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Abstract

Adult bone diseases, especially osteoporosis, lead to increased risk of fracture which in turn is 

associated with substantial morbidity, mortality, and financial costs. Clinically, osteoporosis is 

defined by low bone mineral density; however, increasing evidence suggests that the 

microarchitectural quality of trabecular bone (TB) is an important determinant of bone strength 

and fracture risk. Accurate measures of TB thickness and marrow spacing is of significant interest 

for early diagnosis of osteoporosis or treatment effects. Here, we present a new robust algorithm 

for computing TB thickness and marrow spacing at a low resolution achievable in vivo. The 

method uses a star-line tracing technique that effectively deals with partial voluming effects of in 

vivo imaging with voxel size comparable to TB thickness. Also, the method avoids the problem of 

digitization associated with conventional algorithms based on sampling distance transform along 

skeletons. Accuracy of the method was examined using computer-generated phantom images, 

while the robustness of the method was evaluated on human ankle specimens in terms of stability 
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across a wide range of voxel sizes, repeat scan reproducibility under in vivo conditions, and 

correlation between thickness values computed at ex vivo and in vivo imaging resolutions. Also, 

the sensitivity of the method was examined by evaluating its ability to predict the bone strength of 

cadaveric specimens. Finally, the method was evaluated in a human study involving 40 healthy 

young-adult volunteers (age: 19–21 years; 20 males and 20 females) and ten athletes (age: 19–21 

years; six males and four females). Across a wide range of voxel sizes, the new method is 

significantly more accurate and robust as compared to conventional methods. Both TB thickness 

and marrow spacing measures computed using the new method demonstrated strong associations 

(R2 ∈ [0.83, 0.87]) with bone strength. Also, the TB thickness and marrow spacing measures 

allowed discrimination between male and female volunteers (p ∈ [0.01, 0.04]) as well as between 

athletes and nonathletes (p ∈ [0.005, 0.03]).

Index Terms

Bone biomechanics; marrow spacing; multirow detector computed tomography (CT); star-line 
tracing; trabecular bone (TB) thickness

I. Introduction

Adult bone diseases, especially osteoporosis, lead to increased risk of fracture associated 

with substantial morbidity, mortality, and financial costs [1]. Approximately, 30% of 

postmenopausal white women in the U.S. suffer from osteoporosis [2] and the prevalence in 

Europe and Asia is similar. Clinically, osteoporosis is defined by low bone mineral density 

(BMD) [1]. However, increasing evidence suggests that microarchitectural quality of 

trabecular bone (TB) is an important determinant of bone strength and fracture risk [3]–[11]. 

Trabecular (or spongy) bone forms a dense network of bone plates and rods and it dominates 

in the vertebrae and at locations near the joints of long bones (metaphysis and epiphysis). 

Bone atrophy as it occurs in osteoporosis leads to either homogeneous or heterogeneous 

thinning of the trabecular elements. Besides changes in TB network connectivity and 

topology, TB thickness and marrow spacing between trabeculae play critical roles in 

determining the mechanical competence of bone and thus resistance to osteoporotic fractures 

[10]. Chung et al. [12] performed an experiment on 22 cadaveric specimens of lumbar 

vertebrae. They found that, with similar trabecular plate density, the specimens with lower 

mean trabecular thickness showed low bone strength, indicating the relationship between TB 

thickness and strength. Kleerekoper et al. [5] observed a correlation between TB strength 

and plate thickness. In a histologic study involving 78 normal subjects, 100 patients with 

vertebral fracture, and 50 patients with hip fracture, Parfitt et al. [11] observed reduced TB 

thickness in the fracture group as compared to the normal subjects. Several studies have 

revealed the relationship between aging and TB thickness. In a histologic study of lumbar 

vertebral specimens from 23 normal individuals, Mosekilde [13] observed that aging is 

associated with a steady decrease in mean thickness in horizontal trabeculae and a threefold 

increase in horizontal marrow spacing. In a cadaveric forearm study (N = 21), Spadaro et al. 

[14] observed that both cortical and TB thickness are correlated with mechanical bone 

strength.
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The classical approach of measuring trabecular thickness is based on histomorphometry of 

transiliac bone biopsies [15]. The emergence of imaging technologies such as micro-

computed tomography (μ-CT) [16] enables reconstruction of high-resolution 3-D images 

calling for more elaborate techniques for computing TB thickness. Recently, in vivo imaging 

techniques including magnetic resonance imaging (MRI) [17], [18], high-resolution 

peripheral quantitative CT (HR-pQCT) [19]–[21], and multirow detector CT (MD-CT) [22]–

[24] have emerged as promising modalities for high-quality TB imaging at peripheral sites 

that avoid the problems of invasive bone biopsies. Therefore, an accurate and robust 

algorithm for computing TB thickness and marrow spacing that is applicable to in vivo 

imaging would be useful as an effective indicator of quantitative bone quality for clinical 

trials designed to evaluate fracture risks under different clinical conditions. Here, we present 

such an algorithm and evaluate its accuracy, robustness, and sensitivity to bone strength. 

Although, in this paper, the method is applied and evaluated on MD-CT imaging, it may be 

adapted for other in vivo 3-D imaging modalities including MRI and HR-pQCT. Also, the 

method may be applicable to other in vivo medical imaging applications such as pulmonary 

airway wall [25] and vascular thickness [26], [27].

Several methods for computing TB thickness and marrow spacing have been reported [28]–

[32]. Following Hildebrand and Räegsegger [28], thickness at a given point is the diameter 

of the largest inscribed sphere containing that point. A discrete implementation of this 

definition using chamfer distances was presented in [32]. The star-volume [30], [31] 

algorithm has been applied to compute TB marrow spacing. Essentially, it determines the 

object volume seen unobscured from a given point and, finally, computes the average of this 

measure over a target volume. This approach is well suited for high-resolution images that 

can easily be segmented. However, it is bound to fail when significant partial voluming is 

presented in a target object. Saha and Wehrli [29] overcame this issue of partial voluming in 

TB thickness computation at low resolution by introducing the use of the fuzzy distance 

transform (FDT). However, this method fails to fully account for digitization errors in local 

thickness computation.

Here, we introduce a star-line-based algorithm for an accurate and robust measure of TB 

thickness and marrow spacing at in vivo resolution in the presence of significant partial 

voluming. Accuracy of the method was examined on computer-generated phantoms. 

Robustness of the method was evaluated on human specimens in terms of stability across a 

wide range of voxel sizes, repeat scan reproducibility under in vivo conditions, and 

correlation between thickness values computed at ex vivo and in vivo imaging resolutions. 

Also, the sensitivity of the method was examined by its ability to predict bone strength of 

cadaveric specimens. Finally, the method was evaluated in a sample of young adult 

volunteers with tibial scans.

II. Theory and Algorithms

The new method for thickness computation of the fuzzy digital objects interprets fuzzy 

membership value at a given image voxel as the partial occupancy of the object or the local 

object material density. Although, the method is designed for fuzzy digital objects at low 

resolution, its premise is built on objects in the continuous space. First, we establish a 
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definition of “local thickness” in the continuous space, and then, we describe an effective 

algorithm for digital objects.

A. Definition of Local Thickness

Let R3 denote the continuous 3-D space and let O ⊂ R3 be an object. A ball ℬ ⊂ O is a 

maximally included ball (MIB) in O, if there exists no other ball ℬ′ ⊂ O that contains ℬ. 

Obviously, at a given point p ∈ O, the local thickness should be related to the diameters of 

the MIBs containing p [28]. However, the challenge emerges from the fact that a point p is 

contained by multiple MIBs and the question is which specific MIB should be used to define 

the thickness at p. First, consider the axial points of O. A point a ∈ O is an axial point in O 

if and only if there is a MIB in O whose center is a. Following the fact that the MIB ℬO (a) 

centered at an axial point a is unique and symmetrically defines the extent of the local 

structure on both sides of the axis, ℬO (a) is the natural choice for defining the thickness at 

a. Therefore, a proper choice of local thickness should satisfy the following property:

Property 1—For any object O ⊂ R3 and any axial point a ∈ O, the thickness of O at a is 

the length of the diameter of the unique MIB ℬO (a) centered at a.

Property 1 is important as it provides the necessary and sufficient condition for 

reconstruction of an object from its thickness distribution at axial points. Now, let us 

examine different possible options of defining local thickness at a nonaxial point p ∈ O; 

letℳO (p) denote the set of all MIBs in O containing p. Hildebrand and Rüegsegger [28] 

used the largest ball inℳO (p) to define the thickness at p which was further studied by 

Moreno et al. [34]. Another variation of this choice is to select the diameter of the smallest 

ball inℳO (p). We will refer to these options as the largest and smallest MIB options. Both 

of these options fail to satisfy Property 1 as illustrated in Fig. 1(a) and (b). Also, we examine 

the behavior of these options for an object formed by two overlapping disks of different 

scales and the results are shown in Fig. 2(a) and (b). The largest MIB option shows 

thickness bias toward the larger disk, while the smallest MIB option picks the same artifact, 

but in the opposite direction. Thus, both the largest and the smallest MIB options suffer from 

serious drawbacks. Here, we introduce the idea of selecting the MIB for thickness definition 

at a given point p based on the distance between p and the center or the circumference of a 

MIB.

Liu et al. [35] defined the thickness at the given point p as the diameter of the MIB in ℳO 

(p) whose center is closest to p. Although the method satisfies Property 1 [see Fig. 1(c)], its 

performance for two intersecting balls is seriously flawed [see Fig. 2(c)]. Here, we propose 

the following definition of thickness which satisfies Property 1 [see Fig. 1(d)] and produces 

an unbiased thickness distribution for two overlapping balls of different scales [see Fig. 

2(d)].

Definition 1—For any object O ⊂ R3 and any point p ∈ O, the thickness of O at p, denoted 

as τO (p), is the length of the diameter of the MIB inℳO (p), whose circumference is 

farthest from p.
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It can be shown that, for any object O ⊂ R3 and a point p ∈ O, the MIB in ℳO (p) whose 

circumference is farthest is unique. Therefore, Definition 1 produces a unique thickness 

distribution for any object.

B. Thickness Computation for Fuzzy Digital Objects

The proposed thickness computation algorithm for fuzzy digital objects is summarized in 

three steps:

Step 1: Computation of the surface skeleton A of a fuzzy digital object .

Step 2: Computation of thickness τ  (a) at all the axial voxels a ∈ A.

Step 3: Inheritance of thickness τ  (p) at all the nonskeletal voxels p ∈ O – A following 

Definition 1.

Step 1 is accomplished using the surface skeletonization algorithm [38] that is applied on the 

support of the target fuzzy object. We will use A to denote the set of axial voxels or the 

skeleton of an object. In conventional algorithms [28], [29], local thickness at an axial voxel 

is determined by sampling the distance transform (DT) [37] at that voxel. Such methods 

work fine when the relative image resolution is high, but its performance may be suboptimal 

when image resolution is comparable to object thickness. This effect is reduced by using the 

FDT [29] instead of the binary DT.

Here, a brief outline of the FDT-based local thickness computation method [29] is presented. 

Let  = {(p, f (p)|p ∈ Z3} be a fuzzy digital object; f  : Z3 → [0, 1] be the membership 

function; O = {p|f (p) ≠ = 0} be the support; and Ō = Z3 – O be the background. Let 

FDT(p) denote the fuzzy distance of a voxel p ∈ O from the background Ō. FDT(p) provides 

the depth measure of a voxel p in a fuzzy object. The principle of the FDT-based thickness 

computation is to sample depth values at axial voxels. It uses binary skeletonization [38]–

[40] to compute the set A of axial voxels. FDT-based mean thickness THFDT( ) is computed 

as the average of twice the FDT values at axial voxels, i.e.,

(1)

where | · | is the voxel count in a set.

The above method of thickness computation suffers from a random negative error caused by 

digitization of axial voxels. The magnitude of this error is bounded by the interval [0, ], 

where Δ is the voxel size. Saha and Wehrli [29] (see [29, Fig. 1]) proposed a voxel size-

dependent global compensation factor, which was derived under several assumptions on 

structural anisotropy. However, it is difficult to correct local thickness measures at the voxel 

level using this approach. Further, it makes several assumptions on structural anisotropy 

which may not be universally applicable. Therefore, it is of paramount interest to develop a 

method that avoids digitization errors while computing thickness at individual axial voxels.

Liu et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, an intercept-based algorithm is introduced for computing thickness at axial voxels that 

overcomes the digitization error. Let us consider a voxel p ∈ O in a fuzzy object ; an 

intercept of  at p along a direction (polar: θ, azimuth: ϕ) is the membership-weighted 

length of the straight line segment lθ,ϕ (p, ) passing through p with the two ends coinciding 

with the boundary of O. It should be noted that, for a voxel p ∈ O, there can be many 

intercepts of  passing through p. Let Π  (p) denote the set of all possible intercepts of 

that pass through p. The thickness measure τ (a) at an axial voxel a is approximately equal 

to the length of the shortest intercept of  passing through a, i.e.,

(2)

where π(l) denotes the intercept length of l. The above equation offers a new algorithm for 

thickness computation at axial voxels. Major advantages of this approach are that 1) the 

minimum-intercept length measure is highly robust under small random shifts of axial 

voxels, and 2) partial voluming effects are efficiently handled during intercept length 

computation.

Here, we analytically discuss the relevance of the digitization error in the FDT-based and the 

new thickness computation methods. The FDT-based approach assumes that an axial voxel 

where the FDT value is sampled coincides with the true axis of the object and any difference 

between the two directly contributes to thickness error. In case of the intercept-based 

approach, the true axis of an object always orthogonally intersects a minimum intercept line. 

Therefore, even when an axial voxel deviates from the true axis, the error caused by the 

intercept approach is minimized. To further explain, let us consider a simple 2-D example of 

Fig. 3. Consider the material density values at different object pixels as 0.30 (dark gray), 

0.70 (light gray), and 1.0 (white). Clearly, the thickness values for the structures in (a) and 

(b) are 4 and 5 pixels, respectively. For both the FDT-based and the proposed methods, 

thickness values are sampled at axial pixels. For (a), the axial voxels form a digital line 

along one of the two rows of white pixels, say, the upper row as marked by dots. Consider 

the skeletal pixel where star-lines are drawn. The FDT-based method will assign a thickness 

value of 3 pixels. Now consider the new intercept-based approach. Although the sample 

pixel fails to coincide with the true axis, the minimum intercept line (bold) produces the 

correct thickness value as the true axis transects the minimum intercept. Finally, this 

behavior of the FDT-based method is not consistent; for example, it produces the correct 

thickness value for the structure of (b), and therefore, a uniform compensation may not work 

to correct for this digitization error. These claims are thoroughly examined and the 

experimental results are presented in Section IV. Here, it is worth mentioning that, for any 

compact object in R2 or R3, a minimum intercept line always passes through a unique axial 

point as it orthogonally intersects the medial axis. However, such a claim may not be made 

for a digital object and it may be possible to construct an example where a minimum 

intercept line passes through multiple axial voxels.

The star-line-based thickness computation algorithm (see Fig. 4) determines the term 

minl∈Π ( a) π(l) at axial voxels. It locally traces an object along m pairs of mutually 

opposite sample lines emanating from an axial voxel a (black dot in Fig. 4). These sample 
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lines are selected at a pseudouniform distribution over the entire 3-D angular space [33]. A 

parameter ψ is used to define the angular separation between neighboring sample lines. The 

optimum value of ψ was experimentally determined and used for all experiments (see 

Section III). A sample line along a direction 〈θ, ϕ〉 is represented as a sequence of points 

, for i = 0, 1, 2, . . ., where iθϕ is a unit vector along direction 〈θ, ϕ〉; the 

opposite sample line is represented by a sequence of points i × δ × iθϕ, for i = 0, –1, –2, . . .. 

Following the arguments by Saha [33] on the basis of the Nyquist theorem, the sample 

interval δ is set to one-half the smallest dimension of a voxel. At an axial voxel a and a 

given direction 〈θ, ϕ〉, the local intercept length πθ,ϕ(a) of the target object is determined as 

follows:

(3)

where  and  are the first sample points, on the respective sample lines, that fall out of 

the support O of the fuzzy object. The local extent of the object along each sample line is 

recorded (hollow dots in Fig. 4). The thickness at the axial voxel a is computed as the 

shortest (solid line segment in Fig. 4) among the m different object intercept lengths along 

different sample line directions.
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Algorithm 1

thickness-inheritance-from-axial-voxels

Prior to describing Step 3, it is worth mentioning that the idea of sampling the thickness 

values at axial voxels of an object was proposed earlier [29] and, in this context, the novelty 

of the current method lies in the process of computing local thickness at individual axial 

voxels. Although star-line-based approaches have been used previously [30], [31], [33], 

[36], their application to computing minimum intercept length as local thickness is novel. 

Vesterby et al. [30] and Croucher et al. [31] used the star-line approach to compute star-

volume of TB pores, which is a different measure than structure thickness or spacing. To 

describe the process in Step 3, let a ∈ O be an axial voxel and let p ∈ O be a nonaxial voxel. 

The distance of p from the circumference of the MIB (a) centered at the axial voxel a is 

essentially equal to  (a) –  (a, p), where the  (a, p) is the fuzzy distance between a 

and p in . Let A denote the set of axial voxels or the skeleton of . Therefore, following 
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Definition 1, p inherits the thickness from an axial voxel a in A for which the measure  (a) 

–  (a, p) is maximized. Essentially, Algorithm 1 solves the following equation:

(4)

In Algorithm 1, N *(p) is the excluded neighborhood [43] of a voxel p and 

. It should be noted that, the algorithm solves (4) through a 

dynamic programming approach [42] and the corresponding axial voxel a is recorded in N 

AP which eventually determines the inheritance of the thickness value  (p) at a nonaxial 

voxel p.

III. Experimental Plans and Methods

An application of the proposed algorithm for computation of TB thickness and marrow 

spacing by in vivo MD-CT imaging of a human distal tibia was investigated. The 

experimental study was designed to evaluate the following performance indices: 1) 

accuracy; 2) stability of local thickness values under random local shifts in axial voxels; 3) 

stability of local thickness values across a wide range of image voxel sizes; 4) stability of 

thickness values under a major shift in “true” image resolution using ex vivo and in vivo 

imaging modalities; 5) repeat scan reproducibility; 6) ability of TB thickness and marrow 

spacing to predict bone strength; and 7) application to in vivo studies. Computer-generated 

phantoms were used for Experiment 1, while μ-CT images of cadaveric ankle specimens 

were used for Experiments 2–4. MD-CT imaging of the same specimens were used for 

Experiments 4–6. For Experiment 6, bone strength of cadaveric specimens was determined 

by mechanical testing. Experiment 7 involved MD-CT scans of distal tibia in a human pilot 

study. The following sequence of steps was applied to each specimen: 1) MD-CT imaging; 

2) removal of soft tissue and dislodgement of the distal tibia from the ankle joint; 3) μ-CT 

imaging; 4) specimen preparation and TB core extraction; and 5) mechanical testing to 

compute compressive Young’s modulus and yield stress.

Here, it is important to clarify the difference between Experiments 3 and 4. The purpose of 

Experiment 3 was to examine a method’s performance under digitization at varying voxel 

size. On the other hand, Experiment 4 examined a method’s performance under a major shift 

in true image resolution defined by the modulation transfer function (MTF) of an imaging 

technique. Assuming that the thickness computation using μ-CT at high resolution is quite 

accurate, this experiment examined the meaningfulness of thickness computation using the 

current method and an in vivo imaging technique. In the rest of this paper, voxel size or 

digitization will refer to downsampling effects while resolution will symbolize the effects of 

the MTF on an imaging technique.

A. Bone Volume Fraction and Volume Fraction Image Computation

To compute trabecular thickness, a fuzzy representation of TB is used where the 

membership value at a given p represents its bone volume fraction (BVF) denoted as 

BVF(p). For μ-CT images, BVF was directly computed from the raw CT data using the 

bimodal intensity distribution. MD-CT imaging acquires data in Hounsfield units and these 
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numbers were first converted to BMD (mg/cc) measures using a calibration phantom. The 

INTable calibration phantom was used for all cadaveric specimen scans, while the Gammax 

calibration phantom was used for all human in vivo scans. Finally, a BMD image was 

converted to a BVF image using the following equation [45]:

(5)

Marrow space represents the marrow-filled region between trabeculae. Therefore, marrow 

spacing was computed from the marrow volume fraction image (MVF), derived as the 

inverse of the BVF image as follows:

(6)

Both BVF and MVF images were resampled using the windowed-sinc interpolation method 

producing 0.15-mm isotropic voxels.

B. TB Thickness and Marrow Spacing Measures

Computation of both trabecular thickness and marrow spacing was accomplished using the 

algorithm described in Section II-B. Specifically, the two TB measures, namely, TB 

thickness (THB ) and marrow spacing (SPM ), were computed over a target volume-of-

interest (VOI) V as follows:

(7)

(8)

where VB (or VM ) is the set of voxels with nonzero BVF (respectively, MVF) in V. In 

addition to THB and SPM, the average BMD over V was computed as described in [24].

C. Optimum Angular Separation Parameter

As described in Section II-B, the value of the parameter ψ defining the angular separation 

between neighboring sample lines needs to be determined. A small value of ψ provides a 

more precise measure of star-line-based thickness at higher computation cost and the right 

choice of the parameter depends on the tradeoff. To understand the tradeoff between 

accuracy and computation cost, an experiment was conducted on in vivo MD-CT images of 

the distal tibia from ten human volunteers. The ideal measure of star-line-based local 

thickness distribution was determined at dense distribution of star-lines with ψ = 1°. At any 

other value of ψ, the mean and standard deviation of voxel-wise thickness errors were 

computed. The mean error was expressed as a percentage of the ideal mean thickness 

measure (see Fig. 5). Also, the computation time was expressed as a percentage of time 
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required at one degree angular separation (see Fig. 5). An overall tradeoff measure was 

defined as the square root of the sum of squares of normalized error and computation time. 

The optimum tradeoff value was attained at the angular separation of 12°. Following the 

results of this experiment, for all experiments reported in this paper, we used 123 pairs of 

sample lines at an approximate angular separation of 12° between every two neighboring 

sample lines.

D. Computerized Phantoms With Known Truth

Binary phantoms with a known thickness distribution were generated at high resolution over 

an array of 512 × 512 × 512. The simulation began with an ideal skeleton in the continuous 

3-D space R3 as a union of mathematical surfaces, e.g., sinusoidal, cylindrical, spherical, or 

elliptical surfaces and sinusoidal curves constituting different cross structures. The ideal 

skeleton was densely and quasi-uniformly sampled; let ST be the set of NT sampled points. A 

Euclidean DT [44] was computed from ST and DTT: Z3 → R+ denoted the DT map. To 

generate a binary volumetric object with nonuniform thickness, a smoothly varying 

thickness field, say fthickness: Z3 → R+, was generated using trilinear interpolation of 

independently chosen thickness values at a 25 × 25 × 25 array of control points. The number 

of control points represented the degrees of freedom in the simulated thickness field.

Finally, a volumetric object corresponding to the true skeleton ST was defined as the set of 

all voxels with its Euclidean distance DTT not exceeding the true local thickness fthickness. 

Six binary objects with true thickness distribution were generated; for example, see Fig. 

6(a). Test phantom images were generated by downsampling binary phantoms at 3 × 3 × 3, 4 

× 4 × 4, and 5 × 5× 5 voxels and by adding noise at signal-to-noise ratios (SNR) of 6, 12, 

and 24. Zero-mean white Gaussian noise was used for these phantoms and the SNR was 

defined as the variance of the noise; it may be noted that the true signal value at a fully 

occupied object voxel is 1. For the six phantoms used in the current experiment, the mean 

and standard deviation of thickness values at the original resolution were 30 ± 5 and the 

thickness values covered the range of [10], [50] voxels. After accounting for larger voxel 

size in the test phantom image, these thickness values at 5 × 5 × 5 downsampling were 6 ± 1 

and the range was [2], [10].

E. Cadaveric Specimens, MD-CT, and μ-CT Imaging

Fifteen fresh-frozen human cadaveric ankle specimens were obtained from 11 body donors 

(age: 55–91 years). Bodies were obtained under the Deeded Bodies Program, The University 

of Iowa, Iowa City, IA, USA, and the ankle specimens were removed at the mid-tibia 

region. Exclusion criteria for this study were evidence of previous fracture or knowledge of 

bone tumor or bone metastasis. These ankle specimens were kept frozen until the 

performance of MD-CT imaging.

High-resolution MD-CT scans of the distal tibia were acquired at the University of Iowa 

Comprehensive Lung Imaging Center on a 128-slice SOMATOM Definition Flash scanner 

(Siemens, Munich, Germany) using the following CT parameters: single tube spiral 

acquisition at 120 kV, 200 effective mAs, 1 sec rotation speed, pitch factor: 1.0, nominal 

collimation: 16 × 0.3 mm, scan length: 10 cm beginning at the distal tibia end-plateau, and 
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total effective dose equivalent to 17 mrem (≈ 20 days of environmental radiation) in the 

USA. Images were reconstructed at 0.2-mm slice thickness and 0.2 × 0.2 in-plane resolution 

using a normal cone beam method with a special U70u kernel achieving high structural 

resolution. Following all MD-CT repeat scans, each specimen was further scanned on an 

Imtek Microcat II scanner at 28.5-μm isotropic resolution, after removing soft tissue and 

dislocating the tibia from the ankle joint.

F. Mechanical Testing and Determination of Bone Strength

To determine TB strength, a cylindrical TB core 8 mm in diameter and 20.9 ± 3.3 mm in 

length was cored from the distal tibia in situ along the proximal-distal direction. Each TB 

core was mechanically tested for compression using an electromechanical materials testing 

machine. To minimize specimen end effects, strain was measured with a 6-mm gauge length 

extensometer attached directly to the midsection of the bone. A compressive preload of 10 N 

was applied and strains were set to zero. At a strain rate of 0.005 s−1, each specimen was 

preconditioned to a low strain with at least ten cycles and then loaded to failure. Yield stress 

was determined as the intersection of the stress-strain curve and a 0.2% strain offset of the 

modulus.

G. VOI Selection for Cadaveric Image Analysis

The size and location of VOIs for image analysis of the cadaveric bone strength study 

(Experiment 6) were chosen as per the information recorded during specimen preparation 

for mechanical testing of individual specimens. First, the image was rotated to align the 

bone axis along the coordinate z-axis using the following two steps: 1) generation of a 

cylinder C with its axis lying on the coordinate z-axis and its cross-sectional area equating to 

the average tibial cross sectional area; and 2) reorientation of the tibial volume to align its 

axis with C by maximizing the overlap between the tibial volume and the cylinder C. After 

reorienting the bone image, a VOI cylinder of 8-mm diameter along the coordinate z-axis 

was generated and its proximal end was manually positioned at the center of the cortical rim 

using in-plane translation through a graphical user interface. The location of the distal end of 

the VOI cylinder in the slice direction and its length were determined as per the core 

location and length recorded during specimen preparation; the growth plate was visually 

located in the CT data of each specimen. Finally, the central 6-mm region from the cylinder 

was used as the VOI for the extensometer test; for the nonextensometer study, the length of 

the VOI was determined as per data collected during specimen preparation for the second 

mechanical test.

H. Human Volunteers for the In Vivo Study

In vivo MD-CT distal tibia bone scans were obtained for 20 healthy male (M) and 20 healthy 

female (F) volunteers 19 to 21 years of age from the ongoing Iowa Bone Development 

Study (IBDS). MD-CT scans were obtained on the left lower leg of each volunteer following 

the same CT protocol used for cadaveric specimens (see Section III-E). Each volunteer’s 

tibial length was determined by locating the distal and proximal tibial plateaus in the AP 

projection MD-CT scout scan of the entire tibia. Along with the healthy volunteers, six male 
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(M) and four female (F) athletes 19 to 21 years of age were recruited and the same MD-CT 

bone scans were obtained.

I. VOI Selection for In Vivo Studies

The purpose of VOI computation for the in vivo pilot study was to adjust the VOI according 

to the individual-specific tibia length and width. The following protocol was adopted for this 

study: 1) determination of tibial sites for the VOI as the percentage of tibial length in 

reference to the distal end plateau; 2) reorientation of the tibial image to align its axis with 

the coordinate z-axis using the same method described in Section III-G for cadaveric 

specimens; 3) location of the distal end plateau in the MD-CT volume scan; and 4) 

determination of the VOI at the 5% tibial site covering 2% of the tibial length after applying 

a 45% peel on each cross-sectional slice.

IV. Results and Discussion

Results of TB thickness measures for three specimens with different bone strengths are 

illustrated in Fig. 7. As observed in the figure, an 8% difference in BMD from a strong bone 

(a) to a weak bone (c) leads to a 70% loss in bone strength and manifests as a 20% reduction 

in TB thickness and a 42% increase in marrow spacing. This observation supports that TB 

thickness and marrow spacing measures are highly sensitive to bone loss and, therefore, play 

a significant role in early detection of bone diseases.

A. Accuracy Analyses

To examine the accuracy of the method, an error function was defined using the known 

thickness field fthickness. Let Ol,σ denote the set of voxels with nonzero membership in a 

phantom image at the downsampling rate of l and the noise at SNR of σ, and let 

fcom puted,l,σ : Z3 → R+ be the computed thickness map. The thickness computation error was 

defined as follows:

(9)

Average errors using both the new and the FDT-based [29] methods for six phantoms are 

presented in Table I; the errors are shown in voxel size prior to downsampling. Thus, a mean 

error of 1.33 at a downsampling of 4 × 4 × 4 and an SNR of 12, essentially, represents an 

error of 0.46 in terms of the voxel size of the test phantom image. Compared to the FDT-

based method, the new method produces smaller errors at all different combinations of noise 

and downsampling, and these differences are significant (two sample t-test p <0.001).

B. Robustness Under Different Conditions

Three different experiments were undertaken to assess the robustness of the new method. 

The first experiment was designed to examine whether the new thickness computation 

algorithm is prone to the digitization error of axial voxels. For this purpose, each axial voxel 

was randomly replaced by one of its 3 × 3 × 3 neighbors, and then, Steps 2 and 3 of the 

thickness computation algorithm were followed. Two thickness values were computed at 
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each object voxel: one using the originally computed axial voxels and the other derived after 

randomly moving axial voxels. The error was computed as the average of voxel-by-voxel 

absolute differences between these two thickness values. This error was normalized by the 

mean thickness value computed from the original axial voxels. The experiment was run on 

both μ-CT and MD-CT images of 15 ankle specimens. The mean and standard deviation of 

voxel-by-voxel errors of TB thickness computation for μ-CT images were 0.9% and 0.5%, 

respectively, and these numbers were 8% and 6%, respectively, for MD-CT images. It 

should be mentioned that 8% and 6% thickness computation errors at 150-μm resolution are 

equivalent to 0.12 and 0.09 voxel errors. Further, it should be mentioned that for MD-CT 

images, the error was reduced to 3% or 0.04 voxel when average thickness values over a 

VOI of 1 mm3 were used for error calculation.

To examine the method’s stability under digitization at different voxel sizes, the method was 

applied on ten μ-CT images each downsampled at six different voxel sizes. Specifically, μ-

CT images of original isotropic voxel size of 28.5 μm were used and each image was down 

sampled at six larger isotropic voxel sizes of 57.0, 85.5, 114.0, 142.5, 171.0, and 199.5 μm, 

as shown in Fig. 8. Computed mean thickness values for different specimens at various 

voxel sizes are illustrated in Fig. 9(a). Thickness error for a specific μ-CT image at a given 

downsampled resolution was computed as the difference between mean thickness values 

computed from the downsampled and the original μ-CT voxel size. Finally, the average and 

standard deviation of thickness errors at a given voxel size were computed over the ten μ-CT 

images and the results are presented in Fig. 9(b). As observed in Fig. 9(b), despite a wide 

range of voxel sizes covering ex vivo to in vivo regimes, the average thickness error is only 

4.3%. These results demonstrate that the new thickness computation method is highly stable 

across a wide range of voxel sizes. However, it must be clarified that the change in voxel 

size for this experiment was acquired by downsampling, and it does not reflect the behavior 

of the method under true loss of resolution due to change in imaging modalities, e.g., the 

effects of a larger MTF.

To examine the performance of the algorithm under true loss of resolution by different 

imaging modalities with widely different characteristics of MTF, the correlation of TB 

thickness computed from ex vivo μ-CT and in vivo MD-CT imaging was examined. The 

purpose of this experiment was different from the previous experiment. In the previous 

experiment, different voxel sizes were obtained computationally, and the results showed that 

the proposed algorithm produced highly stable measures of thickness across a wide range of 

voxel sizes. On the other hand, the current experiment was designed to examine the 

relationship between thickness values measured from images acquired using ex vivo and in 

vivo imaging modalities with widely different MTFs. Matching axial image slices from 

postregistered images of a cadaveric specimen using the two different modalities are 

presented in Fig. 10. As observed in the figure, the trabecular structures are thicker in MD-

CT imaging due to a larger MTF. Therefore, it is unrealistic to expect that the two widely 

different imaging modalities will generate the same thickness value. Instead, the objective 

was to examine whether the thickness values measured by the proposed method using the 

two characteristically different modalities are tightly related or not. The linear correlations 

of TB thickness and marrow spacing computed from registered μ-CT and MD-CT images 
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are presented in Fig. 11. The r values from a linear regression model of TB thickness and 

marrow spacing measures in two different modalities are 0.96 and 0.95, respectively, with 

slopes of 1.66 and 1.08, respectively. For both measures, the regression line passes near the 

origin. Thus, the results of this experiment reveal that the thickness values computed by the 

current method from two distinctly different modalities are not identical, but there is a strong 

association between their values.

C. Reproducibility Analysis

Three repeat MD-CT scans of 15 cadaveric ankle specimens were used to examine the 

method’s reproducibility. Fig. 12 illustrates a color-coded TB thickness map over a 

matching volume in two repeat MD-CT scans of the distal tibia. For quantitative analyses, 

ten spherical VOIs of the same radius were randomly selected in the first MD-CT scan of 

each specimen above the position 8-mm proximal to the distal endplate leading to a total of 

150 VOIs. A postregistration algorithm was used to locate the matching VOIs in the second 

and third repeat scans. It is obvious that the result of reproducibility analysis depends on the 

scale of the VOI, with larger VOIs showing improved reproducibility. The relationship 

between the method’s reproducibility and VOI size is presented in Fig. 13. As can be seen in 

the figure, for the new method, at a VOI diameter of 3.45 mm or greater, the intraclass 

correlation coefficient (ICC) exceeds the value of 0.95 suggesting that the measure is highly 

reproducible for assessing regional bone alteration. For the conventional FDT-based 

approach, the VOI diameter has to reach 6.15 mm or greater to achieve equivalent 

performance in terms of the ICC.

D. Ability to Predict Bone Strength

The results of correlation analysis between Yield stress and each of the TB thickness and 

marrow spacing measures using the new method are shown in Fig. 14(a) and (b), while the 

results using the FDT-based algorithm are shown in Fig. 14(c) and (d). The values of R2 or 

coefficients of determination from the linear regression analysis between TB Young’s 

modulus and the different TB measures are presented in Table II. For both yield stress and 

Young’s modulus parameters, the TB thickness and marrow spacing measures computed 

using the new method have demonstrated superiority in predicting bone strength as 

compared to the FDT-based measures and MD-CT based volumetric BMD.

E. Results of In Vivo Pilot Studies

Twenty male and twenty female volunteers (19 to 21 years) were used to form body mass 

index (BMI) order-matched male–female pairs. The BMI was 26.89 ± 6.32 kg/m2 (mean

±standard deviation) for males and 25.15 ± 7.96 kg/m2 for females, and r for the two 

ordered groups of BMIs was 0.98. The colored results for one male–female pair are shown 

in Fig. 15. Clearly, the results indicate that the male has thicker TB than the female. 

Quantitative results show that males on average have 6.7% thicker TB and 13.9% reduced 

marrow spacing as compared to females. Observed values for TB thickness and marrow 

spacing for males were 0.22 ± 0.02 and 0.32 ± 0.06 mm, respectively, and those measures 

observed for females were 0.19 ± 0.03 and 0.37 ± 0.10 mm (see Table III). Paired t-test 

results showed the differences were statistically significant (p < 0.03) for both TB thickness 
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and marrow spacing. Using the FDT-based methods, males on average have 2.6% thicker 

TB and 12.3% reduced marrow spacing as compared to females, with p-values of 0.29 and 

0.12 for TB thickness and marrow spacing, respectively.

In vivo MD-CT data from ten athlete volunteers (six male and four female) were processed. 

Collegiate athletes who were actively participating at the varsity level in volleyball or 

basketball were recruited from regional colleges and universities. We did not recruit from 

Big Ten universities in order to minimize genetic differences between the athletic sample 

and the IBDS sample. All athletes were screened to ensure that they had not been injured in 

the past year. A control group was formed by selecting among the 40 healthy volunteers, ten 

with the same gender and the most similar BMI value. The mean BMIs were 23.73 ± 1.56 

kg/m2 for athletes, and 24.07 ± 1.83 kg/m2 for the control group, and r for the two groups of 

BMI values was 0.98. The results for one athlete and one nonathlete with similar BMI 

values are shown in Fig. 16. Obviously, the results indicate that the athlete has thicker TB 

than the nonathlete. Quantitative results show that athletes on average have 9.4% thicker TB 

and 11.0% reduced marrow spacing as compared to age-sex-BMI-matched healthy controls 

(see Table III). Results of paired t-tests showed the differences were statistically significant 

(p = 0.01 for TB thickness and p = 0.04 for marrow spacing). Using FDT-based methods, 

athletes on average have 10.0% thicker TB and 9.3% reduced marrow spacing as compared 

to nonathletes, with p of 0.07 and 0.14 for TB thickness and marrow spacing, respectively.

V. CONCLUSION

In this paper, we presented a new thickness computation algorithm for fuzzy digital objects 

at relatively low resolution and investigated its role in computing TB thickness and marrow 

spacing measures through MD-CT imaging under in vivo conditions. Results of a 

comprehensive study on computer-generated phantoms and fifteen cadaveric ankle 

specimens evaluating the new method were presented. Observed results demonstrated 

encouraging accuracy and stability of computed thickness at different levels of noise and 

downsampling. Also, high repeat MD-CT scan reproducibility of the new thickness 

computation method was observed in the cadaveric ankle study. TB thickness and marrow 

spacing measures demonstrated higher ability to predict the experimental mechanical 

properties of TB under in vivo conditions as compared to BMD and conventional FDT-based 

methods. Currently, we are investigating the power of the new method to characterize 

clinical groups with low bone mass.

Also, in vivo data from 40 age similar and BMI order-matched male and female volunteers 

demonstrated that males have significantly thicker trabeculae and significantly reduced 

marrow spacing as compared to females. Although similar differences of TB thickness and 

marrow spacing between males and females were observed for FDT-based measures, 

differences were not statistically significant. A second experiment on ten basketball or 

volleyball athletes and age-sex-BMI similar healthy matched controls showed that using the 

current method, athletes have significantly thicker TB and significantly reduced marrow 

spacing. This imaging difference is consistent with the Mechanostat theory which states that 

bone adapts to local mechanical elastic deformation in response to peak forces caused by 

muscle activity. In short, the thicker TB and reduced marrow spacing in the athletes which 
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we report is an environmental adaptation that improves bone strength. Our results suggest 

that exercise interventions that do not include pre- and postmeasures of TB may not fully 

capture the positive effects of the intervention. A similar analysis using FDT-based 

measures marginally failed to demonstrate statistically significant differences in TB 

thickness and marrow spacing between and athletes and healthy matched controls. The 

current experimental results demonstrate the application of the proposed method in a young 

population, but it has yet to be tested on an osteoporotic population, generally, consisting of 

elderly subjects or subjects with compromised bone.

One drawback of the current thickness computation method lies in the increased 

computation time needed to compute interpolated intensity values at multiple sample points 

on individual star-lines for each axial voxel. Current implementation of the method on a 

desktop with a 2.53-GHz Intel(R) Xeon(R) CPU and Linux OS requires approximately 4–5 

min for a typical MD-CT image analysis of human TB over a region of interest of 300 × 300 

× 300 at an isotropic resolution of 150 μm. Considering the fact that the method is fully 

automated and it can be run on multiple images in a batch mode, the additional computation 

time may not be an important concern for most applications.
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Fig. 1. 
Comparison among different definitions of thickness in terms of satisfying Property 1. The 

color bar is added where the thickness values are shown in millimeter units. (a) Local 

thickness distribution on an ellipse using the largest MIB option except that the intensity at 

an axial point is enforced as the diameter of the MIB centered at that point. (b)–(d) Same as 

(a) but using the options of smallest MIB (b), nearest MIB center (c), and farthest MIB 

circumference (d). Axial lines are partially visible in (a) and (b) confirming the failure of the 

first two thickness options to satisfy Property 1. The axial lines in (c) and (d) are not visible 

indicating that both the nearest MIB center and the farthest MIB circumference options 

satisfy Property 1.
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Fig. 2. 
Comparison among different definitions of thickness in terms of their performance for two 

overlapping disks of different scales. Disk boundaries are shown by dotted lines. (a) Local 

thickness distribution using the largest MIB option. Here, the thickness of the larger ball 

gets higher preference and it enters inside the smaller ball. (b) Same as (a) but for the 

smallest MIB option; here, the artifact is opposite to that of (a). (c) Same as (a) but using the 

MIB with the nearest center. The failure of this option is obvious. (d) Same as (a) but using 

the MIB with the farthest circumference. A major advantage of this option is that it 

impartially divides the intersecting regions between the two balls eliminating bias artifacts.
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Fig. 3. 
Advantages of intercept-based thickness computation in reducing digitization errors as 

compared to the FDT-based method.
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Fig. 4. 
Illustration of star-line-based TB thickness computation in two-dimensions. The candidate 

voxel (black dot), star-lines (dot), edge locations (hollow dots), and shortest intercept (solid 

line) in TB thickness computation are shown.
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Fig. 5. 
Tradeoff between computation time and error as a function of the parameter ψ defining the 

angular separation between neighboring sample lines for star-line-based computation of 

local thickness.
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Fig. 6. 
Computer generated phantom data at different levels of noise and downsampling. (a) Three-

dimensional rendition of the true binary phantom. (b)–(d) Axial image slices of test 

phantoms at SNR values of 24, 12, and 6 and downsampling rates of three, four, and five 

voxels, respectively.
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Fig. 7. 
Illustration of the TB thickness and marrow spacing measures for three different TB 

specimens with distinctly different bone strengths : (a) strong (yield stress: 11.5 MPa), (b) 

moderate (7.1 MPa), and (c) weak (3.4 MPa).
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Fig. 8. 
Illustration of a μ-CT image downsampled at different voxel sizes: (a) 28.5 μm, (b) 114.0 

μm, and (c) 199.5 μm.
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Fig. 9. 
Illustration of stability of the new algorithm across a wide range of voxel sizes. (a) Mean 

thickness values over a matching VOI at different voxel sizes. Each curve represents the 

results for one specimen. (b) Mean and standard deviation of errors at different voxel sizes 

as computed based on data from ten specimens.
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Fig. 10. 
Illustration of a matching axial image slice from postregistered (a) μ-CT and (b) MD-CT 

images of a cadaveric specimen.
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Fig. 11. 
Illustration of the linear correlation of (a) TB thickness and (b) marrow spacing computed 

from postregistered μ-CT and MD-CT images.
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Fig. 12. 
Illustration of reproducibility of the TB thickness measure under MD-CT repeat scans. (a) 

and (b) Color-coded TB thickness images. (c) and (d) TB image without color coding. (e) 

Color coding bar.
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Fig. 13. 
Illustration of repeat MD-CT scan ICC values as a function of VOI diameters for both the 

new and the FDT-based algorithms. As observed in (a), at a VOI diameter of 3.45 mm or 

greater, the ICC value for the new algorithm exceeds the mark of 0.95, while the FDT-based 

algorithm requires a VOI diameter of 6.15 mm or greater to reach to that mark.
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Fig. 14. 
(a) and (b) Ability of TB thickness and marrow spacing measures computed by the method 

to predict experimental bone strength. The ability is computed in terms of the R2 of linear 

correlation between bone strength and the respective measure. (c) and (d) Same as (a) and 

(b) but for the FDT-based method.
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Fig. 15. 
Color-coded illustration of TB thickness distribution using the new method for age-BMI-

similar healthy (a) female and (b) male volunteers.
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Fig. 16. 
Same as Fig. 15, but comparison between a healthy nonathlete (a) and an age-sex-BMI-

matched athlete volunteer.
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