
regular grid for the centrosymmetric space group P1 and
similarly for the noncentrosymmetric space group I213. Neither
of these sets of parameters contains any chemical information
and refinement of these parameters is purely based on over-
fitting. Even R1= 0 can be reached when the data-to-parameter
ratio is well below 1.
The effect on the reduction of overfitting was checked by

calculating R1 after random parameter perturbation. When only
the coordinates are perturbed, the Wilson limits, 82.8% for
centric and 58.6% for noncentric space groups (26), are hardly
reached even with very large amplitudes X = 1.0, and only for
very high data-to-parameter ratios. When both coordinates and
atomic displacement parameters are perturbed, the situation is a
little better, although even then the Wilson limit is only reached
at high amplitudes X (see SI Appendix, Fig. S5). However, ran-
dom parameter perturbation can severely compromise the
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structural integrity of a model (see SI Appendix, Fig. S4). We do
not recommend the use of random parameter perturbation for
the computation of Rcomplete.

Influence of Parameter Perturbation on Convergence Rate.Although
we already came to the recommendation not to use parameter
perturbation for the calculation of Rcomplete, we were interested
in the effect of random parameter perturbation on the rate of
convergence. We used dataset 6′ and the corresponding struc-
tural model. The input structural model was refined to conver-
gence with R1= 20.56%. The value of Rcomplete was monitored
with an increasing number of refinement cycles with five per-
turbation amplitudes X = 0.0 . . . 0.5 applied both to the co-
ordinates and the atomic displacement parameters. Parameter
perturbation has no beneficial effect on the rate of convergence
(see SI Appendix, Fig. S6 and Table S27). After 100 cycles of
refinement with and without parameter perturbation Rcomplete
has reached the same value 23.8%, then fluctuates about this
value. Graphs such as SI Appendix, Fig. S6 could be used to
determine the number of refinement cycles needed to achieve
the desired precision for Rcomplete.

Conclusions
Crystallographic studies make intensive use of the Rfree concept:
A structural model is cross-validated against a small test set. The
data of the test set are never used for refinement or model
building. Therefore, cross-validation with Rfree is unaffected by
overfitting. Rfree and the “free” set of observations are not only
used for validation purposes. Weights for restrained refinement
are optimized by minimizing Rfree, and the test set is used for
estimating maximum likelihood parameters (15, 16, 27–29). The
calculation of Rfree should be based on at least 500 data points.
For reliable parameter estimation, at least 2,000 data points
are usually set aside. There are many types of crystallographic
studies that cannot afford excluding the required data points
from refinement because the entire dataset is too small. Such

studies include low-resolution macromolecular studies, high-
pressure studies, neutron studies, and some of the latest data
from free electron lasers (21, 22, 30).
In this work we assessed an alternative to Rfree, namely the

method of Rcomplete. Its calculation was first suggested along with
Rfree (6). In contrast to Rfree, Rcomplete is calculated from the
entire dataset with observations that, at some point, were pre-
viously used during refinement. Therefore, the Rcomplete method
relies on the reduction of the effect of overfitting from the
structural model. Several methods have been suggested to re-
duce the effect of overfitting including simulated annealing (6),
random parameter perturbation (13, 21, 23), and refinement
until convergence. We show here that refinement until conver-
gence is sufficient. We show that Rcomplete has at least the same
low statistical bias as Rfree. Unlike Rfree, the value of Rcomplete
does not vary even when only a single observation is left out from
each refinement run. Therefore, the Rcomplete method enables the
estimation of maximum likelihood parameters for small datasets.
To carry out model building, the structural model used as

input for the calculation of Rcomplete should also be refined
against all data (cf. ref. 14). The bias reduced electron density
map is a byproduct of the calculation of Rcomplete. Analyzing
fluctuations of specific atoms in the structural models Pi, that are
produced by the Rcomplete method, point at parts of the model
that deserve special attention, such as weak electron density. See
SI Appendix, section 4 for an example.
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