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Household-based interventions are the mainstay of public health
policy against epidemic respiratory pathogens when vaccination is
not available. Although the efficacy of these interventions has
traditionally been measured by their ability to reduce the pro-
portion of household contacts who exhibit symptoms [household
secondary attack rate (hSAR)], this metric is difficult to interpret
and makes only partial use of data collected by modern field
studies. Here, we use Bayesian transmission model inference to
analyze jointly both symptom reporting and viral shedding data
from a three-armed study of influenza interventions. The reduc-
tion in hazard of infection in the increased hand hygiene inter-
vention arm was 37.0% [8.3%, 57.8%], whereas the equivalent
reduction in the other intervention armwas 27.2% [−0.46%, 52.3%]
(increased hand hygiene and face masks). By imputing the presence
and timing of unobserved infection, we estimated that only 61.7%
[43.1%, 76.9%] of infections met the case criteria and were thus
detected by the study design. An assessment of interventions using
inferred infections produced more intuitively consistent attack rates
when households were stratified by the speed of intervention, com-
pared with the crude hSAR. Compared with adults, children were
2.29 [1.66, 3.23] times as infectious and 3.36 [2.31, 4.82] times as
susceptible. The mean generation time was 3.39 d [3.06, 3.70]. Lab-
oratory confirmation of infections by RT-PCR was only able to detect
79.6% [76.5%, 83.0%] of symptomatic infections, even at the peak
of shedding. Our results highlight the potential use of robust in-
ference with well-designed mechanistic transmission models to im-
prove the design of intervention studies.
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The household offers an ideal setting to study the transmission
dynamics of viral respiratory pathogens (1–5) and, during pe-

riods of severe epidemics, to intervene and reduce the number of
infections (6). Therefore, it is also the ideal setting in which to
conduct trials of interventions designed to reduce infectivity and
susceptibility. The known-index trial design has been used to mea-
sure the efficacy of different types of intervention in recent years,
including nonpharmaceutical interventions (7–9), antivirals (10),
and vaccines (11–13). In these studies, symptomatic individuals are
recruited at a health care facility and asked if they—and potentially
other members of their household—may want to participate in the
trial. If the index agrees, biological samples are taken at that time in
the clinic. Follow-ups normally occur in the household, with the first
visit as soon after the recruitment of the index as possible. If other
members of the household agree to participate, samples are taken
at regular intervals after that first follow-up from the index and
additional participating household members. Biological samples
used in these studies include nasal or throat swabs, nasopharyngeal
aspirates, and blood samples. Many different assays can be con-
ducted on the samples (depending to some extent on the sample
handling protocol), for example, rapid tests (14), RT-PCR (7, 15),
and B-cell assays (16). Participants may also be asked to record
symptoms in a diary or to report them over the phone.
The primary outcome measure for these trials is the house-

hold secondary attack rate (hSAR) (sometimes called secondary

infection risk). The hSAR is most commonly defined as the
proportion of nonindex household members who become cases,
according to prespecified criteria, during the period of the study.
Cases are usually defined in terms of either symptoms or viro-
logical outcome (e.g., PCR-confirmed infection), or sometimes
both (7). Although significant reductions in hSAR between study
arms are indicative of an effect, the amplitude of differences in
hSAR can be difficult to interpret, partly because the statistic itself
is dependent on the assays used and on the precise follow-up
protocol. For example, criteria based on symptoms may fail to
capture asymptomatic infections, and RT-PCR tests are sensitive
to the frequency and timing of sampling. Also, the observed value
of the hSAR in any specific household must be sensitive to the
number of household members who participate, the precise timing
of follow-up samples, and the pattern of any dropout.
Previous studies have analyzed the transmission dynamics of

influenza in households by using household models and symp-
tomatic data (3, 17), and also symptomatic data in conjunction
with RT-PCR laboratory results (18). We defined a stochastic
household transmission model, building on these works, that
described the effect of interventions in reducing the daily hazard
of infection, and estimated parameters of the model using
Markov chain Monte Carlo (McMC) techniques (see Materials
and Methods and SI Text).

Results
Study Data. We analyze a superset of data from 322 households
participating in a previously described known-index intervention
study of influenza (7, 14). Three hundred and twenty-two of these
were included in the primary analysis and randomly assigned to one
of three groups: control (112 households), intervention with im-
proved hand hygiene (HH, 106 households), or intervention with
improved hand hygiene plus face masks (HH+FM, 104 households)
(7). Each index case was initially screened by rapid test and
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confirmed using PCR. Nonindex household members were de-
fined to be cases if they were PCR-confirmed on or after the
second visit or if they showed at least two of the following signs
and symptoms: temperature above 37.7 °C, cough, headache, sore
throat, or myalgia (7, 19). Using traditional hSAR as the outcome
for the primary analysis, a significant difference was observed
between the control and HH arms, but only for a subset of
households in which the index case attended clinic rapidly after
the onset of symptoms (Fig. 1; see also Fig. S1) (7). Data from the
63 additional households included here could not be included in
the primary analyses because either the index was not confirmed
as infected by PCR (n = 16, despite being positive on rapid test) or
because a household contact had RT-PCR-confirmed infection at
the initial household visit (n = 47, defined to be coprimary) (7).

Parameter Estimation and Validation. We defined a process model
for the transmission of influenza in a study household, with pa-
rameters that would allow us to make inference on the efficacy of
interventions and underlying dynamics (see Materials and Meth-
ods). We sampled from the joint posterior distribution of number
of infections, times of infection, and process parameters of in-
terest (Table 1), conditional on the full set of study results and
uninformative prior distributions. The posterior distributions of
model parameters are shown in Fig. S2. With the modal poste-
rior values for the model parameters, we simulated study out-
comes using the precise study protocol for each household and
obtained distributions of hSAR consistent with the observed data
(Tables S1 and S2). Also, for validation, we used multiple sets of
these pseudodata to successfully reestimate the modal process
parameters (Table S3).

Household Transmission Dynamics.We estimated that, in this study,
children were substantially more susceptible and infectious than
were adults (Table 1). The infectiousness parameters for chil-
dren and adults in the model are defined relative to the house-
hold size and are therefore somewhat difficult to assess directly.
However, their ratio is easier to interpret, with children 2.29
[1.66. 3.23] times as infectious as adults and 3.36 [2.31, 4.82]
times as susceptible. These results are broadly consistent with
prior studies based only on symptomatic outcomes (2, 3, 20, 21).

The basic functional form of the infectiousness over time was
assumed to be the log-normal density function truncated at day
10 (see Materials and Methods). Fig. 2A shows how the inferred
amplitude of infectiousness varies over the time since infection
for households of size 4. It was necessary to consider a specific
household size because we assumed that pair-wise infectiousness
between individuals could vary as a function of household size, i.e.,
as the size of the household increased, the probability of infection
between each possible susceptible–infectious pair was not con-
stant. These infectiousness profiles contrast somewhat with pre-
vious results (17) based only on symptoms. Although ref. 17 and
our results both suggest that infectiousness is highest near the day
of symptoms, our estimated profiles exhibit a fatter tail than that
in ref. 17.
To give a more intuitive description of the infectivity profiles,

we also calculated the pairwise transmission probabilities (see SI
Text, Pairwise transmission probability) of children and adults over
the full period of their infectiousness, in the absence of in-
terventions. Fig. 2 B and C shows the absolute and relative com-
parison between pairwise transmission probabilities of children
and adults in different household sizes.
The generation time is defined as the expected delay between

the infection of an infector and the infection of all their infectees
across all infection types (22). Leveraging our ability to infer
infection events, we were also able to estimate the approximate
generation time commonly reported from household studies—
the time between the infection of the index case and the infec-
tion of the secondary cases. We estimated this to be 3.39 d [3.06,
3.70] (Fig. S3), which was consistent with estimates in the liter-
ature for this and other strains of influenza A (23–25). This es-
timate was also somewhat sensitive to the ratio of the sensitivity
of RT-PCR testing between asymptomatic infections and symp-
tomatic infections (see Sensitivity Analysis).

Intervention Efficacy. Intervention efficacy was modeled as the per
day reduction of infectiousness and could take a different value
in each of the three study arms. Using all available data, the
efficacy in the HH group was estimated to be significantly dif-
ferent from 0 at 37.0% [8.3%, 57.8%] and, for HH+FM, was
27.2% [−4.6%, 52.3%] (Table 1). Although the reduction in
infectivity was not significant for individual days, the cumulative
effect reflected in the overall reduction in pairwise transmission
probability was significant (Fig. 3).
By inferring the presence or absence of infections during the

period of the study for all members of participating households
(see Materials and Methods), we were able to compare the di-
rectly observed hSAR with an inferred hSAR. We estimated that
only 61.7% [43.1%, 76.9%] of infections that occurred in
households during the period of the study met the case criteria
(see Study Data). This percentage was also somewhat sensitive to
the ratio of the sensitivity of RT-PCR testing between asymp-
tomatic infections and symptomatic infections (see Sensitivity
Analysis). The underestimation was driven by variable timing of
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Fig. 1. Proportions of household members meeting case criteria (using a
composite definition based on symptoms and RT-PCR results) in different in-
tervention groups and for different delay intervals between the time of
symptom onset of index case and recruitment into the study. The 95% con-
fidence intervals (CI) are represented by vertical bars. To aid direct comparison
with previous work (7), these estimates excluded the 63 households in which
the index patient did not have RT-PCR-confirmed infection or a household
contact had RT-PCR-confirmed infection at the initial household visit.

Table 1. Estimates of key model parameters

Parameters
Posterior mean

[95% CI]

Half-life of the infectiousness profile, aeff 3.86 [3.04, 4.43]
Time (day) of peak infectivity, b 1.50 [0.52, 2.42]
Infectivity of children per day, β1 2.91 [2.13, 3.65]
Infectivity of adults per day, β2 1.27 [0.83, 1.79]
Susceptibility of children relative to adults, η1 3.36 [2.31, 4.82]
Peak level of RT-PCR test sensitivity, ψ 79.6% [76.5%, 83.0%]
Intervention efficacy per day for HH only, r2 37.0% [8.3%, 57.8%]
Intervention efficacy per day for HH + FM, r3 27.2% [-4.6%, 52.3%]
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follow-up and also by variable sensitivity of the RT-PCR test,
depending on the number of days since infection (26–28).
When the data were stratified by the delay between symptom

onset in the index case and the interventions (i.e., the speed of
intervention), the inferred hSARs described a more coherent
story than the crude hSARs, with, in particular, higher numbers
of infections being inferred in the control arm than would have
been expected from the observed hSARs for delays of 2 d or
greater (Fig. 4). Although the structural assumptions implicit in
our model (see Discussion and Materials and Methods) must have
constrained the inferred infection events to some degree, it is
encouraging that the two interventions had similar efficacy for
each delay strata and that the pattern of increasing efficacy with
reducing delay was consistent. We also note that intervention
efficacy was not defined to be positive definite (see SI Text), so
the model had the flexibility to explore parameter regimes where
interventions increased the risk of transmission. The differences
between inferred and observed hSAR were likely driven by sto-
chastic variation in the timing and frequency of follow-up be-
tween households.

RT-PCR Test Sensitivity. RT-PCR is the gold standard laboratory
method for confirming viral respiratory infections among symp-
tomatic individuals. We estimated the peak level of RT-PCR test
sensitivity in this field study to be 79.6% [76.5%, 83.0%] for
symptomatic infections. This estimate is fundamentally different
from previous estimates because it incorporates uncertainty
about the true state of the individual, as well as the performance
of the sampling protocol and assay themselves. Although the
relative sensitivity of asymptomatic infections was not identifi-
able in this analysis and was assumed to be half that of symp-
tomatic infections (29), key model parameters appeared to be
robust toward these assumptions (see Sensitivity Analysis).

Sensitivity Analysis. We tested a number of our baseline assump-
tions and found few material differences in our results. In our
baseline analyses, we assumed a Gamma distribution for the in-
cubation period with mean 2 d and SD 0.2 d (30). Two alternative
incubation periods were considered in the sensitivity analysis: a
Weibull distribution with mean 1.48 d and SD 0.47 d (17) and a
lognormal distribution with median 1.4 d and dispersion factor
1.51 d (31). These alternative assumptions for the incubation pe-
riod produced results that were not materially different from the
baseline results.

We also tested the robustness of assumptions about the ratio of
the sensitivity of RT-PCR testing between asymptomatic in-
fections and symptomatic infections, S2=S1. The value of this pa-
rameter ϕ (noninfection symptoms onset rate; see Materials and
Methods) was assumed to be 0.001 in the baseline analysis (32, 33)
and was varied in these sensitivity analyses. We tried a range of
alternative values and found that higher values were associated
with higher rates of asymptomatic infection. However, the values
of other model parameters were not materially affected (see
Figs. S4–S6).
The distribution of the generation time (last panels in the Figs.

S4–S6) and the distribution of the percentage of infections meeting
case criteria (Table S4) were also somewhat sensitive to the as-
sumed value of ratio of S2=S1. When the ratio S2=S1 changed from
0.25 to 0.75, the proportion of infections meeting cases criteria
changed from 51% to 67%, and the mean of the generation time
changed from 3.1 to 3.7. The values for the generation time
remained within with the range suggested in the literature (23, 25).

A B C

Fig. 2. Infectivity profiles and pairwise transmission probabilities. (A) Estimated infectiousness over time, assuming household size 4 (median household size
in data); vertical bars show 95% credible interval. (B) Estimated pairwise transmission probabilities for different household sizes. (C) Estimated pairwise
transmission probabilities for children relative to adults.

Fig. 3. Reduction of the pairwise transmission probability after interventions
in the two different intervention arms (assuming household size 4).
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Optimization of Study Design. We used our estimated process
model parameters to examine some specific issues around trial
design. We designed a simulation experiment to explore how the
timing of measurements (i.e., the timing of performing RT-PCR
tests) may affect the outcome of the traditional analysis. Spe-
cifically, we answered the following question: If it was only
possible to make a single visit to each household to evaluate an
intervention (perhaps due to logistic constraints or cost-effec-
tiveness considerations), what would be the best day to visit the
household so that difference of number of infections (between
intervention arms and control arm) may be more genuinely
reflected by the traditional analysis? Based on the transmission-
dynamic parameters estimated here, we simulated observations
from our estimated model and assumed that only one home visit
was carried out. To eliminate the effect due to the time of
implementing the interventions, we only considered households
with initial home visit within the same day as the symptoms onset
of the index case. We found that a single sample at day 5 would
have the highest expected difference in observed PCR-confirmed
hSAR (Fig. 5). A single sample at day 4 would have a very similar
expected difference between interventions and control but
greater variance, suggesting that in day 4 or day 5 we may have
the most “detectable” infections circulating in households.

Discussion
We incorporated both viral shedding data and symptomatic data
into a transmission model that allowed the estimation of the
efficacy of interventions and key epidemiological parameters.

Our analysis refines the primary study analyses in estimating a
significant effect in one intervention arm using data from all
households, rather than data only from a (prespecified) subset,
highlighting opportunities to improve on traditional measures
such as the observed hSAR (7). We showed that interven-
tion efficacy can be more accurately captured using a disease-
dynamic model coupled with rigorous statistical inference. Also,
by inferring the number and timing of infections, the underlying
transmission dynamics could also be described and the impact of
variable timing of interventions in household assessed. Subject to
structural biases, we argue that this approach extracts substantial
additional information from known-index transmission studies
than does traditional analysis reliant on the hSAR. More gen-
erally, our results highlight the potential use of robust inference
with well-designed mechanistic transmission models to improve
the design of intervention studies.
Compared with other nonpharmaceutical interventions, such

as quarantine and social distancing, the use of face masks and
improved hand hygiene are simple and impose less burden on
those infected and their contacts. Our results have helped to
reinforce earlier findings of substantial efficacy. Also, we suggest
that defining the estimated efficacy as a per-day reduction in
transmission gives a more interpretable measure and could be a
useful quantity to communicate as part of an overall health pro-
tection message.
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Our study has a number of limitations associated with the
structured assumptions implicit in our model. First of all, we only
estimated the average efficacy of improved hand hygiene and
face masks by aggregating other heterogeneities such as adher-
ence and age distribution among the households. Nonetheless,
adherence to hand hygiene intervention (i.e., the main contrib-
uting intervention in our study) was similar to that reported in
previous community studies (34–36). Hence, although the esti-
mated intervention efficacy should have varied with different
adherence, the similarity of the adherence between our study
and that in other community studies supports some generaliza-
tion of our findings and the practicality of our conclusion.
We were not able to simultaneously estimate the reduction of

absolute susceptibility and the reduction of infectivity due to
interventions, as they were not identifiable with each other. In-
stead, to avoid this issue of identifiability, our model was pa-
rameterized by the relative susceptibility of children, and we
estimated the reduction of infectivity. Children and adults were
assumed to be subject to a common community infection rate,
which may only represent a relatively crude average measure.
However, as the study design aimed to recruit households that
had infections mostly initiated by the index cases, the data may
not be able to inform the community infection at a finer reso-
lution. Nevertheless, the estimated common community infec-
tion rate appeared to be insignificant and hence was believed not
have a significant impact (see Fig. S3).
A parallel analysis of these data using a different approach

found evidence suggesting that aerosol (small droplets) trans-
mission might be responsible for approximately half of all in-
fluenza transmission in households (37). Our results are consistent
with this finding, because only a small to medium effect of face
masks and hand hygiene would be expected given that they are
thought to reduce transmission via large droplets and contact.
Further extensions of our modeling framework could be consid-
ered in the future to account for different modes of transmission.
Although there is some evidence that children might have a

higher level and a longer duration of shedding (23, 38) compared
with adults, we assumed the same underlying function. Also, we
only estimated the sensitivity of RT-PCR as a function of time
since infection, and it was assumed to peak between 2 d and 5 d
after infection (i.e., around the mean time of symptoms onset)
(39). A more direct factor affecting the test sensitivity may be the
viral shedding (26–28). Future work in linking viral shedding
explicitly with the test sensitivity could further refine the ap-
proach we have used here.
Our framework can be used to answer specific questions related

to trial design as well as to conduct secondary analysis of existing
data. Here, we illustrated this by estimating the best possible day
for a single follow-up visit in an interventions trial. However, a
more systematic trial design study with well-defined resources that
may be constrained may well produce far more efficient protocols,
perhaps varying by household size and age distribution.

Materials and Methods
Details of Data Collection. In 2008, from 2 January through 30 September, 407
index patients with influenza-like illness with symptom onset in the previous
48 h, and who were positive for influenza A or B virus by QuickVue Influenza
A + B rapid testing, were recruited at outpatient clinics in Hong Kong.
Households with fewer than two members or those with members reporting
influenza-like illness in the preceding 14 d were excluded. There were, in
total, 322 eligible households who agreed to participate. The households
were randomly assigned to one of the three groups: control group (n= 112
households), intervention group with improved hand hygiene (n= 106) and
intervention group with face masks and improved hand hygiene (n= 104).
The intervention was carried out in an initial home visit scheduled within 2 d
after the randomization. Demographic data and nasal and throat swab
specimens from all household members who were 2 y of age or older were
collected during the home visit. All household contacts were required to
keep daily symptom diaries within the observational period after the initial

intervention. Further nasal and throat swab specimens from all household
members were collected in subsequent home visits, which were scheduled
usually around 3 d and 6 d after the initial visit. More details on the study
design can be found in a previous paper (7).

Transmission Model. We developed a stochastic model to jointly capture the
study design, the transmission process, and the efficacy of the interventions.
Household members were classified by their ages (i.e., children and adults)
and were otherwise identical.

There were four major components to be explicitly modeled: (unobserved)
infection times, symptom onset times, RT-PCR test results, and the intervention
efficacy. Here, we describe the assumed processes related to each of these
components. Each infected member was assumed to exhibit time-varying in-
fectivity (i.e., hazard of infection) since infection, which was parameterized by
its median a and mode b. Specifically, we used a log-normal density function
truncated at day 10 to represent this infectivity profile; we denoted the ef-
fective median (i.e., half-life) of the infectivity profile after truncation as aeff.
Children and adults were assumed to have different scaling factors βi to the
infectivity profile (β1 and β2 for children and adults, respectively). We also
assumed children were η1 times more susceptible than adults. A coefficient e
was used to explain the dependency between the infectiousness and house-
hold size. Consequently, the hazard of infection Hk→jðtÞ exerted on a suscep-
tible member j by an infected member k was determined by coupling the
infectivity profile with the household size and the age and time since infection
of member k. The total hazard of infection exerted on member j at time t in
the household was then taken to be the aggregated hazard of infection HðtÞ
from other infected members at time t in the household, i.e.,

HðtÞ=
Xn

k≠ j

Hk→jðtÞ. [1]

We allowed a constant community infection hazard ρ common to children and
adults on top of the within-household hazard. Interventions were assumed to
reduce themagnitude of the infectivity profile by a constant proportion ri, where
i= 1,2,3 corresponded to the control, HH and HH+FM arms, respectively; because
we were interested in the efficacy of HH and HH+FM arms relative to the control
arm, we set r1 = 0. Interventions had no effect on the community infection.

A nonindex case has a probability p to be an asymptomatic infection. Given
the infection time, onset time of a symptomatic case was determined by an
assumed incubation period parameterized by α and γ. Also, for the robustness
of the model, we had ϕ as a nuisance parameter representing the background
constant rate of noninfection symptoms onset (32, 33). The RT-PCR testing
results were assumed to depend on times of measurements, a (peak) test
sensitivity ψ, and a test specificity Q. The test sensitivity was assumed to be a
(step) function of the time since infection and to peak around the mean of the
incubation period (also see SI Text for details). The test sensitivity of asymp-
tomatic infections was assumed to be half that of symptomatic infections (see
also different assumed values used in Sensitivity Analysis). Lastly, households
were assumed to be independent given the sparse recruitment.

Events above were also described mathematically in SI Text.

Bayesian Inference and McMC. Let θ be the parameter vector containing the
model parameters described in Transmission Model. Estimation for the model
parameters was performed in the Bayesian framework (i.e., we estimated the
parameters from the posterior distributions for the parameters). Denoting
the observed data by x and the joint likelihood for all households by Lðθ; xÞ, the
posterior distribution of parameters given xwas PðθjxÞ∝ Lðθ; xÞπðθÞ, where πðθÞ
was the assumed prior distribution for θ. We used marginal noninformative
uniform priors for individual parameters in θ (i.e., πðθiÞ≈Uðc,dÞ, where c and
d represented conservative lower and upper bound of θi). Markov chain Monte
Carlo techniques (40) were applied to obtain the posterior distribution, i.e., we
constructed the Markov chain in such a way that the stationary distribution was
the posterior distribution PðθjxÞ of interest. Details of the construction of the
likelihood function and of the McMC algorithm are given in SI Text.

Hidden Infection Process. Symptom onset and RT-PCR are not perfect in-
dicators for an infection [e.g., the symptom onset might have a different
etiology, and the sensitivity of RT-PCR is only high at the time of peak in-
fectiousness (26–28)]. To handle this uncertainty and to capture more ac-
curately the underlying transmission dynamics, we required an algorithm
that allows proper probabilistic transitions of a household member between
the status of infected and noninfected. Specifically, we applied a reversible
jump algorithm (41, 42) in which deletion (i.e., transit from infected to
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noninfected) and addition (i.e., transit from noninfected to infected) of an
infection is allowed. More details on the inference of times on infection and

how the process parameters and infection times were updated in the same
algorithm are given in SI Text.
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