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Precise control of magnetic domain walls continues to be a central
topic in the field of spintronics to boost infotech, logic, and memory
applications. One way is to drive the domain wall by current in
metals. In insulators, the incoherent flow of phonons and magnons
induced by the temperature gradient can carry the spins, i.e., spin
Seebeck effect, but the spatial and time dependence is difficult to
control. Here, we report that coherent phonons hybridized with spin
waves, magnetoelastic waves, can drive magnetic bubble domains, or
curved domain walls, in an iron garnet, which are excited by ultrafast
laser pulses at a nonabsorbing photon energy. These magnetoelastic
waves were imaged by time-resolved Faraday microscopy, and the
resultant spin transfer force was evaluated to be larger for domain
walls with steeper curvature. This will pave a path for the rapid spa-
tiotemporal control of magnetic textures in insulating magnets.
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To materialize integrated spintronics (1, 2), it is essential to
avoid excess energy to generate the control magnetic field

by electric current. Therefore, the practical manipulation of the
magnetic domain wall (DW) is now being realized by spin transfer
torque generated from spin-polarized charge current in metals (3)
and from flow of magnons in insulators (4), e.g., via the spin
Seebeck effect (5, 6). On the other hand, the optical control,
aiming at ultrafast, nonthermal, and remote access to magnetic
domains, remains elusive even after the discoveries of photo-
magnetic domain manipulation (7, 8), laser-induced magnetization
reversal (9), and directional generation of magnetostatic waves
(10). The main difficulty has been due to the weak coupling be-
tween photon and spin; in general, only a fraction of total spin
moment can be modulated by visible–to–near-infrared photoexci-
tation if one wants to avoid extensive heating in the electron/lattice
sectors. Here, we report an alternative optical process of generat-
ing coherent magnons, via magnetoelastic couplings as originally
proposed by Kittel (11), and their interaction with magnetic do-
mains, with a special attention to the geometry of the DWs.
A magnetic bubble generally refers to a cylinder-like magnetic

domain formed by long-range dipolar interactions, in which the
magnetization is antiparallel to external magnetic field at the
center and is parallel at its periphery with various types of DW spin
windings. Having experienced an intense study in the 1960s and
1970s for nonvolatile memory applications (12), there is a recent
reawakening of interest in magnetic bubbles, owing to the experi-
mental discovery of magnetic skyrmions in noncentrosymmetric
helimagnets with relativistic Dzyaloshinskii–Moriya (DM) intera-
ctions (13–15). These skyrmions have noncoplanar spin-swirling
textures, wrapping the unit sphere an integer number of times (15),
and can be topologically equivalent to magnetic bubbles without
Bloch lines at the wall (called type I) (16). One apparent difference
shows up in their size; the diameter of skyrmions by the DM in-
teraction typically ranges from 3 to 200 nm, whereas those by di-
polar interaction from 100 nm to several micrometers (15). Various
emergent interactions characterizing skyrmions have been revealed

recently, such as the topological Hall effect, skyrmion Hall effect,
and multiferroic behaviors in the insulating background, etc., some
of which can be visualized under the Lorentz transmission electron
microscope as current-driven and magnon-driven kinetics (17, 18).
With the emergent electromagnetism induced by its steric and
topological spin alignments, the skyrmion can function as an ex-
ternally operable information carrier. From the viewpoint of to-
pology, the dynamics of the magnetic bubble have direct relations
with those of the skyrmion, with a definite advantage that bubbles
can readily be observed under polarized optical microscopes. By
convention, we refer to the circular magnetic domains in iron
garnets as magnetic bubbles in the following, although some of
them can be called skyrmions as well.
One can manipulate magnetic bubbles by external magnetic-

field gradients or thermal ones; the latter have been realized by
heating the sample by a focused laser (heat mode) at absorbing
photon energy, creating a gradient of the order of 10 K/μm (19,
20). On the other hand, it has been demonstrated that skyrmions
formed by the DM interaction can be driven through the in-
teraction with spin-polarized charge current of ultralow density
(∼106 A·m−2, five to six orders of magnitude smaller than that
for the DW motion in ferromagnets) (17, 21), or by thermally
excited magnon flow (18), owing to their emergent electromag-
netic responses (15).
Considering the recent advances in the ultrafast optical con-

trol of spin ensembles (22), as well as in the understanding of
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interactions of spin wave and spin current with magnetic nano-
structures, it is interesting to examine the photon–bubble (or
photon–skyrmion) interaction. In particular, we focus on the mag-
netoelastic wave, a propagating mode of coupled sound and spin
waves, which is capable of carrying a spin excitation more ef-
ficiently than thermally excited incoherent phonons. A phonon is a
quantum of the lattice distortion wave, and a magnon is that of the
spin wave. In a magnet, the crystal lattice experiences a small de-
formation when magnetized; such magnetostriction depends on the
crystal symmetry and the direction of magnetization in the pres-
ence of spin–orbit interaction. When a sound wave travels in this
magnetic crystal, the propagating lattice distortion tilts the spin out
from its equilibrium direction through the magnetoelastic coupling
(11). This coupling is enhanced at the resonant magnetoelastic
mode when the original dispersions of phonon and magnon cross.
The interaction between magnetoelastic waves and magnetic bub-
bles in insulating iron garnets as shown below will be readily gen-
eralized to the case of skyrmions in insulating chiral magnets.

Results
Threshold Optical Power to Drive Magnetic Bubbles. Fig. 1A illus-
trates our experimental setup. In an iron garnet film, the bubble
phase appears with the application of out-of-plane magnetic field
slightly below the magnetic saturation. We used focused pump
lasers, either ultrashort pulse (120-fs width, 1-kHz repetition) or
continuous wave (CW), and studied how the bubbles (or domain
walls) interact with the laser lights under an optical microscope
(see Supporting Information for detail). The threshold laser
power to drive individual bubbles is indicated in Fig. 1B. With
respect to the optical absorption, it is observed that the pulse
laser can move bubbles even with the wavelength within the
optical gap (∼1,100 nm), whereas the CW laser cannot. This fact
is distinct from the reported heat mode operation of the mag-
netic bubbles (19, 20) and the photomagnetic manipulation of
domain walls (7, 8), as discussed below.

Optical Generation of Magnetoelastic Waves. Now, we visualize the
driving force for the non-heat mode manipulation of magnetic
bubbles. It is well known that one can excite phonons and mag-
nons in insulating materials by an impulsive stimulated Raman
process of ultrafast optical excitation (22, 23) (Fig. 2A). For iron
garnet films, magnons (or spin waves) excited in this manner have
been studied extensively (10, 24), called inverse-Faraday effect
(25–27). Here, we use somewhat different excitations, “magne-
toelastic waves” (11, 28, 29), to manipulate bubbles. Their effi-
ciency on carrying spin moment has been exemplified recently as
acoustic spin pumping (30). Fig. 2B depicts the schematic dis-
persion relations of an iron garnet film in our experimental con-
ditions, where anticrossings of acoustic phonon and exchange spin

wave dispersions are expected. Near the anticrossings, these waves
are coupled to form magnetoelastic modes, which are imaged by
time-resolved Faraday rotation as shown in Fig. 2C. For these
snapshot images, the external magnetic field was applied along the
x axis to erase bubble domains and avoid strong Faraday rotation
from them. The successive snapshot images at 0–6.20 ns clearly
illustrate a spherical wave with quadrupole-like texture propa-
gating from the excitation spot. Considering their velocity v (31),
we can assign the outer four-node patterns (v ∼ 7 km/s) to the spin
wave coupled to longitudinal acoustic (LA) phonons, and the in-
ner two-node (v ∼ 3 km/s) to the coupling to transverse acoustic
(TA) phonons, respectively.
These assignments can be confirmed by a simple simulation.

At elapsed time δt much shorter than the period of precession
and with the external magnetic field applied along the x axis,
magnetoelastically coupled equations with linear approximation
(28) may reduce to the following:

Δmz =−γb
�
∂Ry

∂x
+
∂Rx

∂y

�
δt  ðLA modeÞ, [1]

Δmz =−γ2bHeff
∂Rz

∂x
δt2   ðTA modeÞ, [2]

where mz is the spin moment along the z axis observable by
Faraday rotation, γ is the gyromagnetic ratio, b is the magneto-
elastic coupling constant, Ri is the displacement vector, and Heff
is the effective magnetic field including external, demagnetiza-
tion, exchange, and dipole fields. For an expected spherical
strain wave (strain direction is normal to the wave front in the
xy plane for the LA phonon and out of the xy plane for the TA
phonon), these equations yield the spatial patterns of mz shown
in Fig. 2D, which is in accord with the observed Faraday micros-
copy snapshots (Fig. 2C). In particular, only the TA mode re-
verses the sign of mz when the external magnetic field is reversed
(Eq. 2), which is experimentally verified (Supporting Informa-
tion). We note that since the iron garnet films used in our ex-
periment are heavily chemically doped to support magnetic
bubbles, the genuine spin waves do not appreciably propagate
from the excitation spot with our excitation condition (the typical
attenuation length is less than 3 μm; Supporting Information).
Furthermore, the tightly focused light spot will not couple to
the magnetostatic volume waves in our sample (10). When the
external field is applied along the z axis, the magnetoelastic
waves can be excited in a similar manner, but with less contrast
in mz. The phonon propagation in crystals has been visualized by
several experimental techniques (23); however, the spatiotempo-
ral images of the magnetoelastic wave have seldom been ob-
served before.
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Fig. 1. Experimental setup and action spectra for the photodrive of magnetic bubbles. (A) Schematic illustration of magnetic bubbles in an iron garnet film
interacting with focused manipulation (pump) laser. (B) Threshold laser power for driving magnetic bubbles plotted together with the absorption spectrum of
an iron garnet film. The average power at 1 kHz is adopted for the pulse laser to directly compare with the CW laser source. The wavelength used for
generating magnetoelastic waves (1,300 nm) in the main text is indicated with a red arrow.
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Photodrive of Magnetic Domains via Magnetoelastic Waves. The
interaction between the focused laser spot emitting magne-
toelastic waves and the magnetic domains is exemplified in
Fig. 3. (Corresponding movies can be found in Supporting In-
formation.) When the pulsed laser spot approaches the stripe
domain (Fig. 3A, Left), the DW is attracted toward the illumi-
nation spot, which is clearly discernible in the difference images
(bottom row). The dynamics of the DWs are governed in a
nontrivial manner by the wall energy, dipole interaction, pinning
potential, and interactions with magnons or thermal gradient,
etc., as discussed later. For some cases, we can largely distort the
stripe domain via the motion of the laser spot (Fig. 3A, Right). In
particular, the endpoint of the stripe domain, i.e., the half-curved
spin texture, was found to be more mobile in response to the
nearby pulsed photoexcitation. Fig. 3B illustrates that the end-
point of a stripe domain feels an attractive force even with some
distance (typically up to 10 μm) from the excitation spot. When we
scan the pump laser spot laterally, one endpoint follows the spot
by bending the stripe domain while exerting the dipole forces to
other stripe domains. The bubble domains, i.e., fully curved spin
texture, are the most mobile (Fig. 3C). By tipping the DW of the
bubble with the laser spot, we can manipulate the bubble domain
laterally in any direction (Supporting Information). Note that for
the heat mode operation known before, the bubbles are expected
to be trapped at the center of the laser spot due to the thermal
gradient (19, 20). This is not the case for the present pulsed ex-
citation at the transparent photon energy. It is also noted that the
magnetoelastic excitations (Fig. 2) and manipulation of magnetic

domains (Fig. 3) are independent of the photon polarization of
the pump laser (see Supporting Information for detail).

Discussion
There are several possible mechanisms to explain the observed
attractive force acting between the magnetic bubble and the laser
spot: (i) thermal gradient force (heat mode) (19, 20), (ii) pho-
toinduced anisotropy (7, 8), (iii) thermally excited magnons,
(iv) optically excited magnons, and (v) magnetoelastic waves. For
case i, we estimate the temperature rise of the iron garnet film
just after the pump excitation at nonabsorbing photon energy to
be less than 0.6 K in the 4-μmϕ Gaussian spot (Supporting In-
formation), which is much less than the required temperature
gradient for the heat mode operation of bubbles (19, 20) over a
10-μm distance (Fig. 3B). We note that there is no thermally
induced Faraday rotation observed upon the pump excitation
(Supporting Information). Case ii requires dopants with strong
magnetic anisotropy and is sensitive to the incident polarization,
which is not observed here. We can also exclude case iii by the
striking difference between CW and pulsed laser excitations. The
thermally (and thus incoherently) excited low-energy magnons
are not relevant in our experiment. For case iv, as discussed
above, the photoexcited spin waves do not propagate appreciably
in our garnet films. Furthermore, photoexcited magnetostatic
volume waves (10) should be strongly dependent on the pump
photon polarization (linear or circular), which is not the case
here (Supporting Information). Therefore, we propose that the
magnetoelastic wave, case v, carrying a spin excitation, is the
main driving force for the manipulation of magnetic domains. In
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practice, we observed a transition from spin wave to magne-
toelastic wave excitations by increasing excitation intensity,
which nicely corresponds to the threshold of the domain ma-
nipulation (Supporting Information). Because the nonabsorbing
pump laser is used for the excitation, we expect that these
magnetoelastic waves are generated by the stimulated Raman
process, similar to the case of inverse-Faraday effect (25–27).
The magnetic bubbles are transiently excited through the in-
teraction with magnetoelastic waves, gaining an energy to over-
come the pinning potentials, and being attracted toward the laser
spot by the spin transfer torque. Because a possible phonon–DW
interaction inhibits the motion of the domains (4) in the present
case, we continue our discussion by concentrating only on the
spin part of the magnetoelastic waves.
It is known that magnetic DWs (4, 32–35) and skyrmions (36,

37) move against the propagating spin waves to conserve total
momentum, as predicted using the Landau–Lifshitz–Gilbert and
Thiele equations. For a curved DW, one can generalize the Thiele
equation to treat space- and time-dependent deformation. The
tilting of magnetic moments with respect to the z axis is well
confined in a narrow DW region; therefore, the dynamics of the
DW is effectively expressed as motion of a “string” parameterized

as rðl, tÞ where l is the length measured along the string and t is
time. Define the tangential unit vector τðl, tÞ= ∂rðl, tÞ=∂l, and the
normal vector nðl, tÞ= τðl, tÞ× ez (ez: the unit vector normal to the
thin film). The equation of motion for a small part dl at rðl, tÞ due
to the applied spin current vsðl, tÞ of the spin wave is given by the
following (Supporting Information):

�
±

2
Rðl, tÞ dl

�
ez × ½vsðl, tÞ− vdðl, tÞ�

+ dl
C1

ξ
nðl, tÞfnðl, tÞ · ½βvsðl, tÞ− αvdðl, tÞ�g

+ dl
C2

Rðl, tÞ
ξ

Rðl, tÞ τðl, tÞfτðl, tÞ · ½βvsðl, tÞ− αvdðl, tÞ�g

−
�

T
Rðl, tÞ dl

�
nðl, tÞ+Fexðl, tÞdl= 0,

[3]

where vdðl, tÞ= ∂rðl, tÞ=∂t is the local drift velocity of DW (12).
The first term describes the Magnus force. In the Bloch wall
structure preferred by the dipolar interaction, the winding
plane of the magnetic moment is perpendicular to the normal
vector nðl, tÞ, and the curved DW possesses a solid angle of the
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magnetic texture (scalar spin chirality) proportional to the curva-
ture 1=Rðl, tÞ=−½∂2rðl, tÞ=∂l2� · nðl, tÞ of the string. The second and
third terms represent the dissipation, where ξ is the DWwidth, α is
the Gilbert damping constant, and β is the nonadiabatic effect.
The dimensionless constants C1 and C2 are of the order of
unity. The fourth term is the tension where T is the tensile strength
of the DW. In the final term, Fex denotes the external forces due
to the pinning of DW, inhomogeneity of the sample, and so on.
From Eq. 3, one can see that the portion with large curvature
1=Rðl, tÞ is subject to a stronger Magnus force, and driven by the
spin current vs of the spin wave excitations more efficiently as
discussed above. (See Supporting Information on the threshold spin
current density for the depinning.)
Our experiments revealed that we can excite magnetoelastic

waves in iron garnet films by an ultrafast optical excitation at
nonabsorbing photon energy, realizing a local and coherent
source of spin waves without generating excessive heat. It is also
demonstrated that the excited magnetoelastic waves can drive
magnetic DWs, more efficiently when they have steeper curva-
tures or in an extreme case form bubbles. The dynamics of
magnetic bubbles can be generalized to those of smaller mag-
netic structures, such as skyrmions and magnetic vortices.

Materials and Methods
Bismuth-substituted iron garnet films (Gd1.63 Tb0.33 Ca0.04 Bi1.00 Fe4.66 Al0.34
O12, 50 μm in thickness), grown by a liquid-phase epitaxy method on the
(110) plane of (CaGd)3(MgGaZr)5 O12 (SGGG) substrates (350 μm in thick-
ness), were used in the experiment. Although as-grown films have out-of-

plane easy axis due to the growth-induced anisotropy, we prepared an-
nealed films (6 h at 1,200° C in air), where the anisotropy is reduced and
easily movable magnetic bubbles can be formed. These films are mounted
in a polarized microscope with transmission geometry, with two objective
lenses 20× (N.A., 0.28) and 50× (N.A., 0.55) used for illumination and col-
lection, respectively. The crystal axes were aligned as x // [001] and y // [11 0].
In-plane and/or out-of-plane magnetic field was applied to the sample by
several permanent magnets. A Xe lamp, several CW lasers (633, 690, 800,
1,064 nm), and wavelength-tunable pulsed lasers (120 fs, 1 kHz, 600–1,500 nm)
were used as light sources. Time-resolved Faraday microscopy (snapshots)
was executed with pulsed probe light (800 nm) after the focused pump
light excitation, which was imaged on a cooled charge-coupled device
(CCD) camera through an analyzer. The analyzer was rotated 2° from the
extinction condition, and the image without pump excitation is subtracted
from each data. The movies of the magnetic domain manipulation were
taken by a video rate CCD camera with Xe lamp illumination. The simulated
Faraday contrasts in Fig. 2D were obtained solely by the spatial derivative
(Eqs. 1 and 2) of the assumed spherical strain waves (phonons). Therefore,
the absolute values are not comparable between TA and LA modes. An
additional strain was added at the pump spot to reproduce the observed
snapshot images.
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