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Abstract

We consider estimation of and inference for the mean outcome under the optimal dynamic two 

time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic 

treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the 

baseline and intermediate covariates. This estimation problem is addressed in a statistical model 

for the data distribution that is nonparametric beyond possible knowledge about the treatment and 

censoring mechanism. This contrasts from the current literature that relies on parametric 

assumptions. We establish that the mean of the counterfactual outcome under the optimal dynamic 

treatment is a pathwise differentiable parameter under conditions, and develop a targeted 

minimum loss-based estimator (TMLE) of this target parameter. We establish asymptotic linearity 

and statistical inference for this estimator under specified conditions. In a sequentially randomized 

trial the statistical inference relies upon a second-order difference between the estimator of the 

optimal dynamic treatment and the optimal dynamic treatment to be asymptotically negligible, 

which may be a problematic condition when the rule is based on multivariate time-dependent 

covariates. To avoid this condition, we also develop TMLEs and statistical inference for data 

adaptive target parameters that are defined in terms of the mean outcome under the estimate of the 

optimal dynamic treatment. In particular, we develop a novel cross-validated TMLE approach that 

provides asymptotic inference under minimal conditions, avoiding the need for any empirical 

process conditions. We offer simulation results to support our theoretical findings.
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1 Introduction

Suppose we observe n in4dependent and identically distributed observations of a time-

dependent random variable consisting of baseline covariates, initial treatment and censoring 

indicator, intermediate covariates, subsequent treatment and censoring indicator, and a final 

outcome. For example, this could be data generated by a sequentially randomized controlled 
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trial (RCT) in which one follows up a group of subjects, and treatment assignment at two 

time points is sequentially randomized, where the probability of receiving treatment might 

be determined by a baseline covariate for the first-line treatment, and time-dependent 

intermediate covariate (such as a biomarker of interest) for the second-line treatment [1]. 

Such trials are often called sequential multiple assignment randomized trials (SMART). A 

dynamic treatment rule deterministically assigns treatment as a function of the available 

history. If treatment is assigned at two time points, then this dynamic treatment rule consists 

of two rules, one for each time point [1–4]. The mean outcome under a dynamic treatment is 

a counterfactual quantity of interest representing what the mean outcome would have been if 

everybody would have received treatment according to the dynamic treatment rule [5–11]. 

Dynamic treatments represent prespecified multiple time-point interventions that at each 

treatment-decision stage are allowed to respond to the currently available treatment and 

covariate history. Examples of multiple time-point dynamic treatment regimes are given in 

Lavori and Dawson [12, 13]; Murphy [14]; Rosthøj et al. [15]; Thall et al. [16, 17]; Wagner 

et al. [18]; Petersen et al. [19]; van der Laan and Petersen [20]; and Robins et al. [21], 

ranging from rules that change the dose of a drug, change or augment the treatment, to 

making a decision on when to start a new treatment, in response to the history of the subject.

More recently, SMART designs have been implemented in practice: Lavori and Dawson 

[12, 22]; Murphy [14]; Thall et al. [16]; Chakraborty et al. [23]; Kasari [24]; Lei et al. [25]; 

Nahum-Shani et al. [26, 27]; Jones [28]; Lei et al. [25]. For an extensive list of SMARTs, 

we refer the reader to the website http://methodology.psu.edu/ra/adap-inter/projects. For an 

excellent and recent overview of the literature on dynamic treatments we refer to 

Chakraborty and Murphy [29].

We define the optimal dynamic multiple time-point treatment regime as the rule that 

maximizes the mean outcome under the dynamic treatment, where the candidate rules are 

restricted to only respond to a user-supplied subset of the baseline and intermediate 

covariates. The literature on Q-learning shows that we can describe the optimal dynamic 

treatment among all dynamic treatments in a sequential manner [14, 30–33]. The optimal 

rule can be learned through fitting the likelihood and then calculating the optimal rule under 

this fit of the likelihood. This approach can be implemented with maximum likelihood 

estimation based on parametric models. It has been noted (e.g., Robins [32], Chakraborty 

and Murphy [29]) that the estimator of the parameters of one of the regressions (except the 

first one) when using parametric regression models is a non-smooth function of the 

estimator of the parameters of the previous regression, and that this results in non-regularity 

of the estimators of the parameter vector. This raises challenges for obtaining statistical 

inference, even when assuming that these parametric regression models are correctly 

specified. Chakraborty and Murphy [29] discuss various approaches and advances that aim 

to resolve this delicate issue such as inverting hypothesis testing [32], establishing non-

normal limit distributions of the estimators (E. Laber, D. Lizotte, M. Qian, S. Murphy, 

submitted), or using the m out of n bootstrap.

Murphy [30] and Robins [31, 32] developed structural nested mean models tailored to 

optimal dynamic treatments. These models assume a parametric model for the “blip 

function” defined as the additive effect of a blip in current treatment on a counterfactual 
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outcome, conditional on the observed past, in the counterfactual world in which future 

treatment is assigned optimally. Statistical inference for the parameters of the blip function 

proceeds accordingly, but Robins [32] points out the irregularity of the estimator, resulting 

in some serious challenges for statistical inference as referenced above. Structural nested 

mean models have also been generalized to blip functions that condition on a 

(counterfactual) subset of the past, thereby allowing the learning of optimal rules that are 

restricted to only using this subset of the past [32] and Section 6.5 in van der Laan and 

Robins [34].

An alternative approach, referenced as the direct approach in Chakraborty and Murphy [29], 

uses marginal structural models (MSMs) for the dynamic regime-specific mean outcome for 

a user-supplied class of dynamic treatments. If one assumes the marginal structural models 

are correctly specified, then the parameters of the marginal structural model map into a 

dynamic treatment that is optimal among the user-supplied class of dynamic regimes. In 

addition, the MSM also provides the complete dose–response curve, that is, the mean 

counterfactual outcome for each dynamic treatment in the user-supplied class. This 

generalization of the original marginal structural models for static interventions to MSMs 

for dynamic treatments was developed independently by Orellana et al. [35]; van der Laan 

and Petersen [20]. These articles present inverse probability of treatment and censoring 

weighted (IPCW) estimators and double robust augmented IPCW estimators based on 

general longitudinal data structures, allowing for right censoring, time-dependent covariates, 

and survival outcomes. Double robust estimating equation-based methods that estimate the 

nuisance parameters with sequential parametric regression models using clever covariates 

were developed for static intervention MSMs by Bang and Robins [36]. An analogous 

targeted minimum loss-based estimator (TMLE) [37–39] was developed for marginal 

structural models for a user-supplied class of dynamic treatments by Petersen et al. [40]. 

This estimator builds on the TMLE for the mean outcome for a single dynamic treatment 

developed by van der Laan and Gruber [41]. Additional application papers of interest are 

[42–44] which involve fitting MSMs for dynamic treatments defined by treatment-tailoring 

threshold using IPCW methods.

Each of the above referenced approaches for learning an optimal dynamic treatment that also 

aims to provide statistical inference relies on parametric assumptions: obviously, Q-learning 

based on parametric models, but also the structural nested mean models and the marginal 

structural models both rely on parametric models for the blip function and dose–response 

curve, respectively. As a consequence, even in a SMART, the statistical inference for the 

optimal dynamic treatment heavily relies on assumptions that are generally believed to be 

false, and will thus be expected to be biased.

To avoid such biases, we define the statistical model for the data distribution as 

nonparametric, beyond possible knowledge about the treatment mechanism (e.g., known in 

an RCT) and censoring mechanism. This forces us to define the optimal dynamic treatment 

and the corresponding mean outcome as parameters defined on this nonparametric model, 

and to develop data adaptive estimators of the optimal dynamic treatment. In order to not 

only consider the most ambitious fully optimal rule, we define the V-optimal rules as the 

optimal rule that only uses a user-supplied subset V of the available covariates. This allows 
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us to consider suboptimal rules that are easier to estimate and thereby allow for statistical 

inference for the counterfactual mean outcome under the suboptimal rule. This is analogous 

to the generalized structural nested mean models whose blip functions only condition on a 

counterfactual subset of the past. In a companion article we describe how to estimate the V-

optimal rule.

In Example 4 of Robins et al. [45], the authors develop an asymptotic confidence set for the 

optimal treatment regime in an RCT under a large semiparametric model that only assumes 

that the treatment mechanism is known. This confidence set is certainly of interest and 

warrants further consideration in the optimal treatment literature. They get this confidence 

set by deriving the efficient influence curve for the mean squared blip function. They 

propose selecting a data adaptive estimate of the optimal treatment rule by a particular cross-

validation scheme over a set of basis functions, and show that this estimator achieves a data 

adaptive rate of convergence under smoothness assumptions on the blip function. Our work 

is distinct from this earlier work in that the earlier work does not directly consider the mean 

outcome under the optimal rule and only considers data generated by a point treatment RCT.

In this article we describe how to obtain semiparametric inference about the mean outcome 

under the two time point V-optimal rule. We will show that the mean outcome under the 

optimal rule is a pathwise differentiable parameter of the data distribution, indicating that it 

is possible to develop asymptotically linear estimators of this target parameter under 

conditions. In fact, we obtain the surprising result that the pathwise derivative of this target 

parameter equals the pathwise derivative of the mean counterfactual outcome under a given 

dynamic treatment rule set at the optimal rule, treating the latter as known. By a reference to 

the current literature for double robust and efficient estimation of the mean outcome under a 

given rule, we then obtain a TMLE for the mean outcome under the optimal rule. 

Subsequently, we prove asymptotic linearity and efficiency of this TMLE, allowing us to 

construct confidence intervals for the mean outcome under the optimal dynamic treatment or 

its contrast with respect to a standard treatment. Thus, contrary to the irregularity of the 

estimators of the unknown parameters in the semiparametric structural nested mean model, 

we can construct regular estimators of the mean outcome under the optimal rule in the 

nonparametric model.

In a SMART the statistical inference would only rely upon a second-order difference 

between the estimator of the optimal dynamic treatment and the optimal dynamic treatment 

itself to be asymptotically negligible. This is a reasonable condition if we restrict ourselves 

to rules only responding to a one-dimensional time-dependent covariate, or if we are willing 

to make smoothness assumptions. To avoid this condition, we also develop TMLEs and 

statistical inference for data adaptive target parameters that are defined in terms of the mean 

outcome under the estimate of the optimal dynamic treatment (see van der Laan et al. [46] 

for a general approach for statistical inference for data adaptive target parameters). In 

particular, we develop a novel cross-validated TMLE (CV-TMLE) approach that provides 

asymptotic inference under minimal conditions.

For the sake of presentation, we focus on two time point treatments in this article. In the 

appendices of our earlier technical reports [47, 48] we generalize these results to general 
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multiple time point treatments, and develop general (sequential) super-learning based on the 

efficient CV-TMLE of the risk of a candidate estimator. In this appendix we also develop a 

TMLE of a projection of the blip functions on a parametric working model (with 

corresponding statistical inference, which presents a result of interest in its own right). We 

emphasize that this technical report is distinct from our companion paper in this issue, which 

focuses on the data adaptive estimation of optimal treatment strategies.

1.1 Organization of article

Section 2 defines the mean outcome under the optimal rule as a causal parameter and gives 

identifiability assumptions under which the causal parameter is identified with a statistical 

parameter of the observed data distribution.

The remainder of the paper describes strategies to estimate the counterfactual mean outcome 

under the optimal rule and related quantities. This paper assumes that we have an estimate of 

the optimal rule in our semiparametric model. In our companion paper we describe how to 

obtain estimates of the V-optimal rule.

The first part of this article concerns estimation of the mean outcome under the optimal rule. 

Section 3 establishes the pathwise differentiability of the mean outcome under the V-optimal 

rule conditions. A closed form expression for the efficient influence curve for this statistical 

parameter is given, which represents a key ingredient in semiparametric inference for the 

statistical target parameter. We obtain the surprising result that, under straightforward 

conditions, estimating the mean outcome under the unknown optimal treatment rule is the 

same in first order as estimating the mean outcome under the optimal rule when the rule is 

known from the outset. Section 4 presents the key properties of a TMLE for the mean 

outcome under the optimal rule, which is presented in detail in “TMLE of the mean outcome 

under a given rule” in Appendix B due to its similarity to TMLEs presented previously in 

the literature. Section 5 presents an asymptotic linearity theorem for this TMLE and 

corresponding statistical inference.

The second part of this article concerns statistical inference for data adaptive target 

parameters that are defined in terms of the mean outcome under the estimate of the optimal 

dynamic treatment, thereby avoiding the consistency and rate condition for the fitted V-

optimal rule as required for asymptotic linearity of the TMLE of the mean outcome under 

the actual V-optimal rule. These results are of interest in practice because an estimated, 

possibly suboptimal, rule will be implemented in the population, not some unknown optimal 

rule. Section 6 presents an asymptotic linearity theorem for the TMLE presented in Section 

4, but now with the target parameter defined as the mean outcome under the estimated rule. 

In Section 7 we present the CV-TMLE framework. A specific CV-TMLE algorithm is 

described in “CV-TMLE of the mean outcome under data adaptive V-optimal rule” in 

Appendix B due to its similarity to CV-TMLEs presented previously in the literature. The 

CV-TMLE provides asymptotic inference under minimal conditions for the mean outcome 

under a dynamic treatment fitted on a training sample, averaged across the different splits in 

training sample and validation sample. Both results allow us to construct confidence 

intervals that have the correct asymptotic coverage of the random true target parameter, and 

the fixed mean outcome under the optimal rule under conditions, but statistical inference 
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based on the CV-TMLE does not require an empirical process condition that would put a 

brake on the allowed data adaptivity of the estimator.

Section 8 presents the simulation methods. The simulations estimate the optimal rule using 

an ensemble algorithm presented in our companion paper, and then given this estimate apply 

the estimators of the optimal rule presented in this paper. Section 9 presents the coverage 

and efficiency of the various estimators in our simulation. Appendix C gives analytic 

intuition as to why some of the simulation results may have occurred. Section 10 closes with 

a discussion and directions for future work.

All proofs can be found in Appendix A.

2 Formulation of optimal dynamic treatment estimation problem

Suppose we observe n i.i.d. copies  of

where A(j) = (A1(j), A2(j)), A1(j) is a binary treatment, and A2(j) is an indicator of not being 

right censored at “time” j, j = 0, 1. That is, A2(0) = 0 implies that (L(1), A1(1), Y) is n ot 

observed, and A2(1) = 0 implies that Y is not observed. Each time point j has covariates L(j) 

that precede treatment, j = 0, 1, and the outcome of interest is given by Y and occurs after 

time point 1. For a time-dependent process X(·), we use the notation , 

where . Let  be a statistical model that makes no assumptions on the marginal 

distribution Q0,L(0) of L(0) and the conditional distribution Q0,L(1) of L(1), given A(0), L(0), 

but might make assumptions on the conditional distributions g0A(j) of A(j), given , 

, j = 0, 1. We will refer to g0 as the intervention mechanism, which can be factorized in 

a treatment mechanism g01 and censoring mechanism g02 as follows:

In particular, the data might have been generated by a SMART, in which case g01 is known.

Let V(1) be a function of (L(0), A(0), L(1)), and let V(0) be a function of L(0). Let V = (V(0), 

V(1)). Consider dynamic treatment rules V(0) → dA(0)(V(0)) ∈ {0, 1} × {1} and (A(0), V(1)) 

→ dA(1)(A(0), V(1)) ∈ {0, 1} × {1} for assigning treatment A(0) and A(1), respectively, 

where the rule for A(0) is only a function of V(0), and the rule for A(1) is only a function of 

(A(0), V(1)). Note that these rules are restricted to set the censoring indicators A2(j) = 1, j = 

0, 1. Let  be the set of all such rules. We assume that V(0) is a function of V(1) (i.e., 

observing V(1) includes observing V(0)), but in the theorem below we indicate an alternative 

assumption. For , we let
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If we assume a structural equation model [7] for variables stating that

where the collection of functions f = (fL(0), fA(0), fL(1), fA(1)) is unspecified or partially 

specified, we can define counterfactuals Yd defined by the modified system in which the 

equations for A(0), A(1) are replaced by A(0) = dA(0)(V(0)) and A(1) = dA(1)(A(0), V(1)), 

respectively. Denote the distribution of these counter-factual quantities as P0,d, where we 

note that P0,d is implied by the collection of functions f and the joint distribution of 

exogeneous variables (UL(0), UA(0), UL(1), UA(1), UY). We can now define the causally 

optimal rule under P0,d as . If we assume a sequential 

randomization assumption stating that A(0) is independent of UL(1), UY, given L(0), and A(1) 

is independent of UY, given , A(0), then we can identify P0,d with observed data under 

the distribution P0 using the G-computation formula:

(1)

where p0,d is the density of P0,d and q0,L(0), q0,L(1), and q0,Y are the densities for Q0,L(0), 

Q0,L(1), and Q0,Y, respectively, where Q0,Y represents the distribution of Y given , . 

We assume that all densities above are absolutely continuous with respect to some 

dominating measure μ. We have a similar identifiability result/G-computation formula under 

the Neyman-Rubin causal model [8]. For the right censoring indicators A2(0) and A2(1), we 

note the parallel between the coarsening at random assumption and the sequential 
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randomization assumption [49]. Thus here we have encoded our missingness assumptions in 

our causal assumptions.

More generally, for a distribution  we can define the G-computation distribution Pd 

as the distribution with density

where qL(0), qL(1), and qY are the counterparts to q0,L(0), q0,L(1), and q0,Y, respectively, under 

P.

For the remainder of this article, if for a static or dynamic intervention d, we use notation Ld 

(or Yd, Od) we mean the random variable with the probability distribution Pd in (1) so that 

all of our quantities are statistical parameters. For example, the quantity EP0(Ya(0)a(1)|

Va(0)(1)) defined in the next theorem denotes the conditional expectation of Ya(0)a(1), given 

Va(0)(1), under the probability distribution P0,a(0)a(1) (i.e., G-computation formula presented 

above for the static intervention (a(0), a(1)). In addition, if we write down these parameters 

for some Pd, we will automatically assume the positivity assumption at P required for the G-

computation formula to be well defined. For that it will suffice to assume the following 

positivity assumption at P:

(2)

The strong positivity assumption will be defined as the above assumption, but where the 0 is 

replaced by a δ > 0.

We now define a statistical parameter representing the mean outcome Yd under Pd. For any 

rule , let

For a distribution P, define the V-optimal rule as

For simplicity, we will write d0 instead of dP0 for the V-optimal rule under P0. Define the 

parameter mapping . The first part of this article is 

concerned with inference for the parameter
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Under our identifiability assumptions, d0 is equal to the causally optimal rule . Even if the 

sequential randomization assumption does not hold, the statistical parameter ψ0 represents a 

statistical parameter of interest in its own right. We will not concern ourselves with the 

sequential randomization assumption for the remainder of this paper.

The next theorem presents an explicit form of the V-optimal individualized treatment rule d0 

as a function of P0.

Theorem 1. Suppose V(0) is a function of V(1). The V-optimal rule d0 can be represented 

as the following explicit parameter of P0:

where a(0) ∈ {0, 1} × {1}. If V(1) does not include V(0), but, for all (a(0), a(1)) ∈ {{0, 1} × 

{1}}2,

(3)

then the above expression for the V-optimal rule d0 is still true.

3 The efficient influence curve of the mean outcome under V-optimal rule

In this section we establish the pathwise differentiability of Ψ and give an explicit 

expression for the efficient influence curve [34, 50, 51]. Before presenting this result, we 

give the efficient influence curve for the parameter  where Ψd(P) ≡ EPYd and the 

rule d = (dA(0), dA(1))  is treated as known. This influence curve has previously been 

presented in the literature [36, 41]. The parameter mapping Ψd has efficient influence curve:

where

(4)
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Above (gA(0), gA(1)) is the intervention mechanism under the distribution P. We remind the 

reader that Yd has the G-computation distribution from (1) so that:

At times it will be convenient to write  instead of , where Qd 

represents both of the conditional expectations in the definitions of  and the marginal 

distribution of L(0) under P and g represents the intervention mechanism under P. We will 

denote these conditional expectations under P0 for a given rule d by . We will similarly at 

times denote D* (d, P) by D* (d, Qd, g).

Whenever D* (P) does not contain an argument for a rule d, this D* (P) refers to the 

efficient influence curve of the parameter mapping Ψ for which Ψ(P) = EPYdP, where the 

optimal rule dP under P is not treated as known. Not treating dP as known means that dP 

depends on the input distribution P in the mapping Ψ(P). The following theorem presents 

the efficient influence curve of Ψ at a distribution P. The main condition on this distribution 

P is that

(5)

where  and  are defined analogously to  and  in Theorem 1 with the expectations 

under P0 replaced by expectations under P. That is, we assume that each of the blip 

functions under P is nowhere zero with probability 1. Distributions that do not satisfy this 

assumption have been referred to as “exceptional laws” [32, 52]. These laws are indeed 

exceptional when one expects that treatment will have a beneficial or harmful effect in all V-

strata of individuals. When one only expects that treatment will have an effect on outcome 

in some but not all strata of individuals then this assumption may be violated. We will make 

this assumption about P0 for all subsequent asymptotic linearity results about EP0Yd0, and 

we will assume a weaker but still not completely trivial assumption for the data adaptive 

target parameters in Sections 6 and 7.

Theorem 2. Suppose  such that PrP(|Y| <M) = 1 for some M <∞ and the positivity 

assumption (2) and (5). Then the parameter  is pathwise differentiable at P with 

canonical gradient given by

That is, D*(P) equals the efficient influence curve D*(dP, P) for the parameter ψd(P)≡EPYd 

at the V-optimal rule d = dP, where ψd treats d as given.
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The above theorem is proved as Theorem 8 in van der Laan and Luedtke [48] so the proof is 

omitted here.

We will at times denote D*(P) by D*(Q, g), where Q represents QdP, along with portions of 

the likelihood which suffice to compute the V-optimal rule dP. We denote dP by dQ when 

convenient. We explore which parts of the likelihood suffice to compute the V-optimal rule 

in our companion paper, though Theorem 1 shows that  and  suffice for d0 (and 

analogous functions suffice for a more general dP). We have the following property of the 

efficient influence curve, which will provide a fundamental ingredient in the analysis of the 

TMLE presented in the next section.

Theorem 3. Let dQ be the V-optimal rule corresponding with Q. For any Q, g, we have

where for all 

ψd(P) = EPYd is the statistical target parameter that treats d as known, and  is 

the efficient influence curve of ψd at P0 as given in Theorem 2. In addition,

From the study of the statistical target parameter ψd in van der Laan and Gruber [41], we 

know that , where R1d is a 

closed form second-order term involving integrals of differences  times differences 

g − g0.

The following lemma bounds R2. We note that this lemma, which concerns how well we can 

estimate d0 rather than how well we can make inference about EP0Yd0, does not require 

condition (5) to hold. We showed in Theorem 1 that knowing the blip functions  and 

suffices to define the optimal rule d0. For general Q, we will let  and  represent the blip 

functions under this parameter mapping.

Lemma 1. Let R2 be as in Theorem 3. Let P0,(0,1) represent the static intervention-specific 

G-computation distribution where treatment (0, 1) is given at the first time point. Suppose 

there exist some β1, β2 > 1 such that:

van der Laan and Luedtke Page 11

J Causal Inference. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(6)

where the expression in each expectation is taken to be 0 when the indicator is 0. Fix p ∈ (1, 

∞] and define h : (1, ∞] × (1, ∞) as the function for which  when p<∞ 

and h(p, β) = β + 1 otherwise. Then:

where ∥·∥p,P denotes the Lp,P norm for the distribution P and K1, K2 ≥ 0 are finite constants 

that respectively rely on p, P0, β1 and p, P0,(0,1), β2.

The conditions in (6) are moment bounds which ensure that  and  do not put too 

much mass around zero. To get the tightest bound, we should always choose β1, β2 to be as 

large as possible. We remind the reader that convergence in Lp,P implies convergence in Lq,P 

for all distributions P and 1 ≤ q ≤ p ≤ ∞. Hence there is a trade-off between the chosen 

bounding norm, Lp,P, and the rate we need to obtain with respect to that norm so that the 

term can be expected to be of order n−1/2. See Table 1 for some examples of rates of 

convergence that suffice to give R2A(0) = oP0 (n−1/2).

Using the upper bound on  and applying Cauchy-Schwarz inequality to eq. (15) in the 

proof of the lemma shows that:

Hence R2A(0) = oP0 (n−1/2) without any moment condition when 

, which occurs when one has correctly specified a parametric 

model for . In general it is unlikely that one can correctly specify a parametric model for 

. In these cases, Lemma 1 shows that the term R2A(0) will still be oP0 (n−1/2) if a moment 

condition holds and  is estimated at a sufficient rate. The analogue holds for .

The bounds given in Lemma 1 are loose. It is not in general necessary to estimate the blip 

functions  and  correctly, only their signs. As an extreme example of the looseness of 

the bounds, one can have that  as n → ∞ and still 
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have that R2A(0)(Q, Qn) = 0 for all n. Nonetheless, these bounds give interpretable sufficient 

conditions under which the term R2 converges faster than a root-n rate. We consider 

methods that do not directly estimate the blip functions in our companion paper.

4 TMLE of the mean outcome under V-optimal rule

Throughout this and the next section we assume that condition (5) holds at P0. Our proposed 

TMLE is to first estimate the optimal rule d0, giving us an estimated rule dn(A(0),V) = 

dn,A(0)(V(0)),dn,A(1)(A(0),V(1)), and subsequently apply the TMLE of EYd for a fixed rule d 

at dn = dn as presented in van der Laan and Gruber [41]. This TMLE is an analogue of the 

double robust estimating equation method presented in Bang and Robins [36]: see also 

Petersen et al. [40] for a generalization of the TMLE to marginal structural models for 

dynamic treatments. In a companion paper we describe a data adaptive estimator of d0. In 

this paper we take dn as given. We review the TMLE for ψd(P0) = EP0Yd at a fixed rule d in 

“TMLE of the mean outcome under a given rule” in Appendix B. Observations which are 

only partially observed due to right censoring do not cause a problem for the TMLE. In 

particular, the TMLE only uses individuals who are not right censored at the first or second 

time point to obtain initial estimates of EP0[Yd|A(0) = dA(0)(V(0)),L(0)] and 

 in (4), respectively. See the appendix for details.

Here we note some of the key properties of the TMLE. Let  consist of the empirical 

distribution QL(0),n of L(0), a regression function  that estimates 

EP0[Yd|L(0)], and a regression function

that estimates , where we note that v is a function of 

. In the appendix we describe our proposed algorithm to get the estimates in . The 

proposed TMLE for ψ0 = EP0Yd0 is given by

where we have applied the TMLE in the appendix to the case where d = dn, treating dn as 

known. Note that  is a plug-in estimator in that it is obtained by plugging 

into the parameter mapping Qd ↦ ψd(Qd) for d = dn. We expect our plug-in estimator to 

give reasonable estimates in finite samples because it naturally respects the constraints of 

our model. In the next section we show that this estimator also enjoys many desirable 

asymptotic properties.
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Recall that D*(d, Qd, g) is the efficient influence curve for the target parameter EP0Yd which 

treats d as fixed, and Theorem 2 showed that  is the efficient influence curve 

of the target parameter EYd0 where d0 is the V-optimal rule. The TMLE  described 

in the appendix solves the efficient influence curve estimating equation:

(7)

Further, one can show using standard M-estimator analysis that the targeted  proposed 

in the appendix maintains the same rate of convergence as the initial estimator  under 

very mild conditions. We do not concern ourselves with these conditions in this paper, and 

will instead state all conditions directly in terms of . The above will be a key ingredient 

in proving the asymptotic linearity of the TMLE for ψ0 = EP0Yd0.

5 Asymptotic efficiency of the TMLE of the mean outcome under the V-

optimal rule

We now wish to analyze the TMLE  of . We first 

give a representation that will allow us to prove the asymptotic linearity of the TMLE under 

conditions. The result allows  to be misspecified, even though the intervention 

mechanism g0 and the rule dn are assumed to be consistent for g0 and d0, respectively.

Theorem 4. Assume Y ∈ [0,1], the strong positivity assumption, condition (5) at p0,

 falls in a P0-Donsker class with probability tending to 1, 

 converges to zero in probability for some Qd0, and

where R2 is defined in Theorem 3 and an upper bound is established in Lemma 1. Then

(8)

where R1d is defined in Theorem 3.

The proof of the above theorem, which is given in the appendix, makes use of the fact that 

the TMLE satisfies (7). We now give two sets of conditions which control the remainder 

term R1dn in (8) to prove the asymptotic linearity of the TMLE. The first result is an 

immediate consequence of the fact that  whenever gn = g0.

Corollary 1. Suppose the conditions of Theorem 4 further suppose that gn = g0 (i.e., RCT). 

Then:
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That is,  is asymptotically linear with influence curve D* (d0, Qd0, g0).

The next corollary is more general in that it applies to situations where the intervention 

mechanism g0 is estimated from the data. The above result emerges as a special case.

Corollary 2. Suppose all of the conditions of Theorem 4 hold, and that

for some Qdn. In addition, we assume the following asymptotic linearity condition on a 

smooth functional of gn:

(9)

for some function . Then,

(10)

If it is also know that gn is an MLE of g0 according to a correctly specified model G for g0 

with tangent space Tg(P0) at P0, then (9) holds with

(11)

where Π(·Tg(P0)) denotes the projection operator onto  in the Hilbert 

space .

Equation (11) is a corollary of Theorem 2.3 of van der Laan and Robins [34]. The rest of the 

theorem is the result of a simple rearrangement of terms, so the proof is omitted.

Condition (9) is trivially satisfied in a randomized clinical trial without missingness, where 

we can take gn = g0 and thus Dg(P0) is the constant function 0. Nonetheless, (11) suggests 

that it would be better to estimate g0 using a parametric model that contains the true (known) 

intervention mechanism. For example, at each time point one may use a main terms linear 

logistic regression with treatment and covariate histories as predictors. If  consistently 

estimates , then D* (d0, Qd0, g0) is orthogonal to Tg(P0) and hence the projection in (11) 

is the constant function 0. Otherwise the projection will decrease the variance of 

without affecting asymptotic bias, thereby increasing the asymptotic efficiency of the 

estimator. One can then use an empirical estimate of the variance of D*(d0, Qd0, g0) to get 

asymptotically conservative confidence intervals for ψ0.
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5.1 Asymptotic linearity of TMLE in a SMART setting

Suppose the data is generated by a sequential RCT and there is no missingness so that g0 is 

known. Further suppose that (5) holds at P0, that is, that treating at each time point has either 

a positive or negative effect with probability 1, regardless of the choice of the regimen at 

earlier time points. In addition, assume that V(0) and V(1) are both univariate scores, and 

assume condition (3) so that the optimal rule d0,A(1) based on (A(0), V(0), V(1)) is the same 

as the optimal rule d0,A(1) based on A(0), V(1): for example, V(1) is the same score as V(0) 

but measured at the next time point, so that it is reasonable to assume that an effect of V(0) 

on Y will be fully blocked by V(1). Suppose we want to use the data of the RCT to learn the 

V-optimal rule d0 and provide statistical inference for EP0Yd0. Further suppose that the 

moment conditions in Lemma 1 hold with β1 = β2 = 2. Since both V(0) and V(1) are one-

dimensional, using kernel smoothers or sieve-based estimation to generate a library of 

candidate estimators for the sequential loss-based super-learner of the blip functions 

( ) described in our companion paper, we can obtain an estimator 

of  that converges in L2 at a rate such as n−2/5 under the assumption that 

 are continuously differentiable with a uniformly bounded derivative, or at a better 

rate under additional smoothness assumptions. As a consequence, in this case R2(Qn, Q0) = 

OP0 (n−3/5) = OPo(n−1/2) by Lemma 1. As a consequence, all conditions of Theorem 4 hold, 

and it follows that the proposed TMLE is asymptotically linear with influence curve D* (d0, 

Qd0, g0), where Qd0 is the possibly misspecified limit of Qdn* in the TMLE. To conclude, 

sequential RCTs allow us to learn V-optimal rules at adaptive optimal rates of convergence, 

and allow valid asymptotic statistical inference for EP0 Yd0. If V(j) is higher dimensional, 

then one will have to rely on enough smoothness assumptions on the blip functions and/or 

moment conditions on  and  from Lemma 1 in order to guarantee that 

.

If there is right censoring, then g0 = g01g02 factors in a treatment mechanism g01 and 

censoring mechanism g02, where g01 is known, but g02 is typically not known. Having a lot 

of knowledge about how censoring depends on the observed past might make it possible to 

obtain a good estimator of g02. In that case, the above conclusions still apply, but one now 

estimates the nuisance parameters of the loss function (e.g., one uses a double robust loss 

function in which g02 is replaced by an estimator, see our companion paper).

5.2 Statistical inference

Suppose one wishes to estimate the mean outcome under the optimal rule EP0 Yd0 and that 

(5) holds. Above we developed the TMLE  for EP0 Yd0. By Corollary 1, if gn = g0 is 

known, this TMLE of ψ0 is asymptotically linear with influence curve IC(P0) = D* (d0, Qd0, 

g0). If gn is an MLE according to a model with tangent space Tg(P0), then the TMLE is 

asymptotically linear with influence curve
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so that one could use IC(P0) as a conservative influence curve. Let ICn be an estimator of 

this influence curve IC(P0) obtained by plugging in the available estimates of its unknown 

components. The asymptotic variance of the TMLE  of ψ0 can now be (conservatively) 

estimated with

An asymptotic 95% confidence interval for ψ0 is given by .

6 Statistical inference for mean outcome under data adaptively determined 

dynamic treatment

Let  be an estimator that maps an empirical distribution into an individualized 

treatment rule. See our companion paper for examples of possible estimators . Let 

 be the estimated rule. Up until now we have been concerned with statistical 

inference for EP0 Yd0, where d0 is the unknown V-optimal rule while dn is a best estimator of 

this rule. As a consequence, statistical inference for EP0 Yd0 based on the TMLE relied on 

consistency of dn to d0, but also relied on the rate of convergence at which dn converges to 

d0, that is, . In this section we present statistical inference for the 

data adaptive target parameter

That is, we construct an estimator  of  and a confidence interval so 

that

where  is a consistent estimator of the standard error of . Note that in this 

definition of the confidence interval the target parameter is itself also a random variable 

through the data Pn.

We do not assume that (5) holds in this section, but we do implicitly make the weaker 

assumption that dn → d1 for some  in assumption (12) of Theorem 5. Statistical 

inference will be based on the same TMLE of ψd(P0) at d = dn, and our variance estimator 

will also be the same, but since the target is not ψd0 (P0) but ψdn(P0), there will be no need 

for dn to even be consistent for d0, let alone converge at a particular rate. As a consequence, 

this approach is particularly appropriate in cases where V is high dimensional so that it is not 

reasonable to expect that dn converges to d0 at the required rate. Another motivation for this 

data adaptive target parameter is that, even when statistical inference for EP0 Yd0 is feasible, 
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one might be interested in statistical inference for the mean outcome under the concretely 

available rule dn instead of under the unknown rule d0.

As shown in the proof of Theorem 3, 

. Further, , 

which yields

This relation is key to the proof of the following theorem, which is analogous to Theorem 4. 

Note crucially that the theorem does not have any conditions on the remainder term R2, nor 

does it require that dn converge to the optimal rule d0.

Theorem 5. Assume Y ∈ [0, 1]. Let  with probability tending to 1, and assume 

the strong positivity assumption. Let ψ0n = ψdn(P0) = EP0 Yd|d=dn be the data adaptive target 

parameter of interest. Let R1d be as defined in Theorem 3.

Assume  falls in a P0 -Donsker class with probability tending to 1,

(12)

for some  and Qd1. Then,

If gn = g0 (i.e., RCT), then , so that  is asymptotically linear 

with influence curve D* (d1, Q, g0).

The proof of the above theorem is nearly identical to the proof of Theorem 4 so is omitted. 

For general gn,  under an analogous second-order 

term condition to the one assumed in Corollary 1. As in Corollary 2, the asymptotic 

efficiency may improve (and will not worsen) when a known intervention mechanism is fit 

using a correctly specified parametric model. See Theorem 11 in our online technical report 

for details [47].

7 Statistical inference for the average of sample-split specific mean 

counterfactual outcomes under data adaptively determined dynamic 

treatments

Again let  be an estimator that maps an empirical distribution into an 

individualized treatment rule. Let Bn ∈ {0, 1}n denote a random vector for a cross-validation 

split, and for a split Bn, let  be the empirical distribution of the training sample {i : Bn(i) 

van der Laan and Luedtke Page 18

J Causal Inference. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



= 0} and  is the empirical distribution of the validation sample {i : Bn(i) = 1}. Consider 

a J-fold cross-validation scheme. In J-fold cross-validation, the data is split into J mutually 

exclusive and exhaustive sets of size approximately n/J uniformly at random. Each set is 

then used as the validation set once, with the union of all other sets serving as the training 

set. With probability 1/J, Bn has value 1 in all indices in validation set j ∈ {1; …, J} and 0 

for all indices not corresponding to training set j.

In this section, we present a method that provides an estimator and statistical inference for 

the data adaptive target parameter

Note that  is different from the data adaptive target parameter ψ0n presented in the 

previous section. In particular, this target parameter is defined as the average of data 

adaptive parameters, where the data adaptive parameters are learned from the training 

samples of size approximately n/J. In the previous section, the data adaptive target 

parameter was defined as the mean outcome under the rule dn which was estimated on the 

entire data set. Again the target parameter is a random quantity that relies on the sample of 

size n.

One applies the estimator  to each of the J training samples, giving a target parameter value 

, and our target parameter  is defined as the average across these J target 

parameters. Below we present a CV-TMLE  of this data adaptive target parameter . 

As in the previous section, we will be able to establish statistical inference for our estimate 

 without requiring that the estimated rules converge to d0, nor any rate condition on the 

estimated rules. Unlike the asymptotic linearity results in all previous sections, the results in 

this section do not rely on an empirical process condition (i.e., Donsker class condition). 

That means we obtain valid asymptotic statistical inference under essentially no conditions 

in a sequential RCT, even when dn is a highly data adaptive estimator of a V-optimal rule for 

a possibly high dimensional V. Under a consistency and rate condition (but no empirical 

process condition) on dn, we also get inference for EP0Yd0.

The next subsection defines the general CV-TMLE for data adaptive target parameters. We 

subsequently present an asymptotic linearity theorem allowing us to construct asymptotic 

95% confidence intervals.

7.1 General description of CV-TMLE

Here we give a general overview of the CV-TMLE procedure. In “CV-TMLE of the mean 

outcome under data adaptive V-optimal rule” in Appendix B we present a particular CV-

TMLE which satisfies all of the properties described in this section. Denote the realizations 

of Bn with j = 1, …, J, and let  for some estimator of the optimal rule . Let
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represent an initial estimate of  based on the training 

sample j. Similarly, let l(0) ↦ Enj[Ydnj |L(0) = l(0)] represent an initial estimate of EP0[Ydnj |

L(0)] based on the training sample j. Finally, let QL(0),nj represent the empirical distribution 

of L(0) in validation sample j. We then fluctuate these three regression functions using the 

following submodels:

where these submodels rely on an estimate gnj of g0 based on training sample j and are such 

that:

Let  represent the parameter mapping that gives the three regression functions above 

fluctuated by ε≡(ε0, ε1, ε2). For a fixed ε,  only relies on  through the empirical 

distribution of L(0) in validation sample j. Let ϕ be a valid loss function for  so that 

, and let ϕ and the submodels above satisfy

where 〈f〉 = {Σj βjfj : β} denotes the linear space spanned by the components of f. We choose 

εn to minimize  over . We then define the targeted estimate 

 of . We note that  maintains the rate of convergence of Qnj 

under mild conditions that are standard to M-estimator analysis. The key property that we 

need from the εn and the corresponding update  is that it (approximately) solves the 

cross-validated empirical mean of the efficient influence curve:

(13)
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The CV-TMLE implementation presented in the appendix satisfies this equation with 

 replaced by the 0. The proposed estimator of  is given by

In the current literature we have referred to this estimator as the CV-TMLE [53–56]. We 

give a concrete CV-TMLE algorithm for  in “CV-TMLE of the mean outcome under data 

adaptive V-optimal rule” in Appendix B, but note that other CV-TMLE algorithms can be 

derived using the approach in this section for different choices of loss function ϕ and 

submodels.

7.2 Statistical inference based on the CV-TMLE

We now proceed with the analysis of this CV-TMLE  of . We first give a 

representation theorem for the CV-TMLE that is analogous to Theorem 5.

Theorem 6. Let gnj and dnj represent estimates of g0 and d0 based on training sample j. Let 

 represent a targeted estimate of  as presented in Section 7.1 so that  satisfies 

(13). Let R1d be as in Theorem 3. Further suppose that the supremum norm of maxj 

 is bounded by some M <∞ with probability tending to 1, and that

for some  and possibly misspecified Qd1 and g. Then:

Note that d1 in the above theorem need not be the same as the optimal rule d0, though later 

we will discuss the desirable special case where d1 = d0. The above theorem also does not 

require that g0 is known, or even that the limit of our intervention mechanisms g is equal to 

g0. Nonetheless, we get the following asymptotic linearity result when g = g0 and gnj 

satisfies an asymptotic linearity condition on a smooth functional of gnj.

Corollary 3. Suppose the conditions from Theorem 6 hold with g = g0. Further suppose 

that:

for some Qdnj and that:
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(14)

We can conclude that:

The proof of the above result is just a rearrangement of terms so is omitted. Consider our 

setting. Suppose g0 is known so we can have that gnj = g0 for all j. Consider the estimator

of the asymptotic variance  of the CV-TMLE . An asymptotic 

95% confidence interval for  is given by . This same variance 

estimator and confidence interval can be used for the case that g0 is not known and each gnj 

is an MLE of g0 according to some model. In that case, it is an asymptotically conservative 

confidence interval (analogous to eq. (11) applied to Corollary 3).

Now consider the case where d1 from the above theorem is equal to the optimal rule d0 and 

condition (5) holds. For simplicity, also assume that g0 is known and gnj = g0. Then R1dnj is 

equal to 0 for all j, so Theorem 6 shows that the CV-TMLE for  is asymptotically linear 

with influence curve . If

is second order, that is, oP0 (n−1/2), where Qnj is analogous to Qn but only estimated on the 

training sample j, then the CV-TMLE is consistent and asymptotically normal estimator of 

the mean outcome under the optimal rule. If , then the CV-TMLE is also 

asymptotically efficient among all regular asymptotically linear estimators. One can apply 

bounds like those in Lemma 1 for each of the J terms above to understand the behavior of 

. Note crucially that this result does not rely on the restrictive empirical process 

conditions used in the previous sections, although it relies on a consistency and rate 

condition for asymptotic linearity with respect to the non-data adaptive parameter EP0Yd0.

8 Simulation methods

We start by presenting two single time point simulations. In earlier technical reports we 

directly describe the single time point problem [47, 48]. Here, we instead note that a single 

time point optimal treatment is a special case of a two time point treatment when only the 
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second treatment is of interest. In particular, we can see this by taking L(0) = V(0) = ∅, 

estimating  without any dependence on a(0), and correctly estimating  with the 

constant function zero. We note that, in this one time point formulation, we do not need (5) 

to hold for , so it may be more natural to view the single time point problem directly and 

use the single time point pathwise differentiability result in Theorem 2 of van der Laan and 

Luedtke [48]. We can then let I(A(0) = dn,A(0)(V(0))) = 1 for all A(0), V(0) wherever the 

indicator appears in our calculations. Because the first time point is not of interest, we only 

describe the second time point treatment mechanism for this simulation. We refer the 

interested reader to the earlier technical report for a thorough discussion of the single time 

point case. We then present a two time point data generating distribution to show the 

effectiveness of our proposed method in the longitudinal setting.

8.1 Data

8.1.1 Single time point—We simulate 1,000 data sets of 1,000 observations from an 

RCT without missingness. We have that:

where Y is a Bernoulli random variable and H is an unobserved Bern(1/2) variable 

independent of , . The above distribution was selected so that the mean outcomes 

under static treatments (treating everyone or no one at the second time point) have 

approximately the same mean outcome of 0.464.

We consider two choices for V(1). For the first we consider V(1) = L3(1), and for the second 

we consider V(1) to be the entire covariate history . We have shown via Monte Carlo 

simulation that the optimal rule has mean outcome EP0Yd0 ≈ 0.536 when V(1) = L3(1) and 

the optimal rule has mean outcome EP0Yd0 ≈ 0.563 when V(1) = (L1(1), L2(1), L3(1), L4(1)). 

One can verify that the blip function at the second time point is nonzero with probability 1 

for both choices of V(1).

8.1.2 Two time point—We again simulate 1,000 data sets of 1,000 observations from an 

RCT without missingness. The observed variables have the following distribution:
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where

Note that  is contained in the unit interval by the bounds on  and 

 so that Y is indeed a valid Bernoulli random variable. We will let V(0) = L(0) and 

. One can verify that (5) is satisfied for this choice of V.
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Static treatments yield mean outcomes EP0Y(0,1),(0,1) = 0.400, EP0Y(0,1),(1,1) ≈ 0.395, 

EP0Y(1,1),(0,1) ≈ 0.361, and EP0Y(1,1),(1,1) ≈ 0.411. The true optimal treatment has mean 

outcome EP0Yd0 ≈ 0.485.

8.2 Optimal rule estimation methods

For now suppose we have estimators of the optimal rule with reasonable convergence 

properties, by which we mean that the true mean outcome under the fitted rule is close to the 

mean outcome under the optimal rule. In our companion paper in this volume we describe 

these estimators and show precisely how close these estimators come to achieving the 

optimal mean outcome. Here we note that our estimation algorithms correspond to using the 

full candidate library of weighted classification and blip function-based estimators proposed 

in table 2 of our companion paper, with the weighted log loss function used to determine the 

convex combination of candidates. We provide oracle inequalities for this estimator in our 

companion paper, and argue that it represents a powerful approach to data adaptively 

estimate the optimal rule without over- or underfitting the data. For a sample size n, we 

denote the rule estimated on the whole sample by dn, and the rule estimated on training 

sample j by dnj.

8.3 Inference procedures

We use four procedures to estimate the mean outcome under the fitted rule. All inference 

procedures rely on the intervention mechanism g0. We always estimate the intervention 

mechanism with the true mechanism g0, as one may do in an RCT without missingness. We 

do not consider efficiency gains resulting from estimating the known treatment mechanism 

here.

The first method uses the TMLE described in “TMLE of the mean outcome under a given 

rule” in Appendix B. The second method uses the analogous estimating equation approach 

that uses the double robust inverse probability of censoring weighted (DR-IPCW) estimating 

equation implied by , where  represents the unfluctuated initial 

estimates of . See van der Laan and Robins [34] for a general outline of such an 

estimating equation approach. This approach is valid whenever the TMLE is valid. We also 

use the CV-TMLE described in “CV-TMLE of the mean outcome under data adaptive V-

optimal rule” in Appendix B, where we use a 10-fold cross-validation scheme. Finally, we 

use the CV-DR-IPCW cross-validated estimating equation implied by 

, where  represents the unfluctuated initial estimates of . 

This approach is valid whenever the CV-TMLE is valid.

All inference procedures also rely on an estimate of  for some estimated d. For the two 

time point case, we use the empirical distribution of L(0) to estimate the marginal 

distribution of L(0). We compare plugging in both of the true values of 

 and EP0 [Yd|L(0, A(0) = dA(0)(V(0)) as initial estimates 

with plugging in the incorrectly specified constant function 1/2 as initial estimates.
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For the single time point case, we compare plugging in the true value of 

 with the incorrectly specified constant function 1/2. 

We always estimate EP0 [Yd|L(0), A(0) = dA(0)(V(0))] by averaging

over the empirical distribution of L(1) from the entire sample for non-cross-validated 

methods, and from the training sample for cross-validated methods. The empirical 

distribution of L(0) will not play a role for the single time point case because L(0) = ∅.

The procedures used to estimate the optimal rule rely on similar means, and we supply these 

estimation procedures with the incorrect value 1/2 for these conditional means whenever we 

supply the inference procedures with the incorrect values of the corresponding conditional 

means, and with the correct values of the conditional means whenever we supply the 

inference procedures with the corresponding correct values.

The simulation was implemented in R [57]. The code used to run the simulations is available 

upon request. We are currently looking to implement the methods in this paper and the 

companion paper in an R package.

8.4 Evaluating performance

We use the coverage of asymptotic 95% confidence intervals to evaluate the performance of 

the various methods. As we establish in the earlier parts of this paper, each inference 

approach yields two interesting target parameters with respect to which we can compute 

coverage. All approaches give asymptotically valid inference for the mean outcome under 

the optimal rule under conditions, and thus the coverage with respect to this parameter is 

assessed across all methods.

The TMLE and DR-IPCW estimating equation-based approaches also estimate the data 

adaptive target parameter ψ0n as presented in Section 6. Given a fitted rule dn, we 

approximate the expected value in this parameter definition using 106 Monte Carlo 

simulations for the single time point case and 5 × 105 Monte Carlo simulations for the two 

time point case. We then assess confidence interval coverage with respect to this 

approximation.

The CV-TMLE and cross-validated DR-IPCW estimating equation approaches estimate the 

data adaptive target parameter  as presented in Section 7. Given the ten rules estimated 

on each of the training sets, the expectation over the sample split random variable Bn 

becomes an average over ten target parameters, one for each estimated rule. Again we 

estimate the expected value of P0 using 106 Monte Carlo simulations for each of the ten 

target parameters in the single time point case, and 5 × 105 Monte Carlo simulations in the 

two time point case.
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9 Simulation results

Figure 1 shows that the (CV-)TMLE is more efficient than the (CV-)DR-IPCW estimating 

equation methods in our single time point simulation, except for the cross-validated methods 

when V = L1(1),…, L4(1) and the regressions are misspecified. Note that the MSEs relative 

to EP0 Yd0 are the typical EP0(ψn − ψ0)2 for an estimate ψn, while the MSEs relative to the 

data adaptive parameter are the slightly less typical EP0(ψn − ψ0n)2 for the TMLE and DR-

IPCW, and  for the cross-validated methods. That is, the target parameters 

vary for each of the 1,000 data sets considered. We also confirmed that, as is typical in 

missing data problems, the methods in which the conditional means were correctly specified 

were more efficient than the methods in which the conditional means are incorrectly 

specified. Figure 2 shows that the (CV-)TMLE in general has better coverage than the 

(CV-)DR-IPCW estimating equation approaches in our single time point simulation, with 

the only exception being the CV-TMLE for EP0 Yd0 when the regressions are misspecified 

and V = L1(1),…, L4(1).

Figure 3a shows that the (CV-)TMLE is always more efficient than the (CV-)DR-IPCW 

estimating equation methods for our two time point simulation. Figure 3b shows that this 

increased efficiency does not come at the expense of coverage: the (CV-)TMLE always has 

better coverage than the (CV-) DR-IPCW estimators in our two time point simulation. In 

general, we see that the cross-validated methods always achieve approximately 95% 

coverage for the data adaptive parameter. This is to be expected because the cross-validated 

methods only learn the optimal rule on validation sets, and thus avoid finite sample bias 

when the conditional means of the outcome are averaged over the validation samples.

It may at first be surprising that the TMLE outperforms the DR-IPCW estimating equation 

method in a randomized clinical trial, especially given that the CV-TMLE and CV-DR-

IPCW achieve similar coverage. In Appendix C we give intuition as to why this may be the 

case in a single time point randomized clinical trial. In short, this difference in coverage 

appears to occur because our proposed TMLE only fluctuates the conditional means for 

individuals who received the fitted treatment, thereby reducing finite sample bias that may 

result from estimating the optimal rule on the same sample that is used to estimate the mean 

outcome under this fitted rule.

We also looked at the average confidence interval width across Monte Carlo simulations for 

each method and simulation setting. For a given simulation setting, all four estimation 

methods gave approximately the same (±0:002) average confidence interval width: 0.08 for 

both single time point simulations, 0.12 for the multiple time point simulation. These 

average widths show that we can get informatively small confidence intervals from our 

relatively small sample size of 1,000 individuals. Unlike Figures 1 and 3a, these values 

should not be used to gauge the efficiency of the proposed estimators since they do not take 

the true parameter value into account.
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10 Discussion

This article investigated semiparametric statistical inference for the mean outcome under the 

V-optimal rule and statistical inference for the data adaptive target parameter defined as the 

mean outcome under a data adaptively determined V-optimal rule (treating the latter as 

given).

We proved a surprising and useful result stating that the mean outcome under the V-optimal 

rule is represented by a statistical parameter whose pathwise derivative is identical to what it 

would have been if the unknown rule had been treated as known, under the condition that 

the data is generated by a non-exceptional law [52]. As a consequence, the efficient 

influence curve is immediately known, and any of the efficient estimators for the mean 

outcome under a given rule can be applied at the estimated rule. In particular, we 

demonstrate a TMLE, and present asymptotic linearity results. However, the dependence of 

the statistical target parameter on the unknown rule affects the second-order terms of the 

TMLE, and, as a consequence, the asymptotic linearity of the TMLE requires that a second-

order difference between the estimated rule and the V-optimal rule converges to zero at a 

rate faster than . We show that this can be expected to hold for rules that are only a 

function of one continuous score (such as a biomarker), but when V is higher dimensional, 

only strong smoothness assumptions will guarantee this, so that, even in an RCT, we cannot 

be guaranteed valid statistical inference for such V-optimal rules.

Therefore, we proceeded to pursue statistical inference for so-called data adaptive target 

parameters. Specifically, we presented statistical inference for the mean outcome under the 

dynamic treatment regime we fitted based on the data. We showed that statistical inference 

for this data adaptive target parameter does not rely on the convergence rate of our estimated 

rule to the optimal rule, and in fact only requires that the data adaptively fitted rule 

converges to some (possibly suboptimal) fixed rule. However, even in a sequential RCT, the 

asymptotic linearity theorem still relies on an empirical process condition that limits the data 

adaptivity of the estimator of the rule. So, even though the assumptions are much weaker, 

they can still cause problems in finite samples when V is high dimensional, and possibly 

even asymptotically.

Therefore, we proceeded with the average of sample split specific target parameters, as in 

general proposed by van der Laan et al. [46], where we show that statistical inference can 

now avoid the empirical process condition. Specifically, our data adaptive target parameter 

is now defined as an average across J sample splits in training and validation sample of the 

mean outcome under the dynamic treatment fitted on the training sample. We presented CV-

TMLE of this data adaptive target parameter, and we established an asymptotic linearity 

theorem that does not require that the estimated rule is consistent for the optimal rule, let 

alone at a particular rate. The CV-TMLE also does not require the empirical process 

condition. As a consequence, in a sequential RCT, this method provides valid asymptotic 

statistical inference without any conditions, beyond the requirement that the estimated rule 

converges to some (possibly suboptimal) fixed rule.
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We supported our theoretical findings with simulations, both in the single and two time 

point settings. Our simulations supported our claim that it is easier to have good coverage of 

the proposed data adaptive target parameters than the mean outcome under the optimal rule, 

though the results for this harder mean outcome under the optimal rule parameter were also 

promising. In future work we hope to apply these methods to actual data sets of interest, 

generated by observational controlled trial as well as RCTs.

It might also be of interest to propose working models for the mean outcome EP0 [Yd0 |S] 

under the optimal rule, conditional on some baseline covariates S ⊂ W. This is now a 

function of S, but we would define the target parameter of interest as a projection of this true 

underlying function on the working model. It would now be of interest to develop TMLE for 

this finite dimensional pathwise differentiable parameter, and we presume that similar 

results as we found here might appear. Such parameters provide information about how the 

mean outcome under the optimal rule are affected by certain baseline characteristics.

Drawing inferences concerning optimal treatment strategies is an important topic that will 

hopefully help guide future health policy decisions. We believe that working with a large 

semiparametric model is desirable because it helps to ensure that the projected health 

benefits from implementing an estimated treatment strategy are not due to bias from a 

misspecified model. The TMLEs presented in this article have many desirable statistical 

properties and represent one way to get estimates and make inference in this large model. 

We look forward to future advances in statistical inference for parameters that involve 

optimal dynamic treatment regimes.
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Appendix A

Proofs

Proof of Theorem 1. Let Vd = (V(0), Vd(1)). For a rule in , we have

For each value of a(0), Va(0) = (V(0), Va(0)(1)) and dA(0)(V(0)), the inner conditional 

expectation is maximized over dA(1)(a(0), Va(0)(1)) by d0,A(1) as presented in the theorem, 

where we used that V(1) includes V(0). This proves that d0,A(1) is indeed the optimal rule for 

assignment of A(1). Suppose now that V(1) does not include V(0), but the stated assumption 
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holds. Then the optimal rule d0,A(1) that is restricted to be a function of (V(0), V(1), A(0)) is 

given by , where

However, by assumption, the latter function only depends on (a(0), v(0), v(1)) through (a(0), 

v(1)), and equals . Thus, we now still have that 

, and, in fact, it is now also an optimal rule 

among the larger class of rules that are allowed to use V(0) as well.

Given we found d0,A(1), it remains to determine the rule d0,A(0) that maximizes

where we used the iterative conditional expectation rule, taking the conditional expectation 

of Va(0), given V(0). This last expression is maximized over dA(0) by d0,A(0) as presented in 

the theorem. This completes the proof.

The following lemma will be useful for proving Theorem 2.

Lemma 1. Recall the definitions of  and  in Theorem 1. We can represent Ψ(P0) = 

EP0 Yd0 as follows:

where V(0,1)(1) is drawn under the G-computation distribution for which treatment (0, 1) is 

given at the first time point.

Proof of Lemma A.1. For a point treatment data structure O = (L(0), A(0), Y) and binary 

treatment A(0), we have for a rule  with 

. This identity is applied twice in the following derivation:
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Proof of Theorem 3. By the definition of R1d we have

Proof of Lemma 1. Below we omit the dependence of dQ,A(0), d0,A(0), , and  on V(0):

The first term in the final equality is always 0 because dQ,A(0) = d0,A(0) whenever the 

indicator is 1. In the second term, dQ,A(0) ≠ d0,A(0) whenever the indicator is 1, so:

(15)

where the final inequality holds by Hölder's inequality. The above also holds when the limit 

is taken as p ≠ ∞, yielding the essential supremum result. The result for R2A(1) follows by 

the same argument.

Proof of Theorem 4. By Theorem 3, we have

where . Combining this with the fact that 

 has empirical mean 0 yields

The Donsker condition and the mean square consistency of  give
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see, for example, van der Vaart and Wellner [58]. By assumption, R2(Qn, Q0) = oP0 (n−1/2). 

Thus:

as desired.

Proof of Theorem 6. For all j = 1,…, J, we have that:

Summing over j and using (13) gives:

We also have that:

The above follows from the first by applying the law of total expectation conditional on the 

training sample, and then noting that each  only relies on  through the 

finite dimensional parameter εn. Because GLM-based parametric classes easily satisfy an 

entropy integral condition [58], the consistency assumption on  shows 

that the above is second order. We refer the reader to Zheng and van der Laan [55] for a 

detailed proof of the above result for general cross-validation schemes, including J-fold 

cross-validation.

It follows that:
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Appendix B: Estimators of the mean outcome under the optimal rule

TMLE of the mean outcome under a given rule

This TMLE for a fixed dynamic treatment rule has been presented in the literature, but for 

the sake of being self-contained it will be shortly described here. The TMLE yields a 

substitution estimator that empirically solves the estimating equations corresponding to the 

efficient influence curve, analogous to Theorem 2 for general d. By substitution estimator, 

we mean that the TMLE can be written as the mapping Ψ applied to a particular Q.

Assume without loss of generality that Y ∈ [0, 1]. In this section we use lower case letters to 

emphasize when quantities are the values taken on by random variables rather than the 

random variables themselves, for example, our sample is given by (o1; …, on), where 

. The indicator for not being right censored at time j for individual i 

is given by a2(j)i.

Regress (yi : a2(0)i = a2(1)i = 1) on  to get an estimate

(16)

Note that we have only used individuals who are not right censored at time 1 to obtain this 

fit. The above regression can be fitted using a data adaptive technique such as super-learning 

[59]. To estimate , use

where we remind the reader that we are treating the rule d = dn as a known function and that 

v is a function of  that sets the indicators for not being censored to 1. Consider the 

fluctuation submodel

where

Let ε2n be the estimate for ε2 obtained by running a univariate logistic regression of (yi : i = 

1, …, n) on (H2(gn)(oi) : i = 1, … n) using
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as offset. This defines a targeted estimate

(17)

of the regression function, where we remind the reader that the targeted estimate is chosen to 

ensure that the empirical mean of the component  is 0 when we plug in the estimate of the 

intervention mechanism and the targeted estimate of the regression function for the 

unknown true quantities.

We now develop a targeted estimator of the second regression function in  to ensure that 

the substitution estimator of  will have empirical mean 0. Regress

on (l(0)i; a(0)i : a2(0)i = 1) to get the regression function

(18)

One can estimate this quantity using the super-learner algorithm among all individuals who 

are not right censored at time 0. For honest cross-validation in the super-learner algorithm, 

the nuisance parameter  should be fit on the training 

samples in the super-learner algorithm. We refer the reader to Appendix B of van der Laan 

and Gruber [41] for a detailed explanation of this procedure. The same strategy holds for 

estimating the nuisance parameter g0 when necessary (e.g., in an observational study).

For an estimate of EP0[Yd|L(0)], one can use the regression function above, but with a(0) 

fixed to dA(0)(v(0)), which is itself a function of l(0). We will denote this function by l(0) ↦ 

En[Yd|L(0) = l(0)]. We now wish to fluctuate this initial estimator so that the plug-in 

estimator of  has empirical mean 0. In particular, we use the submodel

where
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Let ε1n be the estimate for ε1 obtained by running a univariate logistic regression of

on (H1(gn)(oi) : i = 1, …, n) using (logitEn[Yd|L(0) = l(0)i : i = 1, …, n) as offset. A targeted 

estimate of EP0[Yd|L(0) is given by

(19)

Plugging the targeted regressions and gn into the expression for  shows that this estimate 

of  has empirical mean 0.

Let QL(0);n be the empirical distribution of L(0), and let  be the parameter mapping 

representing the collection containing QL(0),n and the targeted regression functions in (17) 

and (19). This concludes the presentation of the components of the TMLE of EP0Yd. The 

discussion of properties of this estimator is continued in the main text.

CV-TMLE of the mean outcome under data adaptive V-optimal rule

Let  be an estimator of the V-optimal rule d0. Firstly, without loss of generality 

we can assume that Y ∈ [0, 1]. Denote the realizations of Bn with j = 1, …, J, and let 

 denote the estimated rule on training sample j. Let

(20)

represent an initial estimate of  based on the training 

sample j, obtained analogously to the estimator in (16). Similarly, let gnj represent the 

estimated intervention mechanism based on this training sample , j = 1, …, J. Consider 

the fluctuation submodel

where

Note that the fluctuation ε2 does not rely on j. Let
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where  represents the fluctuated function in (20) and

(21)

for all . For each i = 1, …, n, let j(i) ∈ {1; …, J} represent the value of Bn for 

which element i is in the validation set. The fluctuation ε2n can be obtained by fitting a 

univariate logistic regression of (yi: i = 1, …, n) on (H2(gnj(i))(oi): i = 1, …, n) using

as offset. Thus each observation i is paired with nuisance parameters that are fit on the 

training sample which does not contain observation i. This defines a targeted estimate

(22)

of . We note that this targeted estimate only depends 

on Pn through the training sample  and the one-dimensional ε2n.

We now aim to get a targeted estimate of EP0[Ydnj|L(0)]. We can obtain an estimate

(23)

in the same manner as we estimated the quantity in (18), with the caveat that we replace 

 by  and only 

fit the regression on samples that are not right censored at time 0 and are in training set j. 

For an estimate Enj[Ydnj|L(0)] of EP0[Ydnj|L(0)], we can use the regression function above 

but with a(0) fixed to dnj,A(0)(v(0)).

Consider the fluctuation submodel

where
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Again the fluctuation ε1 does not rely on j. Let

where  is defined in (21). For each i = 1, …, n, again let j(i) ∈ {1, …, J} represent the value 

of Bn for which element i is in the validation set. The fluctuation ε1n can be obtained by 

fitting a univariate logistic regression of

on (H1(gnj(i))(oi): i = 1, …, n) using

as offset. This defines a targeted estimate

(24)

of EP0[Ydnj|L(0)]. We note that this targeted estimate only depends on Pn through the 

training sample  and the one-dimensional ε1n.

Let QL(0),nj be the empirical distribution of L(0)i for the validation sample . For all j = 1, 

…, J, let  be the parameter mapping representing the collection containing QL(0),nj and 

the targeted regressions in (22) and (24). This defines an estimator  of ψdnj0 = 

Ψdnj(P0) for each j = 1, …, J. CV-TMLE is now defined as . This CV-TMLE 

solves the cross-validated efficient influence curve equation:

Further, each  only relies on  through the univariate parameters ε1n and ε2n. This 

will allow us to use the entropy integral arguments presented in Zheng and van der Laan 
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[55] which show that no restrictive empirical process conditions are needed on the initial 

estimates in (20) and (23).

The only modification relative to the original CV-TMLE presented in Zheng and van der 

Laan [55] is that in the above description we change our target on each training sample into 

the training sample-specific target parameter implied by the fit  on the training 

sample, while in the original CV-TMLE formulation, the target would still be Ψd0(P0). With 

this minor twist, the (same) CV-TMLE is now used to target the average of training sample-

specific target parameters averaged across the J training samples. This utilization of CV-

TMLE was already used to estimate the average (across training samples) of the true risk of 

an estimator based on a training sample in van der Laan and Petersen [53] and Díaz and van 

der Laan [54], so that this just represents a generalization of that application of CV-TMLE 

to estimate general data adaptive target parameters as proposed in van der Laan et al. [46].

Appendix C: Why the TMLE may have better coverage than the estimating 

equation approach in a randomized clinical trial

We wrote this section after performing our simulations because we wanted to understand 

why the TMLE is outperforming the DR-IPCW estimating equation approach by such a 

wide margin. The two approaches do not typically give such disparate estimates in a 

randomized clinical trial, so it is natural to ask why this is happening in our simulations. Part 

of this section is conjecture (which is in line with our simulations), but we offer some 

justification to support this conjecture.

We now offer a heuristic explanation of why the TMLE may have better coverage than the 

DR-IPCW estimating equation approach when estimating the data adaptive parameter ψ0n. 

Suppose we have a single time point data structure O = (W, A, Y) drawn according to the 

distribution P0 in a randomized clinical trial without missingness. Here we use notation 

which directly describes the single time point data structure rather than forcing this problem 

into the longitudinal context as in Section 8.1.1. Let d0 = arg maxd EP0EP0[Y|A = d(V), W] 

for some V that is a function of W. Suppose we observe o1, …, on and let dn be an estimate 

of d0, which is obtained using the methods in our accompanying technical report [47]. For 

any fixed rule d, the efficient influence curve at some  is given by

where g is the intervention mechanism under P. Again we have that EP0Yd0 has the same 

influence curve as above with d = d0 (see our online technical report). Suppose that g0 = 1/2 

is known and we have estimated EP0 [Y|A = d(V), W] perfectly, though we continue to work 

in the model where EP0 [Y|A = d(V), W] is treated as unknown so that simply averaging over 

this quantity is not appropriate if we want inference or robustness.

For any fixed rule V ↦ d(V), it is easy to show that

van der Laan and Luedtke Page 38

J Causal Inference. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where g0(a|w) represents the probability under P0 that A = a given W = w. Similarly, we 

expect that

Further, EP0βd(Pn) = 0 for fixed d, where the expectation is over the observed sample Pn but 

not the fixed rule d. In the first part of this paper we argued that one can learn an estimated 

rule dn on the entire data set, and then treat this rule dn as known when estimating EP0Ydn. 

This is asymptotically valid under the conditions given in this paper, but even if these 

conditions hold we may expect some finite sample bias. In our simulation this finite sample 

bias is manifested as

where the expectation is over the observed sample Pn and the estimated rule dn. For a single 

time point simulation with V = L3(1), this sample average is approximately 0.013 on average 

across 1,000 simulations. When V = L1(1), …, L1(4), this sample average is approximately 

0.040 on average across 1,000 simulations. Because this was a follow-up analysis, we ran 

these simulations on different Monte Carlo draws than those used for our results in the main 

text. We conjecture that the above phenomenon is not specific to our simulation settings and 

will occur in more general settings. Our companion paper in this issue explores the 

estimation of d0, and a careful look at the mean performance-based loss function presented 

in that paper will show that indeed one way to make the empirical risk smaller is to choose 

dn so that βdn (Pn) > 0. Nonetheless, selecting dn by a cross-validation selector as we 

propose in our companion paper should help mitigate this issue since βdn for dn trained on a 

training sample should have empirical mean close to 0 in the validation sample.

The DR-IPCW estimating equation gives the estimator:

This estimator has bias EP0βdn (Pn), where the expectation is over the random sample Pn and 

the estimated rule dn.

Consider the simple linear TMLE which fluctuates w ↦ EP0 [Y|A = dn(v), W = w] using the 

submodel:
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where we recall that w ↦ EP0 [Y|A = dn(v), W = v] is being treated as unknown. A valid 

TMLE is given by choosing εn to minimize the mean-squared error between Y and 

. When Y is bounded, the logistic fluctuations that we have presented 

in this paper are preferable to the linear fluctuation because they respect our model 

constraints. We consider the linear fluctuation here for simplicity. The minimizer εn is given 

by

if  and we take . The denominator above is the 

same as the denominator in a modified Horvitz-Thompson estimator [60] and, more 

importantly, appears in one of the terms in the TMLE, which is given by

This linear fluctuation TMLE has bias , which is half the bias of .

The arguments presented in this section are mainly interesting if EP0 [βdn (Pn) ≠ 0. We have 

conjectured that EP0 [βdn (Pn) > 0 for many data generating distributions P0 and estimators 

of the optimal rule, though we have not analytically justified this claim. If the conditions of 

Theorem 5 hold, then this bias will only occur in finite samples. For simplicity we analyzed 

a different TMLE than the ones presented in this paper. First, we analyzed a TMLE for the 

single time point problem. We show in our online technical report that the single and 

multiple time point problems are closely related, so we expect that these results carry over to 

the two time point case. We have also analyzed a linear rather than logistic fluctuation in 

this section. We did this simply so we could get a straightforward expression for the bias of 

the TMLE without having to worry about linearizing the fluctuation submodel in a 

neighborhood of 0. Similar results should hold for the logistic fluctuations. We also assumed 

that EP0 [Y|A = dn(V), W] was estimated perfectly, which of course is not true in practice. 
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Nonetheless, this assumption makes our results clearer because then we do not have to 

worry about a resulting empirical process term.

The term βdn (Pn) only causes problems because dn is learned from the same data over 

which the estimators of EP0 Ydn are run. The cross-validated approaches that we have 

presented in this paper do not suffer from this conjectured bias because we can condition on 

the training sample and then treat dn as known. For fixed d, EP0 [βd(Pn)] = 0 and thus βd(Pn) 

will not cause problems.
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Figure 1. 
Relative efficiency of TMLE and DR-IPCW methods compared to both EP0Yd0 and the data 

adaptive parameter EP0(ψn – ψ0n)2 for the TMLE and DR-IPCW, and  for 

the cross-validated methods. Results are provided both for the cases where the estimate 

 of is correctly specified and the case where this estimate is incorrectly 

specified with the constant function 1/2. Error bars indicate 95% confidence intervals to 

account for uncertainty from the finite number of Monte Carlo draws in our simulation. (a) 

V=L1(1), (b) V=L1(1), …, L4(1).
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Figure 2. 
Coverage of 95% confidence intervals from the TMLE and DR-IPCW methods with respect 

to both EP0 Yd0 and the data adaptive parameter ψ0n for the TMLE and DR-IPCW and 

for the cross-validated methods. Results are provided both for the cases where the estimate 

 of  is correctly specified and the case where this 

estimate is incorrectly specified with the constant function 1/2. The (CV-)TMLE 

outperforms the (CV-)DR-IPCW estimating equation approach for almost all settings. Error 

bars indicate 95% confidence intervals to account for uncertainty from the finite number of 

Monte Carlo draws in our simulation. (a) V=L1(1), (b) V=L1(1), …, L4(1).
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Figure 3. 
(a) Relative efficiency of TMLE and DR-IPCW methods compared to both EP0 Yd0 and the 

data adaptive parameter EP0 (ψn – ψ0n)2 for the TMLE and DR-IPCW, and 

for the cross-validated methods. (b) Coverage of 95% confidence intervals from the TMLE 

and DR-IPCW methods with respect to both EP0 Yd0 and the data adaptive parameter ψ0n for 

the TMLE and DR-IPCW and  for the cross-validated methods. Both (a) and (b) give 

results both for the cases where the estimates of  and 

EP0[Ydn|L(0)] are correctly specified and the case where these estimates are incorrectly 

specified with the constant function 1/2. Error bars indicate 95% confidence intervals to 

account for uncertainty from the finite number of Monte Carlo draws in our simulation.
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Table 1

Convergence rates of estimators of  which suffice for R2A(0) to be oP0(n−1/2) according to Lemma 1. The 

higher the moments of  that are finite, the slower the estimator needs to converge. It is of course preferable 

to have an estimator which converges according to the Po essential supremum than just in L2,P0 but whether or 

not there is convergence in L∞,P0 depends on the estimator used and the underlying distribution P0.

p β 1 Sufficient Lp,P0 convergence rate

2 1 oP0 (n−3/8)

2 oP0 (n−1/3)

β1 large oP0 (n−(1/4+ε))for small ε>0

4 1 oP0 (n−5/16)

2 oP0 (n−1/4)

β1 large oP0 (n−(1/8+ε))for small ε>0

∞ 1 oP0 (n−1/4)

2 oP0 (n−1/6)

β1 large
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