Skip to main content
. 2015 Jul 6;112(29):8971–8976. doi: 10.1073/pnas.1502870112

Fig. 3.

Fig. 3.

An anomalous scaling law of strength and toughness of cellulose nanopaper. (A) Schematic of cellulose nanopaper, made of a random network of CNF fibers. (Inset) High-resolution transmission electron microscopy (HRTEM) image of an ∼11-nm CNF fiber. (B) Stress–strain curves of cellulose paper made of cellulose fibers of various mean diameters. As the cellulose fiber diameter decreases from micrometer scale to nanometer scale, both tensile strength and ductility of the cellulose paper increases significantly, leading to an anomalous scaling law (C): the smaller, the stronger and the tougher. (D) Reveals that the ultimate tensile strength scales inversely with the square root of cellulose fiber diameter.