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PTEN signaling is required for the 
maintenance of spermatogonial stem cells 
in mouse, by regulating the expressions of PLZF 
and UTF1
Wei Zhou1,2†, Hongfang Shao3†, Di Zhang2,4†, Jian Dong2, Wei Cheng5, Lu Wang2, Yincheng Teng3* 
and Zhuo Yu2*

Abstract 

Background:  Pten plays a crucial role in the stem cell maintenance in a few organs. Pten defect also causes the 
premature oocytes and ovary aging. We and other groups have found that the phosphatidylinositol-3-OH kinase 
(PI3K)-Akt signaling regulates the proliferation and differentiation of spermatogonial stem cells (SSCs). PTEN functions 
as a negative regulator of the PI3K pathway. Thus, we thought that the fate of SSCs might be controlled by Pten.

Results:  We report that promyelocytic leukaemia zinc finger (PLZF) and undifferentiated embryonic cell transcription 
factor 1 (UTF1), both of which are germ cell-specific transcriptional factors, are regulated by Pten. Conditional dele-
tion of Pten leads to reduction in PLZF expression but induction of UTF1, which is associated with SSCs depletion and 
infertility in males with age.

Conclusion:  Our data demonstrate that Pten is required for the long-term maintenance of SSCs and precise regula-
tion of spermatogenesis in mouse. The finding of a Pten-regulated GFRα1+/PLZF−/UTF1+ progenitor population 
provides a new insight into the precise mechanisms controlling SSC fate.
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Background
Stem cells are capable of renewing themselves to main-
tain a stem cell pool as a preserved cell source for tissue 
homeostasis, while they can also differentiate into mature 
cells to carry out the function of a specific tissue. The pre-
cise balance of self-renewal and differentiation of stem 
cells is critical for the maintenance and function of a tis-
sue or organ throughout life-time. Similar to other stem 
cells, spermatogonial stem cells (SSCs) renew themselves 

and meanwhile undergo a dramatic differentiation pro-
cess-spermatogenesis to generate a large number of 
sperms consistently. Prior to spermatogenesis, multi-
ple mitotic divisions of SSCs produce subpopulations of 
SSCs, and the balance of the SSC subpopulations is criti-
cal for long-term sperm production. Multiple proteins, 
such as promyelocytic leukaemia zinc finger (PLZF), 
GDNF family receptor alpha-1 (GFRα1) and undifferen-
tiated embryonic cell transcription factor 1 (UTF1), are 
expressed in SSC subpopulations, which plays a crucial 
role in the maintenance of SSC pool. PLZF and GFRα1 
are required in germ cells for stem cell self-renewal [1–3], 
whereas UTF1 is restricted to a small subset of spermato-
gonia that make the cells maintain the ability of differen-
tiation [4, 5].

PTEN signaling is critical in governing the stem cell 
pool not only in the blood system and central neural 

Open Access

*Correspondence:  teng_yc@126.com; yuzhuo78@aliyun.com 
†Wei Zhou, Hongfang Shaoa and Di Zhang contributed equally to this 
work
2 Key Laboratory of Cell Differentiation and Apoptosis of Chinese 
Ministry of Education, Shanghai Jiao Tong University School of Medicine, 
Shanghai 200025, China
3 Centre for Reproductive Medicine, Shanghai Jiao Tong University 
Affiliated Sixth People Hospital, Shanghai 200233, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-015-0034-x&domain=pdf


Page 2 of 10Zhou et al. Cell Biosci  (2015) 5:42 

system but also in reproductive system [6–8]. The loss of 
Pten in ovary via conditional knockout triggers premature 
of oocytes and ovary aging [8]. On the other hand, we and 
other groups have revealed that the phosphatidylinositol-
3-OH kinase(PI3K)/Akt/S6 pathway is a critical signal-
ing in controlling the proliferation and division of SSCs. 
Disruption of this signaling or Akt knockout leads to the 
loss of spermatogonial cells and infertility in males [9, 10]. 
PTEN is a major negative regulator of PI3K signaling [11, 
12]. To understand the function of Pten in regulating SSC 
fate and fertility in male mouse, we generated conditional 
Pten knockout males using germ cell specific Cre strain, 
the Stra8-Cre mouse. It was turned out that the loss of 
Pten caused reduction of PLZF expression, but induction 
of UTF1. Thus, conditional Pten knockout leads to deple-
tion of SSC pool and infertility with age.

Results
Conditional deletion of Pten in spermatogonial cells 
in mice
STRA8 is a germ-cell-specific protein and is expressed 
through neonatal spermatogonial cells to meiotic cells 
[13]. In the Stra8-EGFP transgenic mice, spermatogonial 

stem cells can be labeled by EGFP as characterized by 
transplantation assay [14]. Therefore, Stra8-Cre can be 
applied to generate SSC-specific gene knockout model. 
We created SSC-Pten null mice by crossing PtenLoxP/LoxP 
mice with Stra8-Cre mice. The Pten knockout genotype 
was identified by examining the genomic allele of Pten 
(Fig. 1a), the Pten expression in testis sections of 7 day-
old males (Fig. 1b) as well as in whole proteins from adult 
testes (Fig. 1c). Since Pten is also expressed in non-germ 
cells, we obtained purified haploid spermatids through 
cell sorting from adult mice to confirm the absence of 
Pten expression in germ cells from crossed mice (Fig. 1d).

Conditional deletion of Pten caused overgrowth of testes 
followed by shrinking and sterility with age
The males with Pten-deleted in SSCs were grossly nor-
mal through all ages except that the size of testes was 
of overgrowth within the first 50  days after birth then 
shrunk afterwards (Fig. 2a). Fertility was found lower in 
the young Pten-deleted males and it was lost progres-
sively after 60 days as measured by mating with wild type 
females (Fig.  2b). The morphology of testicular tubules 
cross-section was abnormal as showing larger lumen and 
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Fig. 1  Cre-recombinase mediated deletion of Pten in SSCs. a PCR analysis of genotype of Pten knockout (KO) mice. Short arrows denote the pre-
dicted size of Pten KO and wild-type (WT) alleles, long arrows denote the predicted size of Cre and internal positive control (+/+, wild type; +/−, 
heterozygote; −/−,homozygote; M, Marker). b Immunostaining of PTEN in cross sections of 7 day-old testis. The cytoplasmic staining was observed 
in spermatogonial cells from Pten+/+ section, whereas it was absent in the Pten−/− section (scale bar is 20 µm). c Western blot analysis of PTEN 
expression in whole testis of 32 day-old Pten+/+, Pten+/−, and Pten−/−mice. PTEN is also expressed in nongerminal cells, so PTEN expression was 
detected in Pten−/− testes, but was significantly lower compared with Pten+/+ and Pten+/− testes. d Absence of PTEN expression in haploid cells 
from Pten−/− testes. Haploid sperms were isolated from 79 day-old testes of Pten+/+ and Pten−/− mice separately by sorting using flow cytometer, 
then were subjected to Western blotting analysis.
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failure of spermatogenesis with age (Fig.  3a). Further-
more, the rate of spermatogenesis was found very low 
in the Pten-deleted males during young ages, and severe 
loss of mature sperm production in the adult males 
epididymis after age of 60 days (Fig. 3b). This overall phe-
notype is very similar to that of Pten knockout in bone 
marrow stem cells and central neural stem cells as over-
expansion of short-term hemeatopoietic stem cell pool 
and enlarged brain [6–8]. Possibly, the loss of Pten might 
disturb the balance of self-renewal and differentiation 
and promote excessive differentiation-associated prolif-
eration of SSCs, thereby giving rise to enlarged testes in 
young mice but causing the depletion of stem cell source 
and infertility with age.

Loss of Pten led to reduction of SSCs in neonatal males
To examine whether the self-renewal of SSCs was influ-
enced by the absence of Pten, we used testis cross sec-
tions from 7 day-old pups and calculated the number of 
SSCs. The amount of SSCs expressing both GFRα1 and 
PLZF was reduced significantly (Fig.  4a, e, f ) indicating 

that Pten played a crucial role in SSC self-renewal in the 
neonatal testis. To further reveal the molecular mecha-
nisms accounting for the phenotype of this Pten-knock-
out testis, we used whole transcriptome sequencing to 
compare the gene expression profiles between wild type 
and Pten-knockout testes at 32 days old. Interestingly, we 
found that the expression of UTF1 significantly increased 
in the Pten-knockout testes (Additional file  1: Figure 
S1B). Next, immunostaining of the cross sections con-
firmed the increase of UTF1-expressing but PLZF-nega-
tive cells in Pten−/− 7 day-old testis (Fig. 4b, g). At the age 
of day 10, similar to that of day 7, SSCs expressing GFRα1 
or PLZF decreased (Fig. 4c, h, i). However, the number of 
UTF1+/PLZF− cells was significantly higher in the Pten-
knockout testes (Fig.  4d, j). As a chromatin-associated 
protein, UTF1 is involved in the initiation of ES cell dif-
ferentiation [15]. In the testis, it has been evidenced that 
UTF1 is expressed in a subset of spermatogonial cells 
and germ cell neoplasms, making the SSCs maintain the 
ability of differentiation [4, 16]. In Pten−/− mouse, we 
have seldom observed neoplasms in the testes. A num-
ber of UTF1+/PLZF− cells and few UTF1−/PLZF+ cells 
were observed in the cross sections of 32 day-old Pten−/− 
mouse testis by immunostaining (Additional file 1: Figure 
S1A), which implied that Pten-deletion-induced UTF1 
expression might boost SSCs differentiation resulting in 
testes overgrowth in Pten knockout males.

The PTEN signaling regulated the expression of PLZF 
and UTF1 in SSCs
We further examined the expression of GFRα1, PLZF 
and UTF1 in Pten-deleted testes at day 7 or day 10 using 
Western blot analysis. Consistent with the data from 
cross section immunostaining, the expression of GFRα1 
and PLZF was reduced at both day 7 and day 10, while 
UTF1 expression was highly increased at day 10 (Fig. 5a). 
As the PI3K/AKT/mTOR pathway is an important sign-
aling pathway in regulating the cellular functions, PTEN 
is a major negative regulator of PI3K signaling. Then, we 
isolated SSCs from 7  days old pups and cultured them 
in the presence or absence of PI3K inhibitor or  mTOR 
inhibitor-rapamycin to detect the role of PTEN signal-
ing in SSCs in  vitro. We found that PLZF expression 
was induced by inhibiting the PI3K signaling (Fig.  5b, 
c). However, in the same cell pool, UTF1 expression 
was reduced in the presence of PI3K inhibitor or rapa-
mycin (Fig.  5b, c), implying the presence of a reversal 
relationship between PLZF and UTF1 in the context of 
the PTEN/PI3K signaling. Furthermore, UTF1 expres-
sion was slightly higher with Rapamycin than with PI3K 
inhibitor, which indicated that other branched pathways, 
in addition to mTOR signaling, may participate in this 
regulation. As we all know, PTEN is an inhibitor of PI3K 
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Fig. 2  Overgrowth of testes and fertility loss in Pten−/− mice. a Curve 
of organ coefficient of Pten+/+ and Pten−/− testes with age. Horizontal 
bars indicate mean values, n = 3, * P < 0.05. b In vivo fertility assay 
of Pten+/+ and Pten−/− mice. The mating test was divided into three 
groups according to the male’s age: 35–60 days old, 61–100 days old, 
and over 100 days old. Horizontal bars indicate mean values, n = 22 
** P < 0.01.
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signaling. Thus, we proposed that the PLZF and UTF1 
expression was regulated by Pten in SSCs and Pten dele-
tion led to reduction in PLZF expression associated with 
the increase of UTF1 expression.

A putative model of SSC subpopulation fate controlled 
by Pten
To further identify the properties of UTF1+, PLZF+ and 
GFRα1+ cells, we performed whole mount staining in 
7 day-old tubules to locate their expression in SSC popu-
lation. As shown in Fig. 6a, although most UTF1 positive 
cells are positive to both GFRα1 and PLZF, a subpopu-
lation of UTF1+/GFRα1+/PLZF− SSCs is present. UTF1 
protein, which is revealed as a chromatin-associated pro-
tein [15], loads on chromosomes in GFRα1+/PLZF− SSCs 
(Fig.  6a, upper panel). We observed the dividing sper-
matogonial cells expressing UTF1 but neither GFRα1 nor 
PLZF in the 7 day-old testicular tubules of Pten−/− males 
(Fig.  6a, bottom panel). Furthermore, we observed the 
groups of GFRα1−/PLZF−/UTF1+ cells located adjacent 

the cells of GFRα1+/PLZF−/UTF1+ in the Pten−/− 7 day-
old testicular tubules (Fig.  6b). Therefore, we hypoth-
esize a model of SSC fate: A GFRα1+/PLZF+/UTF1+ 
SSC may undergo asymmetric division, then generate a 
GFRα1+/PLZF+/UTF1+ cell for self-renewal and another 
GFRα1+/PLZF−/UTF1+ cell. The latter cell enters cell 
cycle, loses GFRα1 expression, and later develops into 
differentiating SSCs (Fig. 6c).

Discussion
Prior to undergoing differentiation of meiosis, spermat-
ogonial stem cells proliferate and form a pool of cells at 
different division status to meet the dynamics of sper-
matogenesis. This cell pool is maintained by self-renewal 
and proliferation of SSCs and exists throughout life time. 
The transcriptional factor PLZF plays a crucial role in 
the maintenance of SSC pool in adult males, and PLZF 
knockout causes a progressive loss of spermatogonia 
with age [1, 2]. Interestingly, Pten knockout male pups 
have less PLZF positive SSCs even at 7 day-old (Figs. 4a, 
f ). We have reported that PLZF expression is regulated 
by the PTEN signaling pathway in prostate cells [17]. 
Similarly, PLZF expression was significantly reduced in 
the Pten knockout SSCs in this study (Fig. 5a), and fur-
ther experiments in vitro confirmed that in SSCs, PLZF 
was indeed regulated by the PTEN signaling (Fig.  5b). 
Thus, in Pten−/− males, the loss of SSCs is partly due to 
the reduction of PLZF expression.

The precise regulation of the balance of self-renewal 
versus differentiation of stem cells is critical in control-
ling tissue homeostasis and function. Excessive differ-
entiation-associated proliferation leads to depletion of 
stem cells and degeneration of tissue with age. In Pten−/− 
males, although the number of SSCs decreased, which 
occurred as early as 7 days after birth, testes underwent 
overgrowth or premature of larger size until day 42 but 
shrank afterward. This phenotype is apparently associated 
with excessive differentiation-proliferation of SSCs, which 
disturbs the long-term maintenance of stem cell pool, 
thereby leading to the exhaustion of spermatogenesis with 
age. Furthermore, Pten knockout induced the expression 
of UTF1, which is expressed in a subpopulation of sper-
matogonial cells in the testis [4, 16]. UTF1+ cells were sig-
nificantly increased in the testis as early as at day 10 in the 
Pten−/− males compared with wild-type males (Fig.  4d). 
Using immunostaining of a nearly infertile 32  day-old 
Pten−/− testis, many UTF1+/PLZF- cells and few UTF1−/
PLZF+ cells (Additional file 1: Figure S1A) were observed, 
indicating that Pten-deletion-induced UTF1 expression 
might boost SSCs differentiation associated with the tes-
tes overgrowth of Pten knockout males. Moreover, it has 
been reported that UTF1 makes the spermatogonia main-
tain the ability of differentiation [4] and is involved in the 
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Fig. 3  Abnormal spermatogenesis in Pten−/− mice. a Hematoxylin 
and eosin staining of sections from Pten+/+ and Pten−/− testes at 7, 
32 and 73 days old (scale bar is 100 µm). b Hematoxylin and eosin 
staining of epididymis sections from Pten+/+ and Pten−/− mice at 32, 
61, and 93 days old. Massive lack of normal sperm was observed in 
the epididymis of Pten−/− mice (scale bar is 100 µm).
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Fig. 4  Reduction of GFRα1 and PLZF positive SSCs and increase of UTF1 positive cells in neonatal Pten−/− testes. Staining of 7 day-old testis sec-
tions showed the reduction of both GFRα1+ SSCs and PLZF+ SSCs a and the emergence of PLZF−/UTF1+ SSCs in the Pten−/− testis (b, arrow). Stain-
ing of 10 day-old testis sections showed a significant loss of both GFRα1+ SSCs and PLZF+ SSCs (c) and an increase in the number of PLZF−/UTF1+ 
cells in the Pten−/− testis (d, arrows). Nuclei were counterstained with DAPI (scale bar is 20 µm). Based on coimmunofluorescent staining of testicular 
tubule sections from both Pten+/+ and Pten−/− mice at 7 days old (e–g) and at 10 day olds (h–j), the average number ± SEM of GFRα1+, PLZF+ and 
PLZF−/UTF1+ cells per tubule cross-section were calculated and presented as bar graphs. For the statistical analysis, each five inconsecutive testis 
sections were counted. Horizontal bar indicates mean value, n = 4, *P < 0.05, **P < 0.01.
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initiation of ES cell differentiation [15]. All of these results 
indicate that UTF1+ cells are differentiating SSCs. To fur-
ther identify the properties of UTF1+ cells, we performed 
a three color whole-mount staining of UTF1 with GFRα1 
and PLZF of 7 day old tubules to locate UTF1 expres-
sion in the SSC population. Notably, a subpopulation of 
UTF1+/GFRα1+/PLZF− SSC and UTF1low/GFRα1+/
PLZF+ cell was observed, which seemed to come from the 
same precursor cell through asymmetric division. Similar 
subpopulation cells in Pten−/− tubule lost both GFRα1 
and PLZF expression. Therefore, we hypothesized a model 
of SSC fate in Fig. 6c. Thus, in this study, Pten knockout 
induced UTF1 expression in addition to causing the loss 

of PLZF expression. However, further studies should be 
conducted to address the mechanism how Pten regulates 
PLZF and UTF1 expression.

Although the testes overgrowth in Pten knockout 
males occurred within the first 2  months, the fertil-
ity and embryos production were lower compared with 
wild type males at same ages (Fig.  2b). Apparently, this 
phenotype is associated with the abnormality of sperms 
found in the epididymis which lack tails (Fig.  3b). This 
abnormality may be caused by the differentiation defects 
before haploid stages or during spermatogenesis because 
Pten is actively expressed in the haploid cells in the testis 
(Fig. 1d).
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age.
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Collectively, The Pten-deletion-induced reduction of 
PLZF and increased expression of UTF1 apparently dis-
turb the balance of self-renewal and differentiation of 
SSCs, leading to the depletion of spermatogonial cells 
and infertility with age.

Conclusion
By studying the model of Pten knockout in SSCs, we 
found that Pten is required for the long-term mainte-
nance of SSCs and spermatogenesis. Our study provides 
a new insight into the precise mechanisms controlling 
SSC self-renewal versus differentiation to maintain SSC 
pool and spermatogenesis throughout life time, espe-
cially the discovery of a Pten-regulated GFRα1+/PLZF−/
UTF1+ progenitor population might lead to a new under-
standing of SSC fate control.

Methods
Animals
Stra8-cre mice (Stock number 008208) and PtenLoxP/LoxP 
mice (Stock number 006440) were purchased from the 
Jackson Laboratory. Stra8-cre males were crossed with 
Ptenf/f females to generate Pten knockout in SSCs. Geno-
type of Stra8-cre mice and Ptenf/f mice were determined 
by PCR analysis using the primers and procedures pro-
vided by the Jackson Laboratory or by a previous research 
[18]. For Pten PCR, the Ptenf/f  (1.1  kb) and Pten (1  kb) 
fragments were amplified by using the following prim-
ers: 5′-ACTCAAGGCAGGGATGAGC-3′ (forward), 
5′-AATCTAGGGCCTCTTGTGCC-3′ (reverse).  For 
Stra8-cre PCR,  the Stra8-cre (179  bp) and Interleu-
kin 2 (Il2 internal positive control, 324  bp) fragments 
were amplified by using primers: 5′-GTGCAAGCTGA 
ACAACAGGA-3′  (Stra8-cre forward), 5′-AGGGACAC 
AGCATTGGAGTC-3′ (Stra8-cre reverse); 5′-CTAGGCC 
ACAGAATTGAAAGATCT-3′  (Il2 forward), 5′-GTAGG 
TGGAAATTCTAGCATCATCC-3′  (Il2 reverse). Ani-
mals used in this study were maintained according to 
the Guide for the Care and Use of Laboratory Animals 
(Publication 85-23, revised 1996; National Institutes 
of Health, Bethesda, MD, USA), and the protocol was 
approved by Shanghai Jiao Tong University School of 
Medicine (Shanghai, China)

Histological analysis and immunostaining
Testes and epididymis were fixed in fresh Bouin’s fixative, 
embedded in paraffin and sectioned at 4 μm thickness. 
After the hematoxylin and eosin staining, the sections 
were mounted and viewed under a microscope (Carl 
Zeiss, Maple Grove, MN, USA).

For immunohistochemical staining, testes were fixed in 
4% paraformaldehyde, embedded in OCT and sectioned 
at 8 μm thickness. The endogenous peroxidase activity 

was blocked by placing the slides in 3% hydrogen peroxi-
dase for 10 min followed by a tap water rinse. After being 
blocked with 5% BSA, slides were subsequently incubated 
with the primary antibody against PTEN (1:50 dilution, 
BOSTER BA1377) at 4°C overnight, slides were then 
incubated with Biotin conjugated secondary antibody. 
Following incubation with Streptavidin-Biotin Complex 
(BOSTER SA1022), visualization was performed with 
a DAB reaction, thereby resulting in brown staining of 
structures containing the epitope. Cellular nuclei were 
counterstained with hematoxylin and slides were perma-
nently mounted and evaluated under a light microscope. 
For immunofluorescent staining, after blocking with 2% 
BSA, frozen slides or cell slides were stained with anti-
bodies against PLZF (1:100 dilution, R&D, AF2944), 
UTF1 (1:1,000 dilution, ABCAM, ab24273) or GFRα1 
(1:40 dilution, R&D, AF560). The primary antibodies 
were revealed with Alexa-555 and Alexa-488 conjugated 
secondary antibodies together with DAPI to stain the 
nuclei. The sections were mounted and viewed under a 
fluorescence microscope. For statistical analysis, five dif-
ferent slides from Pten+/+ or Pten−/− mice were stained 
and positive cell numbers were calculated and analyzed 
by one-way ANOVA (α = 0.05). For whole-mount stain-
ing, with enzymatic dissociation of the testes using 1 mg/
ml collagenase for 5  min at 37°C, untangled seminifer-
ous tubules were fixed with 2% paraformaldehyde con-
taining 0.5  mM CaCl2 for 30  min at room temperature. 
After incubation with 1% Ttriton 100 for 10 min, samples 
were dehydrated through a series of methanol (25, 50, 75, 
and 100% in PBS containing 0.5% Triton 100—PBS-T) 
on ice followed by rehydration in PBS-T. The seminifer-
ous tubules were incubated in a blocking buffer (1% BSA 
and 4% donkey serum) for 1  h and incubated with the 
first antibody combination at 4°C overnight. The appro-
priate second antibodies (Alexa-555, Alexa-488 and 
Dylight-405 conjugated) were applied onto the samples 
at room temperature for 2 h. After washing with PBS-T, 
the samples were mounted and observed under a fluores-
cence microscope.

Western blot analysis
The proteins were extracted from the cells or tes-
tes using the lysis buffer containing 50  mM Tris-HCl 
(pH7.4), 1 mM EDTA, 150 mM NaCl, 1% sodium deox-
ycholate, 0.1% SDS, 10  mM sodium fluoride, 1  mM 
sodium orthavanadate and 1% protease inhibitor cock-
tail (Sigma-Aldrich Corp, St. Louis, MO, USA). The 
extracted samples containing 50 μg proteins were sub-
jected to 10%SDS-PAGE and electrophoretically trans-
ferred to polyvinylidene difluoride membranes. The filter 
was probed with PLZF antibody (1:200 dilution, R&D 
AF2944), UTF1 antibody (1:250 dilution, Chemicon 
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MAB4337), PTEN antibody (1:1,000 dilution, Millipore 
04-035), GFRα1 antibody (1:2,000 dilution, R&D AF560), 
P-AKT antibody (1:1,000 dilution, Cell Signaling Tech-
nology #4058s) and β-actin (Cell Signaling Technology). 
Appropriate secondary antibodies were used and the 
antibody-antigen complexes in the membranes were vis-
ualized using an enhanced-chemiluminescent detection 
kit (Millipore). The images were scanned using LAS-4000 
mini (FUJIFILM, Minato-ku, Tokyo, Japan).

RNA isolation and RT‑PCR analysis
The total RNAs were extracted using TRIzol reagent (Inv-
itrogen) and then the RNAs were reverse transcribed by 
using a Reverse Transcription kit according to manufac-
turer’s instructions (TaKaRa, DRR037A). The following 
primers were used for SYBR Green–based real-time PCR 
(TaKaRa, DRR420A) on a 7900HT Real Time PCR Sys-
tem (Applied Biosystems Inc, USA): Gapdh [GenBank: 
NM_008084.3], 5′-TGCCCCCATGTTTGTGATG-3′ and 
5′-TGTGGTCATGAGCCCTTCC-3′; Pten [GenBank: 
NM_008084.3], 5′-TTCATACCAGGACCAGAGGA-3′ 
and 5′-TTGTCATTATCTGCACGCTCT-3′. Relative 
gene expression was calculated by the two DDCt method 
against internal reference gene of glyceraldehyde-3-phos-
phate dehydrogenase (Gapdh).

In vivo fertility assay
To evaluate the effect of Pten−/− on fertility, we carried 
out in vivo fertility assay. For each experiment, two nor-
mal female mice were mated with one Pten+/+ or Pten−/− 
male for 2  weeks and then embryos were counted. This 
mating test was artificially divided into three groups 
according to the male’s ages as follows: 35–60  days, 
61–100 days, and older than 100 days. All statistical anal-
yses were conducted with GraphPAD 5.0.

Isolation of haploid cells
Testes were cut into pieces after removing the tunica 
albuginea, and testicular fragments in PBS were shocked 
roughly to wash out the intermediate cells near the 
lumen. Subsequently, the cells in supernatant were col-
lected and stained with Hoechst 33342 (5 μg/ml). After 
90  min of incubation, cells were resuspended in an ice-
cold cell solution (PBS with 10% FBS) containing 2 μg/
ml of propidium iodide for dead cell discrimination. All 
the solutions contain verapamil (50 μM/ml) to block the 
efflux of Hoechst. Finally, sorting was performed on an 
Influx cell sorter with UV laser (BD Biosciences) [19].

Isolation and culture of spermatogonial stem cells
Testes were removed from pups with fine forceps using 
sterile procedures and cut into pieces after removing the 
tunica albuginea. Following a two-step enzymatic digestion 

at 37°C until the tubules became minimum, supernatants 
were pipetted and collected quickly. The supernatant was 
centrifuged to remove the collagenase and the cells were 
incubated in a dish for 1  h, when the somatic cells had 
adhered to the bottom of the dish, the supernatants were 
collected and resuspended in KO-DMEM medium con-
taining 1% FBS and 1,500 units/ml LIF to 6 well plates 
(for western blotting) or to 12 well plates with covers in 
each well (for immunofluorescent staining). Recombinant 
human GDNF and bFGF were added at a final concentra-
tion of 20 and 1 ng/ml respectively. Cells were maintained 
at 34°C in a humidified 5% CO2 atmosphere [20]. The 
medium (containing 5 μM PI3K inhibitor or rapamycin 
20 nM and growth factors) were changed every other day.
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