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Clonal evolutionary processes can drive pathogenesis in human
diseases, with cancer being a prominent example. To prevent or
treat cancer, mechanisms that can potentially interfere with clonal
evolutionary processes need to be understood better. Mathe-
matical modeling is an important research tool that plays an ever-
increasing role in cancer research. This paper discusses howmathe-
matical models can be useful to gain insights into mechanisms that
can prevent disease initiation, help analyze treatment responses,
and aid in the design of treatment strategies to combat the emer-
gence of drug-resistant cells. The discussion will be done in the
context of specific examples. Among defense mechanisms, we
explore how replicative limits and cellular senescence induced by
telomere shortening can influence the emergence and evolution of
tumors. Among treatment approaches, we consider the targeted
treatment of chronic lymphocytic leukemia (CLL) with tyrosine
kinase inhibitors. We illustrate how basic evolutionary mathemat-
ical models have the potential to make patient-specific predictions
about disease and treatment outcome, and argue that evolution-
ary models could become important clinical tools in the field
of personalized medicine.
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Clonal evolutionary processes can be instrumental to the de-
velopment of human disease and the response to treatment. A

good example where this observation applies is cancer (1). Although
different cancers are biologically distinct, a common principle is the
escape of cells from mechanisms that ensure healthy tissue ho-
meostasis, which is driven by the clonal evolution of cells. Cancer
arises through the sequential accumulation of mutations that
allow for uncontrolled cell proliferation. The end point of this
evolution is typically the generation of cells that have gained the
ability to migrate to and grow in sites different from the tissue of
origin, which results in the formation of metastases. The selec-
tion of increasingly advantageous mutants is a key factor that
drives the emergence and progression of disease (2).
Mathematical models have been useful to study the clonal

evolution of cells in the context of disease initiation, progression,
and treatment (3). The use of mathematical models has become
a rather large field of research, and many types of questions have
been investigated, which can be broadly divided into the fol-
lowing categories:

i) Mathematical models can be applied to epidemiological data
that document cancer incidence to investigate in vivo evolu-
tionary processes. For example, the mathematical analysis of
age-incidence curves has provided key insights into the num-
ber of rate-limiting steps that occur during carcinogenesis,
which has implications for understanding the genetic and epi-
genetic pathways involved in tumor formation (4).

ii) Mathematical models of in vivo clonal evolutionary processes
can be formulated to interpret experimental and clinical data
or to test different hypotheses to explain observed phenom-
ena. An example is the question about the relevance of ge-
netically unstable cells that are found in various cancers and
are characterized by elevated mutation rates (5). It has been

debated whether genetic instability is required for the accu-
mulation of multiple mutations in cells or whether clonal ex-
pansion processes in the absence of instability are sufficient to
achieve this goal (6). Mathematical models comparing disease
development in the presence and absence of genetic instabil-
ity have been useful to address this question (7, 8). Such ap-
proaches are applicable to the interpretation of many other
complex phenomena in cancer (e.g., phenomena discussed
in refs. 9–12).

iii) Another use of mathematical models is the estimation of
crucial kinetic parameters by applying those models to ex-
perimental and clinical data. This parameterization can be
done during the natural growth phase of a tumor to calcu-
late division and death rates of cells (13), as well as during
responses to specific therapies (14, 15).

To understand better how cancer emerges, how it can be pre-
vented, and how it can be successfully treated, we need to gain
more insights into mechanisms that prevent clonal expansion and
evolution. Clonal expansion and the initiation of disease can be
prevented by host defense mechanisms, such as immune responses
(16), inhibition of angiogenesis (17), and the presence of repli-
cative limits in cells (18). Once a cancer has overcome such defense
mechanisms, further expansion and evolution can be prevented
by a variety of treatment approaches. In this paper, we will show
how mathematical models can be useful for improving our un-
derstanding of (i) natural defense mechanisms against clonal evo-
lution and the initiation of disease and (ii) therapy approaches to
block continued growth of tumors. We will do so by discussing a
collection of studies from our own group. Among defense mech-
anisms against clonal evolution, we will consider the role of repli-
cative limits and cellular senescence. In the context of therapies,
we will consider targeted treatment approaches against chronic
lymphocytic leukemia (CLL) and discuss how mathematical mod-
els can be used to design treatment strategies to prevent the
emergence of resistant cell clones that lead to disease relapse.

Clonal Evolution and Replicative Senescence
Biological Background. Normal somatic cells lose the ability to di-
vide after a limited number of divisions. This phenomenon, known
as replicative senescence, is dependent on telomere shortening
during cell division (19). Telomeres are repetitive noncoding DNA
sequences that cap both ends of linear chromosomes. They play
a protective role by preventing the DNA damage response
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machinery from interpreting the natural chromosome ends as
dsDNA breaks (19). In cells that naturally lack telomere length
maintenance pathways, the inability of conventional polymerases to
replicate DNA fully results in a net loss of telomere sequences
during cell division (19). If telomeres become critically short, they
lose their protective properties and send cells into a terminal state
of arrest (replicative senescence) or cause cell death (20). In stem
cells and germ cells, telomere shortening is offset by the action of
telomerase, an enzyme that extends telomere length (20).
Replicative senescence might have evolved as a tumor sup-

pressor pathway that prevents cells from becoming immortal. If a
cell and its progeny undergo uncontrolled proliferation, replica-
tion limits protect against cancer by limiting the size of the clonal
population. Furthermore, because mutations typically occur dur-
ing cell division, limiting the possible number of divisions reduces
the probability of acquiring multiple mutations, which, according
to the multihit theory of carcinogenesis, is necessary for the full
progression toward malignancy.
Multiple lines of evidence support the role of replicative se-

nescence as an important barrier to tumor progression. First,
essentially all human cancers acquire mechanisms to maintain
telomere length, most often through high levels of telomerase
expression (90%) (21) and less frequently through the alternative
telomere lengthening (ALT) pathway (10%) (22). There is also
evidence of senescence in premalignant stages of tumor pro-
gression. In humans, senescent cells have been identified in be-
nign skin lesions, neurofibromas, and benign lesions of the
prostate (reviewed in 18). Senescence response in vivo after
oncogenic activation has been observed in mice, where tumors
initiated by the endogenous expression of the oncogene ras
showed an abundance of senescent cells in premalignant lesions
in the lung but no signs of cellular senescence in lung adeno-
carcinomas (23). Together, these findings support an emerging
consensus for the role of replicative senescence as a potent tu-
mor suppressor mechanism.
Senescent cells accumulate with age in vivo, and numerous

studies describe an inverse correlation between telomere length
and age (24). There is also evidence that senescent cells con-
tribute to a host of age-related degenerative pathologies (25).
Senescent cells express a senescence-associated secretory phe-
notype (SASP) (reviewed in 26), which entails the secretion of
numerous proinflammatory agents that can cause local and
possible systemic chronic inflammation (an important contribu-
tor to most age-related diseases). Telomere shortening in adult
stem cells can also limit the regenerative potential of stem cell
pools (18). In blood, for example, the progressive shortening
of telomere length in stem cells may limit hematopoietic re-
generation (27). Current understanding points to replicative se-
nescence as a contributor to aging, but aging itself is a complex
multifactorial process that also depends on multiple factors in-
dependent of telomere shortening (28). Laboratory mice, for
example, have notoriously long telomeres, but their life span is
comparable to the life span of other rodent species (29).
It is important to mention that SASP and the accumulation

of senescent cells can contribute to chronic inflammation and
the creation of microenvironments that are permissive to can-
cer progression, which, in turn might fuel the occurrence of cancer
in late life (26). However, in the context of reproductive-age hu-
mans, replicative senescence is primarily understood as both a
cancer-protecting and proaging mechanism. At the heart of this
antagonistically pleiotropic nature of replicative senescence lie two
opposing objectives: (i) the replication capacity of cells (defined as
the telomere-mediated maximum number of cell divisions possible)
should be large enough to allow for the necessary number of cell
divisions required to perform the tasks of normal tissue function
and regeneration necessary for life, and (ii) the replication capacity
should be small enough to be effective at suppressing excessive
abnormal cell proliferation and tumor development. This last

observation underscores the necessity of understanding the
process of cellular senescence from a quantitative perspective.
There are numerous mathematical models that explore telo-

mere dynamics in relation to replicative senescence and cancer
(e.g., 30–32). In the next sections, we discuss three models that
explore replicative limits in different contexts: (i) as a possible
evolutionary force behind commonly observed features of cell
lineages, (ii) as a mechanism acting against precancerous non-
neoplastic mutations, and (iii) as a mechanism to curtail the
clonal expansion of cells.

Tissue Architecture and Cellular Replication Limits. Replication
limits should allow for enough cell divisions to maintain tissue
homeostasis and regeneration after an injury while, at the same
time, keeping cells’ replication capacity as small as possible to
protect against cancer. In this respect, the precise manner in which
a tissue organizes the cell division labor has an impact on its ability
to fulfill these two objectives. Most self-renewing tissues are or-
ganized into cell lineages, in which the highly differentiated ma-
ture cells are the end products of orderly tissue-specific sequences
of divisions that originate in stem cells (33). Quantitative modeling
can help elucidate how different architectural characteristics of a
cell lineage—the number of intermediate cell compartments, the
self-renewal capabilities of cells, and cell division rates—affect the
replication capacity of a cell population. Here, we describe a
mathematical model that defines an optimal tissue architecture
that minimizes the replication capacity of dividing cells, and thus
cancer risk.
Fig. 1A introduces a variant of a widely proposed model of a cell

lineage (33, 34). Stem cells S represent the starting point of the
lineage. Downstream from stem cells are intermediate cell types,
often termed progenitors or transit-amplifying cells (X0, . . . ,Xk in
Fig. 1A). If a stem cell divides, each daughter cell remains in the
stem cell compartment with probability ps or proceeds to the X0
compartment with probability 1− ps. Similarly, if a cell in com-
partment j (hereafter called a j-type cell) divides, each daughter cell
will remain in the j compartment with probability pj or differentiate
into a ðj+ 1Þ-type cell with probability 1− pj. The end products of
the cell lineage are fully differentiated cells D, which cannot divide
any further and die at a certain rate d. The division rates are r for
stem cells and vj for a j-type cell. To model telomere shortening, a
number called its replication capacity is associated with every cell.
When a nonstem cell divides, the replication capacity of the
daughter cells will be one unit less than the replication capacity of
the parent cell. Because adult stem cells express enough telomer-
ase to offset, at least partially, the shortening of telomeres during
cell division, when a stem divides, the replication capacity of the
offspring is assumed to be « (where «< 1).
When the tissue is at homeostasis, the self-renewal probabil-

ities and division rates of each cell type can be considered con-
stant and the model can be used to find an optimal cell lineage
architecture that protects against cancer by minimizing the rep-
lication capacity of dividing cells. This problem, however, is not
sufficiently constrained. In particular, the number of differenti-
ated cells at homeostasis, D, and their death rate, d, depend on
other biological considerations, such as organismal physiology,
which lie outside the scope of the optimization problem. Thus,
the outflow of differentiated cells ðdDÞ is considered as a fun-
damental fixed quantity of the system. With this constraint, the
model is implemented as a stochastic agent-based model and as a
deterministic model that considers the equilibrium number of
cells in each compartment. The first result, as reported in a study
by Rodriguez-Brenes et al. (35), is that a cell lineage architecture
concerned exclusively with minimizing cancer risk should have
exactly one stem cell. In practice, a stem cell compartment con-
sisting of a single cell could be extremely fragile, and thus the
actual number of stem cells in a lineage is likely influenced by
other factors that promote robustness in the system. More
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broadly, this result suggests that the number of stem cells per
lineage should be very small [e.g., in the colon epithelium, there
are 15–20 (36) or fewer (34) stem cells per crypt].
The result that the number of stem cells should be small to

protect against cancer is intuitive. Even if adult stem cells do not
have sufficient telomerase to prevent telomere shortening asso-
ciated with continuous cell division, they possess a replication
capacity that far exceeds the replication capacity of nonstem
cells. The replication capacity of stem cells is difficult to measure
and is likely tissue-specific. However, although subject to a de-
gree of uncertainty, measurements on the average division rates
make some estimates possible. Stem cells in the colon crypt, for
example, are estimated to divide more than 5,000 times in a life
span of 80 y (34), and, based on the midpoint from measure-
ments taken from several studies, hematopoietic stem cells have
been estimated to divide roughly 960 times during the same time
period (37). Thus, the likely large replication capacity of stem
cells suggests that in tumors initiating in telomerase-positive
stem cells, even if telomere length continues to shorten, repli-
cative senescence is unlikely to act as a significant barrier to
tumor progression. Instead, a quantitative analysis suggests that
replicative senescence might only be efficient at protecting
against oncogenic mutations that originate in nonstem cells. This
observation, however, does not imply that all tumors have a stem
cell origin. For example, although a substantial portion of leu-
kemias are thought to be initiated in hematopoietic stem cells
(e.g., 38, 39), progenitor cell populations have been identified as
targets for tumor initiation in several types of acute myeloid
leukemias (40, 41). Progenitor cells as possible cells of origin in
cancer have also been identified in solid tumors, including glio-
blastoma, medulloblastoma, prostate cancer, basal cell carci-
noma, and basal-like breast cancer (reviewed in 42). Moreover,
cells with a limited proliferative potential can escape replication
limits by activating telomerase. Frequent somatic mutations that
activate the core promoter of telomerase have been identified in
multiple types of cancers, including, among others, melanomas

(71%), hepatocellular carcinomas (59%), primary glioblastomas
(83%), and urothelial cancer (43–46).
To study how replication limits and tissue architecture protect

against mutations originating in nonstem cells, the number of
stem cell divisions per unit of time ðrSÞ and the number of cell
deaths per unit of time ðdDÞ are held fixed. We then ask: How do
the number of intermediate cell compartments, the self-renewal
probabilities, and the cell division rates affect the replication
capacity of dividing cells? At homeostasis, dD− rS equals the
number of intermediate cell divisions per unit of time; thus, the
system in Fig. 1A is constrained by the equation

P
vjXj = dD− rS.

The key insight is to realize that the same number of inter-
mediate cell divisions can be realized by multiple architectures
[e.g., the same transit-amplifying output may be reached by a
lineage with smaller self-renewal probabilities and a larger number
of compartments or by a lineage with larger self-renewal proba-
bilities and fewer compartments; figure 2 of ref. 35]. However, two
different architectures that produce the same target number of
divisions can produce radically different distributions in the rep-
lication capacity of the cell population (Fig. 1B).
Because most mutations occur during cell division, from the

point of view of replication limits, an optimal architecture to
protect against cancer is one that minimizes the expected repli-
cation capacity of dividing cells. Using this definition, the main
results in the study by Rodriguez-Brenes et al. (35) follow. In an
optimal tissue architecture, there can be self-renewal in at most
one intermediate cell compartment and the number of com-
partments should be kept as small as possible. If there is self-
renewal in one compartment, it should be in the first one ðX0Þ.
This same compartment, X0, should have the slowest division rate.
Note that there may be a lower limit to the number of in-
termediate compartments. First, having only one intermediate
compartment may lead to too many cells, exhausting their repli-
cation capacity and making it impossible for the lineage to reach
the target number of divisions. Second, every fork in the differ-
entiation pathway adds a compartment to a lineage. Thus, there is

A

C

S X0 Xk D

X0 X1 X2 D

S X0 X1 D

S

B

Avg replication capacity

51

25

Fig. 1. (A) Lineage begins with stem cells S; progresses through a sequence of transit-amplifying stages (X0, . . . ,Xk); and ends with differentiated cells D,
which are postmitotic and die at a certain rate d. Cells in stage Xj divide at rate vj, producing two Xj cells with probability pj < 0.5 or two Xj+1 cells with
probability 1−pj. The stem cell’s division rate is r. (B) Two alternative architectures for the same target number of intermediate cell divisions. For the cell
lineage in blue ðk= 2,p0 =p1 =p2 = 0.341Þ, the resulting average replication capacity of dividing cells is 51. An optimal cell lineage is depicted in green
ðk= 1,p0 = 0.485,p1 = 0Þ. In both cell lineages, rS= 50, ρ= 60, and all v =1. The average replication capacity of dividing cells is minimized by a tissue archi-
tecture in which, at most, one intermediate cell type has self-renewal capabilities and the number of transit-amplifying stages is kept as small as possible
(a discussion is provided in the main text). (C) Distribution of the replication of capacity of dividing cells for two alternative architectures that produce the
same number of transit-amplifying divisions. In both cases vj = 1 for all j, the replication capacity of stem cells is ρ= 60, and the influx of cells from the stem cell
compartment is rS= 50. Red lines illustrate k=6 and all pj = 0. Blue bars illustrate k= 4, p0 = 0.43, and all other pj = 0.
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a minimum number of compartments when different types of
mature cells arise from the same kind of stem cell (e.g., in the
hematopoietic system). Fig. 1C depicts two alternative architec-
tures with the same number of transit-amplifying cell divisions.
In an optimal tissue architecture to protect against cancer, the

less differentiated cells have a larger rate of self-renewal and a
slower cell division rate. These types of dynamics have been re-
peatedly observed in cell lineages, suggesting that they may have
evolved to decrease cancer risk. A discussion on how these ideas
relate to neural tissue and the hematopoietic system is included
in the study by Rodriguez-Brenes et al. (35). The analysis of the
model also underscores the importance of understanding the
precise mechanism used to accomplish transit-amplifying behav-
ior. In particular, it is often unclear whether transit-amplifying
behavior is produced by a cell program that allows for a fixed
number of divisions in progenitor cells or by some degree of self-
renewal. A cell program that calls for a fixed number of divisions
would be represented in the framework of Fig. 1A as a lineage
with numerous intermediate compartments and no self-renewal.
By contrast, through a self-renewal mechanism, the cell’s decision
to differentiate would be independent of the number of previous
divisions and would be determined instead by the current state of
the cell’s microenvironment. However, these two strategies can
result in dramatically different distributions of cell replication
capacity. Finally, the fact that some of the features that charac-
terize an optimal architecture are present in various tissues sug-
gests that they might have evolved to minimize cancer risk. This
observation, however, does not mean that tissues must follow all
aspects that define an optimal architecture, because other evolu-
tionary forces unrelated to cancer risk can also play a role in de-
termining the architectures of specific tissues.

Replication Limits in Precancerous Mutations. Dozens of cancer-
associated mutations have been repeatedly identified in healthy
individuals. For example, monoclonal B-cell lymphocytosis (MBL),
which resembles CLL, is found in 4% of the population over the
age of 40 y (47). All cases of CLL seem to arise from MBL, al-
though the majority of MBL cases do not give rise to proliferative
disorders (47). In another example, the t(14;18) translocation be-
tween the BCL2 gene on chromosome 18 and the Ig heavy chain
on chromosome 14 occurs in ∼90% of follicular lymphomas (FLs)
and is considered a hallmark of the disease (48). However, it is also
found in 30–60% of healthy individuals (49), and no clear link
between its presence and the later development of FL has been
established (50). Longitudinal studies of both t(14;18) and MBL
suggest that these abnormalities persist for long periods of time in
some individuals and are transient, completely disappearing, in
others (51, 52).
A cell lineage model based on the concepts of fitness in evo-

lutionary theory and replication limits proposes that the transient
and persistent nature of the phenotypes observed in t(14;18) and
MBL could depend on the stage in the differentiation pathway
where the mutation originates (53). The model distinguishes be-
tween three cell types: stem, progenitors, and differentiated cells
(Fig. 2A). At homeostasis, the basic cell dynamics are the same as
in the previously discussed model: Stem cells produce, on average,
one stem cell per cell division, allowing them to maintain their
own numbers through self-replication, whereas the self-renewal
potential of progenitors is more limited and, by itself, insufficient
to sustain a constant population size. Upon cell division, the
replication capacity decreases by 1 in progenitors and by « in stem
cells (Fig. 2B).
Because the mutations considered are nonneoplastic, each pop-

ulation is assumed to be constant and the mutation dynamics are
modeled based on the Moran process (54). In the Moran process,
the fitness of WT cells is set equal to 1 and the fitness of mutants is
set to r, where r< 1, r= 1, and r> 1 correspond to disadvantageous,
neutral, and advantageous mutations, respectively. Although mutant

fitness can be context-dependent and can change over time in some
settings (10), there are currently no data that show such effects for
the mutants under consideration; hence, this possibility is not in-
cluded in the model. At each time step, we select two random cells:
one for reproduction and one for elimination. In the context of the
model’s stem cell dynamics, cell replication corresponds to re-
production and differentiation corresponds to elimination, with the
caveat that if a cell exhausts its replication capacity, it is no longer
eligible for reproduction. The Moran process suggests that replica-
tion limits have little effect on mutant dynamics in the stem cell
compartment. Even if cell division slightly diminishes the replication
capacity of stem cells, the loss is probably too small to have a sig-
nificant effect. Take again the example of the colon epithelium; here,
stem cells might be capable of as many as 5,000 divisions (34) and the
number of stem cells is small [15–20 (36) or fewer (34) per crypt]. For
a neutral mutant in a population of size N, the mean time to fixation
is on the order of N time steps (55). Hence, in a small stem cell
compartment, the large replication capacity of stem cells is unlikely to
hinder a mutant’s ability to colonize the entire compartment.
In the progenitor population, self-replication cannot occur

during every Moran step; doing so would imply that progenitors
have a full capacity to self-renew, and the influx of cells from the
stem cell compartment would cause uncontrolled growth. In-
stead, at regular time intervals, the progenitor reproduction step
is skipped and a stem cell is randomly chosen for division to
replenish the progenitor population. The following dynamics
ensue. A sufficiently advantageous mutant originating in a pro-
genitor will have a certain probability of partially colonizing its
compartment. If this colonization occurs, the mutant clone will
remain as a near-constant fraction of the entire population.
However, unless mutants manage to escape replicative senes-
cence, partial fixation will be transient, and the mutants will
eventually be driven to extinction through the exhaustion of their
replicative capacity (Fig. 2C). Note that fixation is only partial in
this case because there is a constant reseeding of WT cells from
the stem cell compartment.
The level and probability of reaching partial fixation can be

estimated with great accuracy in terms of the equilibrium num-
ber of progenitors, their self-renewal probability, and mutant
fitness. These estimates allow us to quantify the protection
that replication limits offer against nonneoplastic mutations
by comparing the probabilities of acquiring a second mutation in
the absence and presence of replicative limits. The following
example is included in a study by Rodriguez-Brenes et al. (53).
Consider a progenitor cell population of 2,000 cells with a self-
renewal probability of 0.44, a mutant fitness of 1.5 (compared
with a fitness of 1 for WT cells), and a mutation rate per gene per
cell division of 10−7. In this case, having a maximum replication
capacity of 50 cell divisions [a value commonly used for human
somatic cells (56)] reduces the chances that a mutant will acquire
a second mutation by at least 93% within the first year. After 10 y
without replication limits, the probability of a second mutation
appearing in the mutant lineage is ∼0.25. In contrast to repli-
cation limits, the probability would be less than 0.0022, more
than a 100-fold decrease.
In sum, quantitative modeling suggests that if a sufficiently

advantageous nonneoplastic mutation originates in stem cells,
long-term persistence of the mutants is likely, and this long-term
persistence poses a significant risk of cancer progression. If the
mutation arises downstream, such as in progenitor cells, the mu-
tant presence is likely to be transient and the risk of disease sig-
nificantly lower. These insights could shed light into the dynamics
of cancer-associated mutations in healthy individuals and, in
particular, into the existence of the transient and persistent phe-
notypes observed in t(14;18) and MBL (51, 52). Finally, the model
suggests that telomere length can be used to distinguish between
mutations that carry an increased risk of cancer development and
those mutations that do not. This hypothesis can be experimentally
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tested by following cohorts of healthy people who harbor these
mutations longitudinally and measuring average telomere length
both in the aberrant cells and in the normal cells of these in-
dividuals. According to the model, in patients in whom the muta-
tion is transient, the telomeres of aberrant cells should be smaller
than the telomeres of the normal cells, and this difference becomes
amplified over time. In patients in whom the mutation is persistent,
there should be no significant difference between the telomere
length of normal and aberrant cells. If such longitudinal studies
confirm this hypothesis, then a single blood test could potentially
determine the risk posed by cancer-associated mutation in
individual patients.

Replicative Limits in a Growing Clonal Cell Population. Although
clonal expansion can occur in normal tissue [e.g., during the
transition to marked oligoclonality in the hematopoietic system
with age (57)], the clonal expansion of abnormal cells is also a
hallmark of cancer. Here, we concentrate on clonal expansion in
cancer, particularly on the effectiveness of replication limits at
protecting against an abnormally growing clonal cell population.
In the simplest assessment, a cell with replication capacity N is
theoretically capable of spanning a colony of 2N cells. If we
consider as an example the replication capacity of human em-
bryonic fibroblasts, which, on average, are able to divide ∼50
times in cell culture (56), then a single cell would be capable of
spanning a population of 250 cells, which is far greater than the
number of cells in a human body. The previous example how-
ever, does not take into account that unlike cells stimulated to
grow in a controlled medium, cancer cells in the human body
grow in an environment with multiple levels of protection against
excessive cell proliferation, and are thus potentially subject to

high levels of cell death. If we take into account cell death and
stochasticity in cell division, it becomes apparent that knowing
the replication capacity of the cell that initiates abnormal growth
is not, by itself, sufficient to assess the effectiveness of replicative
limits in controlling the size of a clone. It is necessary to un-
derstand the distributions of the number of cells, how they de-
pend on the balance between cell division and death, and the
probability of escaping replication senescence through telomerase
activation.
This analysis can be done by assuming cancer cells stochastically

divide and die independent of each other at exponentially dis-
tributed times. The distribution of the maximum size of a clone
spawned by a single cell depends on the replication capacity of the
founder cell and the ratio between the rates of cell division and
death. Population sizes are compared against two benchmarks: 109

cells, a common level for the clinical detection of solid tumors
(58), and 1012 cells, an order of magnitude where several types of
cancers reach a lethal burden (59). The results from the model
suggest that replicative senescence acts as a potent tumor
suppressor pathway when the imbalance between birth and
death in tumor cells is moderate or low (high death-to-birth
ratio). Conversely, replicative limits might be ineffective as a
tumor suppressor mechanism when abnormal cell proliferation is
not accompanied by elevated rates of mortality in abnormal cells.
Thus, in practice, replicative senescence might be efficient as a
cancer-protecting mechanism only when it works in tandem with
other factors that contribute to cell death in tumor cells. The
immune system, for example, can contribute to the death of ab-
normal cells during the elimination and equilibrium phases of
cancer immunoediting (16).
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Fig. 2. (A) Cell lineage model. Cells are divided into three compartments: stem cells, progenitor cells, and differentiated cells. Stem cells have a full capacity
to self-renew and maintain their own number through self-replication. Progenitors have only a limited capacity to self-renew. The final products are the fully
differentiated cells, which die at a certain rate. (B) Replication capacity of cells decreases upon cell division. Adult stem cells express telomerase, which at least
partially offsets the shortening of telomere length that occurs when a cell divides. As a consequence, the loss in replication capacity of stem cells ð«< 1Þ is
smaller than the loss that occurs in progenitors (equal to 1 in the figure). (C) Dynamics of a mutant clone originating in a progenitor cell. At time t = 0, a
mutation originates in a progenitor. The number of mutants first steadily increases and then remains very close to a constant level (partial fixation occurs). As
the replication capacity of the mutants is gradually exhausted, their numbers drop and the mutant clone eventually goes extinct.
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This work also highlights the importance of understanding
quantitatively the population dynamics of clones restricted by
replicative limits to assess the effectiveness of therapies aimed at
inducing senescence in cancer cells. Telomeres and telomerase
have long been identified as potential targets for cancer therapy
(60). In particular, several telomerase inhibitors aimed at trig-
gering telomere-initiated senescence or apoptosis in cancer cells
have been developed (60, 61). One potential drawback of this
approach is that the replication capacity of target cells must first
be exhausted before senescence or apoptosis takes place (60).
Indeed, if the replication capacity of cancer cells is large enough,
the tumor could still progress to harmful or even lethal levels
before the effects of telomerase inhibition take place. Thus,
antitelomerase strategies could be ineffective as a sole treatment
against cancer. Instead, this argument suggests that telomerase
inhibition could work best in conjunction with a conventional
cancer therapy, such as chemotherapy or radiation, that pro-
duces high levels of mortality in cancer cells.

Clonal Evolution and the Response to Cancer Treatments
When tumor cells escape natural defense mechanisms and grow
uncontrolled, the ensuing expansion processes can be countered
by specific drug treatments. In this context, clonal evolution plays
an important role determining tumor responses to treatment.
Recent treatment approaches involve the specific targeting of
molecular defects in cells that are responsible for driving un-
controlled cell growth. Consequently, such targeted therapies are
characterized by fewer side effects than traditional chemotherapy
approaches. The treatment of chronic myeloid leukemia with the
tyrosine kinase inhibitor imatinib, and with subsequently de-
veloped targeted inhibitors, was the first major success. Recently,
new tyrosine kinase inhibitors have emerged in the treatment of
CLL, the most common leukemia in adults. Examples are the
drugs ibrutinib and idelalisib, which act in a similar fashion (62).
To illustrate how the understanding of clonal evolutionary pro-
cesses can be useful from a clinical point of view, we discuss CLL
treatment with ibrutinib (63) and the evolutionary dynamics of
ibritinib-resistant cells.
Although the state of the disease is assessed by analyzing CLL

cells in the blood, the majority of the tumor cells reside in tissues,
which include the lymph nodes, spleen, and bone marrow. Tu-
mor cells are released into the blood, but homing mechanisms
ensure that they traffick back toward the tissue sites. In the tis-
sue, the appropriate microenvironment allows the cells to di-
vide, driving disease progression (64). Upon initiation of ibrutinib
therapy, a lymphocytosis phase is observed, during which the
number of CLL cells in the blood increases, reaches a peak, and
subsequently declines (65). In the long term, the absolute lym-
phocyte count in the blood stabilizes at a level that, in some cases,
may be higher than in healthy individuals. The lymphocytosis
phase occurs because ibrutinib disrupts the interactions between
CLL cells and their microenvironment, leading to redistribution of
the cells from the tissue into the blood. Kinetic analysis, however,
indicates that the cells redistributing from tissue to blood repre-
sent only a relatively small fraction of the total tissue disease
burden, and that the majority of the tissue-resident CLL cells die
in response to this therapy (15).
Recent data indicate that the disease relapses in a few patients

despite continuous ibrutinib therapy. Such relapse cases are
thought to be caused by the emergence of drug-resistant cells, and
specific point mutations have been identified in such patients that
confer resistance to ibrutinib (66). A very important question is for
how long ibrutinib therapy can maintain control of CLL and at
what time disease relapse can be expected. Answering this ques-
tion requires an understanding of the evolutionary dynamics of
drug-resistant cells, and mathematical models have been crucial in
this endeavor (67). To describe the exponential growth of CLL
cells before treatment, and their decline during treatment, we

consider a stochastic linear birth–death process. CLL cells are
assumed to divide in tissues with a probability L, and they die with
a probability D. During cell division, there is a probability μ that
the cell receives a mutation that confers resistance to ibrutinib.
Before treatment, L>D; that is, the probability of cell division is
larger than the probability of cell death, resulting in clonal ex-
pansion. The cell population is allowed to grow in the model up to
a defined size N. When this size is reached, treatment is started in
the model. During treatment, it is assumed that D>L; that is, the
probability of cell death is larger than the probability of cell di-
vision, resulting in an exponential decline of the tumor cell pop-
ulation. Data indicate that cell division is largely shut off by
ibrutinib (68), such that death is the dominant dynamic process
that occurs. The principles of this modeling approach are illus-
trated in Fig. 3A.
From a mathematical modeling point of view, an important

aspect of this system is that all parameters that determine the
dynamics in this model can be measured, and have been mea-
sured to a certain extent. The rates of cell division and cell death
before treatment have been measured in patients by the ad-
ministration of deuterated “heavy” water (13). Uptake, and sub-
sequent dilution, of the label by cells in vivo allows these kinetic
parameters to be calculated. The total number of CLL cells in
the tissues upon the start of therapy has been estimated from
radiological studies (15), in which the volume of the lymph nodes
and spleen was measured from computed tomography scan im-
ages. The death rates of cells during therapy have been calcu-
lated by fitting a two-compartment mathematical model to data
that document absolute lymphocyte counts during the lympho-
cytosis phase in the blood (15). Because resistance mutations are
generated by straightforward point mutations, it can be assumed
that resistance is generated with a rate of μ= 10−8 to 10−9 per
cell division.
When the model is parameterized, some important insights

can be obtained (67), such as whether resistance is more likely to
evolve before or after therapy. Within the measured parameter
regions, the model strongly suggests that resistant mutants are
almost certain to exist before treatment is initiated. In such a
scenario, the time until disease relapse is observed is determined
by how many resistant mutants exist at the start of therapy, and
how fast these cells grow toward levels at which they can con-
tribute to a renewed rise in the overall lymphocyte counts. Based
on the limited parameters estimated so far, model predictions
suggest that the time until relapse can be highly variable among
patients, driven by variation in the division and death rates of the
resistant cells during therapy. For different parameter sets within
the measured ranges, the model can be used to predict the time
course of resistant mutant growth, as shown in Fig. 3B. Different
parameter combinations within the observed ranges can give rise
to very different growth dynamics.
Now, let us turn to the growth prediction for an individual

patient (i.e., for one parameter set). For a given set of measured
parameters, the modeling framework can predict the average
growth dynamics and the average time of relapse (i.e., the av-
erage over many realizations of the stochastic process). Because
the dynamics are stochastic, however, there is a certain degree of
variation from one computer simulation to the other. Whether
the predicted average time of disease relapse for a given patient
can be useful clinically depends on the degree of variation in the
outcomes of the stochastic simulations. If the relapse time is
predicted to be highly variable for a given parameter set, then
the average timing is of limited use. On the other hand, if the
degree of variation is relatively small, then the average relapse
time predicted by the model could be a reliable predictor of the
patient’s relapse time. According to the model, the number of
mutants predicted to be present at the start of treatment is highly
variable, with an SD that is one order of magnitude larger than
the mean (Fig. 3C). Importantly, however, the predicted time
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until disease relapse is characterized by only limited variability,
with an SD that is one order of magnitude smaller than the mean
(Fig. 3D). The reason is that the timing of disease relapse de-
pends on the logarithm of the number of mutants at the start of
treatment, which reduces variation. Therefore, the average time
of disease relapse that is predicted to occur for a given parameter
combination (i.e., for a given patient) can be a clinically useful
measure to estimate how long the drug can maintain control of
the tumor.
So far, only limited parameter estimates and data that docu-

ment disease relapse exist, and more such data are needed to
test the predictive power of the calculations discussed here. This
work, however, has shown that, in principle, an evolutionary
model can be parameterized with patient-specific measurements,
and that this model could allow us to make personalized pre-
dictions about the duration for which ibrutinib can maintain
control of CLL. For cases where control is predicted to be short,
the effectiveness of different strategies to combat drug resistance
can be calculated, such as various drug combinations. Hence, the
study of clonal evolutionary processes could allow the generation
of clinically useful tools in the area of personalized medicine or
precision medicine.

Conclusions
This review has demonstrated with a few select examples how the
understanding of clonal evolutionary processes through mathe-
matical modeling can be useful to provide biologically and clin-
ically important insights into the determinants of disease progression
and into the treatment responses of cancers. Such evolutionary
models can be used to interpret biological observations, to generate
new hypotheses, to estimate crucial parameters from experimental
or clinical data, and to make predictions. An exciting application of
evolutionary models is the generation of patient-specific predictions,
which, when tested and validated, could become a new tool in the
clinic that can help make decisions about patient management and
treatment approaches. In this review, we illustrated these applica-
tions with two specific examples: Evolutionary models were used to
suggest new methods to determine whether MBL is likely to pro-
gress to CLL in individual patients. In the context of targeted
therapies, mathematical models have been developed to calculate
patient-specific outcomes of ibrutinib treatment. To develop these
approaches further, close collaborations between mathematical
biologists, experimentalists, and clinicians will be crucial to test
and validate model predictions further.
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