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Abstract

A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), 

generate a bewildering array of cell types during vertebrate development. An attractive model 

among developmental biologists, the study of NCC biology has provided a wealth of knowledge 

regarding the cellular and molecular mechanisms important for embryogenesis. Studies in 

numerous species have defined how distinct phases of NCC specification, proliferation, migration, 

and survival contribute to the formation of multiple functionally distinct organ systems. NCC 

contributions to the peripheral nervous system (PNS) are well known. Critical developmental 

processes have been defined that provide outstanding models for understanding how extracellular 

stimuli, cell–cell interactions, and transcriptional networks cooperate to direct cellular 

diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular 

mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic 

implications for neurocristopathies, neuropathies, and certain forms of cancer.

1. INTRODUCTION

Neural crest cells (NCCs) are a stem-cell population that generate much of the peripheral 

nervous system (PNS) during development (Le Douarin & Kalcheim, 1999; Le Douarin & 

Smith, 1988). A tightly regulated balance between extrinsically derived cues and intrinsic 

regulators is required for the appropriate specification, growth, and function of NCCs during 

PNS formation. Evidence suggests that the early NCC population is comprised of both fate-

restricted and multipotent progenitors (Bronner-Fraser & Fraser, 1988; Coelho-Aguiar, Le 

Douarin, & Dupin, 2013; Crane & Trainor, 2006; Fraser & Bronner-Fraser, 1991; 

Greenwood, Turner, & Anderson, 1999; Krispin, Nitzan, & Kalcheim, 2010; Le Douarin & 

Dupin, 2003; Ziller, Dupin, Brazeau, Paulin, & Le Douarin, 1983). During the course of 

development in vivo most NCCs undergo progressive fate restriction. However, some 

derivatives retain a level of plasticity and self-renewal potential and neural crest-like stem 

cells have been extracted from the sciatic nerve and dorsal root ganglia (DRG) of adult 

organisms (Bixby, Kruger, Mosher, Joseph, & Morrison, 2002; Greenwood et al., 1999; Li, 

Say, & Zhou, 2007; Morrison, White, Zock, & Anderson, 1999; Nagoshi et al., 2008; 

Stemple & Anderson, 1992; White et al., 2001). Since cranial PNS structures are derived 

from both NCCs and placode cells, the focus of this review is primarily on the development 

of the DRG and the peripheral nerves which are derived solely from trunk NCCs. The study 

1Corresponding author: jason.newbern@asu.edu. 

HHS Public Access
Author manuscript
Curr Top Dev Biol. Author manuscript; available in PMC 2015 July 28.

Published in final edited form as:
Curr Top Dev Biol. 2015 ; 111: 201–231. doi:10.1016/bs.ctdb.2014.11.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of PNS development continues to shed light on the role of distinct molecular mediators of 

complex cell and tissue interactions.

2. NEURAL CREST SPECIFICATION

NCC arises from the dorsal lip of the developing neural tube at early stages of 

embryogenesis. Briefly, extracellular cues derived from the ectoderm, mesoderm, and 

adjacent neuroepithelium play an active role in the process of NCC specification. The 

inductive cues and fate potentials of NCCs along the neuraxis are diverse and a number of 

canonical patterning systems participate in this process, including Wnt/β-catenin, FGFs, 

BMPs, retinoic acid, and Delta/Notch signaling (Cheung et al., 2005; Mead & Yutzey, 2012; 

Milet & Monsoro-Burq, 2012; Stuhlmiller & Garcia-Castro, 2012). Many of these same 

signals act at later stages of NCC and PNS differentiation as well. The tightly regulated 

expression of various transcription factors is important during this transition; Pax7, Snail/

Slug, FoxD3, and Sox9 are but a few that are especially critical at this early stage (Betancur, 

Bronner-Fraser, & Sauka-Spengler, 2010; Bhatt, Diaz, & Trainor, 2013).

Once specified, NCCs separate from the neuroepithelium and undergo an epithelial to 

mesenchymal transition (EMT) before initiating migration toward distant sites (Lim & 

Thiery, 2012). Live cell imaging has revealed significant heterogeneity in the sequence of 

detachment, division, polarization, and migration during EMT, indicating that highly 

complex and plastic interactions between multiple cellular subprograms regulate this process 

(Ahlstrom & Erickson, 2009). Modulation of cadherins, integrins, and multiple extracellular 

matrix (ECM) components is vital for modulating NCC delamination (Perris & Perissinotto, 

2000). For example, a regulated switch from N-cadherin to cadherin-6 expression and 

noncanonical Wnt/planar cell polarity signaling play a key role in delamination and early 

migration (Carmona-Fontaine, Matthews, & Mayor, 2008; Clay & Halloran, 2014; De 

Calisto, Araya, Marchant, Riaz, & Mayor, 2005; Mayor & Theveneau, 2014; Nakagawa & 

Takeichi, 1995, 1998; Ulmer et al., 2013). Wnt/β-catenin signaling also acts as a potent 

instructive cue that promotes PNS specification. Activation of β-catenin drives the formation 

of DRG sensory neurons at the expense of many other NCC derivatives, while inhibition of 

Wnt or β-catenin attenuates DRG and sympathetic ganglia (SG) formation (Armstrong, Ryu, 

Chieco, & Kuruvilla, 2011; Hari et al., 2002; Ikeya, Lee, Johnson, McMahon, & Takada, 

1997; Lee et al., 2004). The effect of Wnt/β-catenin signaling on DRG fate is most effective 

at the premigratory stage; however, Wnts continue to have important functions during later 

stages of neuronal development (Bodmer, Levine-Wilkinson, Richmond, Hirsh, & 

Kuruvilla, 2009; Hari et al., 2012).

NCCs are induced along the entire neuraxis and can be divided into specific groups with 

distinct migratory routes and competencies. The PNS arises primarily from trunk NCC, 

which is derived from the neural tube caudal to the fourth somite. Unlike cranial NCCs, 

trunk NCCs are generally restricted from generating ectomesenchymal tissues such as bone 

and cartilage in vivo (Coelho-Aguiar et al., 2013). However, exceptions have been observed 

in turtle carapace and plastron development (Cebra-Thomas et al., 2013). NCCs from the 

vagal and sacral regions generate the enteric nervous system (ENS), while the cranial and 

sacral NCCs make important contributions to the parasympathetic nervous system. 
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Outstanding advances have been made in defining mechanisms of ENS morphogenesis that 

are reviewed elsewhere (Sasselli, Pachnis, & Burns, 2012).

3. MIGRATORY PATTERNS OF TRUNK NEURAL CREST

NCCs exiting the dorsal neural tube first migrate ventrally in a non-segmental fashion before 

traveling along a set of well-characterized routes (Fig. 1). Cooperative cell interactions, 

control of cytoskeletal activity, and an array of positive and negative cues directly influence 

the complex pattern of NCC migration (Friedl & Gilmour, 2009; Mayor & Carmona-

Fontaine, 2010). NCCs often migrate in chains, an interaction that is critical for regulating 

the directionality of migration (Erickson, 1985; Rorth, 2009). Migratory routes are lined 

with a number of permissive ECM components, such as laminins, versican, and fibronectin, 

which help guide the path of NCCs (Dutt, Kleber, Matasci, Sommer, & Zimmermann, 2006; 

Perris & Perissinotto, 2000; Rorth, 2009). Typically, trunk NCCs migrate ipsilaterally; 

however, some NCCs are capable of crossing the dorsal midline and migrating into the 

contralateral DRG (George, Chaverra, Todd, Lansford, & Lefcort, 2007).

The timing and choice of migratory pathway is tightly linked to subsequent fate decisions. 

An early bifurcation occurs when migratory NCCs choose a dorsolateral path along the 

ectoderm or a ventromedial course in between the neural tube and developing somites 

(Gammill & Roffers-Agarwal, 2010; Serbedzija, Bronner-Fraser, & Fraser, 1989; Thiery, 

Duband, & Delouvee, 1982). Trunk NCCs that enter the ventromedial pathway contribute to 

the peripheral and autonomic nervous system in addition to other trunk derivatives, such as 

adrenal chromaffin cells, while the dorsolateral pathway mostly generates the pigment cell 

lineage including melanocytes (Kelsh, Harris, Colanesi, & Erickson, 2009; Serbedzija, 

Fraser, & Bronner-Fraser, 1990; Shtukmaster et al., 2013). The choice of pathway is also 

related to the timing of emigration; early NCCs primarily enter the ventromedial pathway, 

while later waves of NCCs are biased toward the dorsolateral pathway. Interestingly, late-

born NCCs transplanted into younger embryos still enter the dorsolateral pathway, showing 

that the timing of NCC birth is critical for subsequent migratory path and fate choices 

(Erickson & Goins, 1995; Reedy, Faraco, & Erickson, 1998). NCCs generally show a bias 

toward populating target organs in a ventral to dorsal order, though variation between chick 

and mouse has been observed (Krispin, Nitzan, Kassem, & Kalcheim, 2010; Serbedzija, 

Bronner-Fraser, & Fraser, 1994, Serbedzija et al., 1989).

The developing somites provide an additional critical source of patterning cues that initiate 

segmental migration and direct the metameric organization of the developing DRG, SG, and 

peripheral nerves (Bronner-Fraser, 1986; Bronner-Fraser & Stern, 1991; Keynes & Stern, 

1984; Krull, 2001). Rotation or ablation of the early somites leads to aberrant PNS 

segmentation and altered NCC migratory patterns (Bronner-Fraser & Stern, 1991; Kalcheim 

& Teillet, 1989). The early wave of trunk NCCs migrates ventrally along intersomitic blood 

vessels in between the somites (Bronner-Fraser, 1986; Schwarz, Maden, Davidson, & 

Ruhrberg, 2009; Thiery et al., 1982). NCCs entering the intersomitic path will generate 

neurons and glia within the SG and are stimulated by chemoattractant and instructive cues 

from the dorsal aorta (DA), such as SDF1/CXCR4, BMPs, and neuregulin-1 (Nrg1), as well 

as blood vessel-derived artemin (Belmadani et al., 2005; Britsch et al., 1998; Honma et al., 
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2002; Kasemeier-Kulesa, McLennan, Romine, Kulesa, & Lefcort, 2010; Reissmann et al., 

1996; Saito, Takase, Murai, & Takahashi, 2012; Schneider, Wicht, Enderich, Wegner, & 

Rohrer, 1999; Shah, Groves, & Anderson, 1996; Yip, 1986). As the somite differentiates 

into the sclerotome and dermomyotome (DM), another wave of NCCs migrates segmentally 

into the space between the developing structures, often along the basement membrane of the 

DM (Krull, 2001; Tosney, Dehnbostel, & Erickson, 1994). Importantly, the caudal somite 

produces factors that repel migrating NCCs, while the rostral half provides attractive cues 

(Bronner-Fraser & Stern, 1991; Goldstein, Teillet, & Kalcheim, 1990; Koblar et al., 2000; 

Krull et al., 1997; Wang & Anderson, 1997). A subpopulation of NCCs migrate through the 

developing sclerotome and provide an additional source of SG progenitors. NCCs that arrest 

migration adjacent to the neural tube generate the DRG and subsequent derivatives.

4. MOLECULAR REGULATORS OF NEURAL CREST MIGRATION

A number of secreted factors act in conjunction with intrinsic regulators to control NCC 

migration, proliferation, and multipotency during the early migratory stage of development. 

Extracellular signaling through secreted trophic factors helps promote migratory NCC 

survival and/or proliferation (Britsch et al., 1998; Kalcheim, 1996; Meyer & Birchmeier, 

1995; Murphy, Reid, Ford, Furness, & Bartlett, 1994; Shah, Marchionni, Isaacs, Stroobant, 

& Anderson, 1994; Sommer, 2006). FGF2, Nrg1, the neurotrophin-3 (NT-3) receptor TrkC, 

and the thrombospondin/EGF domain-containing factor NELL2 can be detected in a subset 

of migrating trunk NCCs, all of which promote NCC proliferation and may act as instructive 

cues (Henion, Garner, Large, & Weston, 1995; Kahane & Kalcheim, 1994; Kalcheim, 

Carmeli, & Rosenthal, 1992; Murphy et al., 1994; Nelson, Claes, Todd, Chaverra, & 

Lefcort, 2004; Rifkin, Todd, Anderson, & Lefcort, 2000). The transcription factors Sox2, 

Sox10, and FoxD3 play well-defined roles in maintaining the stem cell-like features and 

self-renewal capacity of early migratory NCCs (Kim, Lo, Dormand, & Anderson, 2003; 

Mundell & Labosky, 2011; Sonnenberg-Riethmacher et al., 2001; Southard-Smith, Kos, & 

Pavan, 1998; Teng, Mundell, Frist, Wang, & Labosky, 2008). Sox10 increases the 

expression of the neuregulin receptor ErbB3, providing a specific mechanistic example of a 

precise intrinsic cue that modulates extrinsic responsiveness (Britsch et al., 2001; Paratore, 

Goerich, Suter, Wegner, & Sommer, 2001; Prasad et al., 2011). The mechanism of 

interaction between many other critical extrinsic and intrinsic cues has yet to be fully 

elucidated.

Importantly, somite-derived factors that direct NCC migration have been defined. The 

caudal half of the developing somite provides local cues that inhibit NCC migration, while 

the rostral half appears to produce attractive and mitogenic factors (Goldstein et al., 1990; 

Koblar et al., 2000; Krull, 2001; Krull et al., 1997; Wang & Anderson, 1997). Repulsion 

from the caudal somite is mediated by semaphorins and ephrins that act in concert with 

Neuropilin and Eph-expressing neural crest (Gammill, Gonzalez, Gu, & Bronner-Fraser, 

2006; Kawasaki et al., 2002; Krull, 2001; Krull et al., 1997; Maden et al., 2012; Schwarz et 

al., 2009; Wang & Anderson, 1997). These signaling cues are critical for directing the 

segmental migration and final pattern of PNS morphogenesis. F-spondin expression in the 

caudal sclerotome provides an additional repulsive cue for migrating NCCs while 

thrombospondin in the rostral domain has been shown to act as an attractant (Debby-
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Brafman, Burstyn-Cohen, Klar, & Kalcheim, 1999; Tucker et al., 1999). Furthermore, a 

similar role for Delta expression in the caudal somite has been proposed (Bettenhausen, 

Hrabe de Angelis, Simon, Guenet, & Gossler, 1995). Deletion of Delta1 results in disruption 

of the metameric pattern of DRG formation; however, a reduced number of progenitors 

indicate multiple functions for Delta/Notch signaling that clearly extend beyond strict 

migratory control (De Bellard, Ching, Gossler, & Bronner-Fraser, 2002; Hrabe de Angelis, 

McIntyre, & Gossler, 1997; Mead & Yutzey, 2012).

Long-range, local, and contact-dependent molecules have been identified that regulate 

diverse aspects of NCC migration. These signals are capable of activating numerous 

intracellular pathways; however, convergent regulation of common downstream 

components, such as Rho and Rac, serves as a key integration point (Berndt, Clay, 

Langenberg, & Halloran, 2008; Clay & Halloran, 2014; Liu & Jessell, 1998; Shoval & 

Kalcheim, 2012; Theveneau & Mayor, 2012). Newly developed high-resolution imaging 

techniques and genetic tools will continue to provide unique insight into how entire 

populations of cells are guided into distinct migratory routes and destinations during 

embryogenesis (Clay & Halloran, 2010).

In vivo clonal analyses suggest that early migratory NCCs contain both multipotent 

progenitors capable of generating cells within the DRG, SG, and nerve, in addition to 

progenitors restricted to a specific lineage (Bronner-Fraser & Fraser, 1988, 1989; Frank & 

Sanes, 1991; Krispin, Nitzan, Kassem, et al., 2010; Serbedzija et al., 1989; Shtukmaster et 

al., 2013). A disruption in migratory guidance occurs in Nrp1 and EdnRB2 mutants that 

leads precociously misrouting of NCCs into the dorsolateral pathway (Krispin, Nitzan, 

Kassem, et al., 2010; Schwarz et al., 2009). Interestingly, neuronal markers are detected in 

the dorsolateral pathway of these mutants. Thus, NCCs can be specified to the neurogenic 

lineage in the absence of interactions with sclerotome-derived signals (Krispin, Nitzan, 

Kassem, et al., 2010; Schwarz et al., 2009). Even though DRG-restricted NCCs have been 

identified, these cells produce both neurons and glia in vivo (Greenwood et al., 1999; 

Zirlinger, Lo, McMahon, McMahon, & Anderson, 2002). Overall, these data provide 

support for the notion that some migratory NCCs are specified to the DRG or the autonomic 

lineage prior to choosing between a neuronal or glial fate (Anderson, 2000; Crane & 

Trainor, 2006; Krispin, Nitzan, Kassem, et al., 2010; Morrison et al., 1999).

5. BOUNDARY CAP

An intermediate population of NCC-derived stem cells, known as the boundary cap, form on 

the border of the spinal cord and DRG along both the dorsal and ventral roots, known as the 

dorsal root entry zone (DREZ) and the motor exit point (MEP), respectively (Altman & 

Bayer, 1984; Golding & Cohen, 1997). NCCs migrating along the ventromedial pathway 

generate the boundary cap after the initial wave of DRG progenitors is established 

(Niederlander & Lumsden, 1996). The boundary cap progenitors form a critical boundary 

between the CNS and the PNS (Bron et al., 2007; Coulpier et al., 2010, 2009; Hjerling-

Leffler et al., 2005; Maro et al., 2004; Mauti, Domanitskaya, Andermatt, Sadhu, & Stoeckli, 

2007; Vermeren et al., 2003). This cell impermeable barrier relies, in part, on boundary cap-

derived, membrane-bound Semaphorin6A (Sema6A; Bron et al., 2007; Mauti et al., 2007). 
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Sema6A expression may play two roles in this process, the first being to appropriately 

aggregate boundary cap cells along the CNS/PNS boundary and the second to inhibit 

PlexinA or Neuropilin2-expressing CNS-derived cell types from migrating into the PNS 

(Bron et al., 2007; Kucenas, Wang, Knapik, & Appel, 2009; Mauti et al., 2007). Ablation of 

the boundary cap by multiple techniques has been shown to result in the ectopic presence of 

CNS-derived motor neurons and oligodendrocytes in the proximal peripheral nerve (Bron et 

al., 2007; Mauti et al., 2007; Vermeren et al., 2003). DREZ- and MEP-associated boundary 

cap cells have distinct molecular profiles and slightly different temporal relationships with 

outgrowing axons (Coulpier et al., 2009; Fraher, Dockery, O’Donoghue, Riedewald, & 

O’Leary, 2007). These data suggest that potentially distinct specific functions of the 

boundary cap at these two sites have yet to be discovered.

During normal development, boundary cap progenitors produce a small subset of neurons in 

the DRG followed by the production of satellite glia and Schwann cells (Aquino et al., 2006; 

Hjerling-Leffler et al., 2005; Maro et al., 2004). Egr2/Krox-20 serves as an important 

molecular identifier in vivo and is required for boundary cap barrier functions, as is Sox10 

expression (Coulpier et al., 2010; Frob et al., 2012; Maro et al., 2004; Vermeren et al., 2003; 

Wilkinson, Bhatt, Chavrier, Bravo, & Charnay, 1989). Boundary cap progenitors maintain a 

state of pluripotency somewhere between that of early NCCs and a Schwann cell progenitor 

(SCP), though in vitro studies have shown that these cells can even generate multiple CNS 

subtypes (Coulpier et al., 2009; Zujovic et al., 2010, 2011). These characteristics have led to 

a number of studies seeking to utilize boundary cap progenitor transplantation in spinal cord, 

peripheral nerve, and dorsal root injury paradigms (Aldskogius et al., 2009; Aquino et al., 

2006; Trolle, Konig, Abrahamsson, Vasylovska, & Kozlova, 2014; Zujovic et al., 2010, 

2011).

6. SENSORY NEUROGENESIS IN THE DRG

Sensory neurons in the PNS relay information into the CNS from a number of specific 

exteroceptive, proprioceptive, and interoceptive structures, including Merkel’s discs, 

Meissner’s and Pacinian corpuscles, Ruffini’s end organs, Golgi tendon organs, muscle 

spindles, and free nerve endings in the skin. Dedicated neurons transmit information of 

distinct somatosensory modalities; proprioceptive neurons provide spatial information 

regarding limb position, mechanoreceptive neurons mediate touch, nociceptive neurons 

respond to painful stimuli or itch, and thermoreceptive neurons relay information regarding 

temperature (Liu & Ma, 2011; Marmigere & Ernfors, 2007). The importance of trophic 

factor signaling during the development of PNS neurons has long been recognized, 

particularly the neurotrophin ligand/receptor components NGF/TrkA, BDNF/TrkB, and 

NT-3/TrkC (Cowan, 2001; Ernsberger, 2009). The discovery that functionally related 

neuronal subtypes require specific neurotrophic factors has provided a crucial molecular 

handle for analyses of PNS development. Dozens of different neuronal subtypes have been 

characterized based on the expression of specific molecular components and peripheral/

central innervation targets (Abraira & Ginty, 2013; Li et al., 2011; Liu & Ma, 2011).

DRG sensory neurons are generated in a number of waves that derive from temporally 

distinct NCC populations (Carr & Simpson, 1978; Frank & Sanes, 1991; Lawson & Biscoe, 
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1979; Marmigere & Ernfors, 2007; Rifkin et al., 2000). The initial production of sensory 

neurons from postmigratory NCCs follows a stereotyped pattern where large-diameter TrkC/

TrkB+ proprio- and mechanoreceptive neurons are produced first, while small-diameter 

TrkA+ nociceptive neurons are subsequently generated (Carr & Simpson, 1978; Lawson & 

Biscoe, 1979; Liu & Ma, 2011; Marmigere & Ernfors, 2007). Boundary cap progenitors and 

contralaterally migrating NCCs also generate a small population of TrkA+ nociceptive 

sensory neurons that populate the DRG (George et al., 2007; Maro et al., 2004). NCCs that 

first migrate into the nascent DRG generate a core domain of differentiated postmitotic 

sensory neurons, while subsequent NCCs tend to encapsulate and proliferate in the perimeter 

region surrounding the core (George, Kasemeier-Kulesa, Nelson, Koyano-Nakagawa, & 

Lefcort, 2010). Activity-dependent BDNF production from active neurons in the core and 

protocadherin-1 expression in the perimeter are necessary for proper DRG formation 

(Bononi, Cole, Tewson, Schumacher, & Bradley, 2008; Wright & Ribera, 2010). Inhibition 

of either mechanism leads to less NCCs localizing within the DRG and an increase in 

ventrally migrating NCCs that expand the SG. Lastly, contact-mediated interactions between 

immature neurons in the core domain and undifferentiated NCCs regulate neuronal 

specification and subsequent lineage diversification, in part through Delta/Notch signaling 

(Hagedorn, Suter, & Sommer, 1999; Maynard, Wakamatsu, & Weston, 2000; Wakamatsu, 

Maynard, & Weston, 2000).

The sequence of transcriptional changes that occurs during sensory neuron specification has 

been well studied (Lallemend & Ernfors, 2012). The downregulation of factors that maintain 

NCC multipotency, such as Sox10, Sox2, and FoxD3, is important for NCC differentiation 

into postmitotic neurons (Montelius et al., 2007; Nitzan et al., 2013; Wakamatsu, Endo, 

Osumi, & Weston, 2004). The coordinated upregulation of proneural transcription factors, 

Neurogenin-1 and -2, can be detected in a subset of migrating NCCs shortly after exiting the 

neural tube (Greenwood et al., 1999; Ma, Fode, Guillemot, & Anderson, 1999; Perez, 

Rebelo, & Anderson, 1999). Neurogenins are potent promoters of DRG specification; 

however, they do not necessarily drive NCCs toward a specific subtype of sensory neuron or 

glia (Zirlinger et al., 2002). The subsequent upregulation of neuron-specific transcriptional 

regulators, Brn3a and Islet1, is involved in the transition of neurogenic progenitors into 

sensory neurons (Dykes, Tempest, Lee, & Turner, 2011; Fedtsova & Turner, 1995; 

McEvilly et al., 1996; Sun et al., 2008). Brn3a and Islet1 also direct the expression of factors 

important for sensory neuron maturation, such as the Runx family of transcription factors 

and specific neurotrophin receptors (Chen et al., 2006; Dykes et al., 2011; Kramer et al., 

2006; Marmigere et al., 2006). Loss of Brn3a leads to an increased number of aberrantly 

differentiated sensory neurons that express multiple neurotrophin receptors and decreased 

levels of Runx1 (Zou, Li, Klein, & Xiang, 2012). Runx1 is critical for the continuing 

differentiation of nociceptive neurons, while Runx3 primarily regulates proprioceptive 

maturation (Chen et al., 2006; Inoue et al., 2007; Kramer et al., 2006; Lallemend et al., 

2012).

7. NEUROTROPHIC FACTORS IN SENSORY NEURON DEVELOPMENT

Peripheral innervation targets, central neurons, and associated glia produce neurotrophic 

cues that direct the development of receptive neuronal subtypes at distinct stages (Davies, 
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Thoenen, & Barde, 1986; Kawaja et al., 2011; Lumsden & Davies, 1983; Patapoutian, 

Backus, Kispert, & Reichardt, 1999; Usui et al., 2012). Neurotrophic factor responsiveness 

is highly dynamic during development. This mechanism is likely important for generating 

diverse neuronal characteristics that are necessary for responding to a wide range of sensory 

stimuli. The transient pan-neuronal expression of TrkC is rapidly restricted to a small subset 

of proprioceptive neurons, while TrkA and TrkB expression is upregulated in nociceptive 

and mechanoreceptive neurons, respectively (Farinas, Wilkinson, Backus, Reichardt, & 

Patapoutian, 1998; Lefcort, Clary, Rusoff, & Reichardt, 1996; Martin-Zanca, Barbacid, & 

Parada, 1990; Mu, Silos-Santiago, Carroll, & Snider, 1993; Rifkin et al., 2000; Wright & 

Snider, 1995). Genetic deletion mutants have clearly demonstrated that NT-3/TrkC is critical 

for the survival of large-diameter proprioceptive neurons, while NGF/TrkA maintains small-

diameter nociceptive neuron number (Crowley et al., 1994; Ernfors, Lee, Kucera, & 

Jaenisch, 1994; Farinas, Jones, Backus, Wang, & Reichardt, 1994; Klein et al., 1994; Ruit, 

Elliott, Osborne, Yan, & Snider, 1992; Smeyne et al., 1994; Tessarollo, Vogel, Palko, Reid, 

& Parada, 1994). As embryogenesis continues, a subset of TrkA-expressing nociceptive 

neurons develop responsiveness to GDNF by upregulating the GDNF receptors Ret/GFRα 

(Molliver & Snider, 1997; Molliver et al., 1997).

The p75 low-affinity neurotrophin receptor (p75NTR) is also activated by a number of 

trophic factors (Simi & Ibanez, 2010). p75NTR can bind all of the neurotrophins, but when 

compared to the Trks, striking differences in structure and intracellular signal transduction 

have been discovered (Charalampopoulos et al., 2012). Different deletion mutants of p75NTR 

exhibit complex sensory and sympathetic abnormalities that vary depending on the precise 

mutation (Davies, Lee, & Jaenisch, 1993; Dhanoa, Krol, Jahed, Crutcher, & Kawaja, 2006; 

Lee et al., 1992; Majdan, Walsh, Aloyz, & Miller, 2001; Petrie et al., 2013; von Schack et 

al., 2001). Conditional NCC-specific p75NTR mutants show effects consistent with a 

disruption in PNS development (Bogenmann et al., 2011). Many of these studies have 

focused upon the role of p75NTR in neuronal survival and innervation. However, the onset of 

p75NTR expression occurs in premigratory neural crest and p75NTR has been used to isolate 

neural crest stem cells (Stemple & Anderson, 1992; Wilson, Richards, Ford-Perriss, 

Panthier, & Murphy, 2004). It will be interesting to further evaluate whether p75NTR 

modulates early neural crest migration or patterning events that might also contribute to PNS 

phenotypes (Hapner, Boeshore, Large, & Lefcort, 1998).

As neurons transition into a postmitotic state, they begin to grow neurites that fasciculate 

with outgrowing spinal motor axons in the forming ventral root en route to the periphery or 

project centrally into the spinal cord via the dorsal root and innervate CNS targets. Once 

again somite-derived patterning cues direct the stereotyped position of early sensorimotor 

projections into the periphery and coordinate alignment with the developing vertebrae 

(Keynes & Stern, 1984; Koblar et al., 2000; Krull, 2010). Trophic factor regulation of 

postmitotic sensory and motor neuron survival is well known. Mouse mutants that block the 

neuronal death associated with trophic factor deletion, by simultaneously deleting the 

prodeath Bcl-2 family member, Bax, are an important tool for defining the additional vital 

functions of trophic factors in neurons (Deckwerth et al., 1996; Patel, Jackman, Rice, 

Kucera, & Snider, 2000). For example, mouse mutants that lack both Bax and NGF/TrkA do 
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not exhibit a loss of sensory neurons; however, nociceptive neurons fail to innervate the 

peripheral cutaneous field (Patel et al., 2000). With this approach, the multifunctional effects 

of various trophic factors on target innervation, subtype specification, and synapse formation 

have been definitively evaluated (Deppmann et al., 2008; Glebova & Ginty, 2004; Guo et 

al., 2011; Luo et al., 2007; Patel et al., 2003; Sharma et al., 2010).

8. GLIOGENESIS IN THE PNS

After neurogenesis has commenced, a subset of NCCs begin to generate distinct populations 

of nonneuronal cells. These include satellite glia within the peripheral and enteric ganglia, in 

addition to SCPs in the developing peripheral nerve. Satellite glia in the DRG can be 

detected prior to SCPs in the nerve (Woodhoo, Dean, Droggiti, Mirsky, & Jessen, 2004). 

Moreover, the satellite glia lineage shows a number of differences from the SCP lineage, 

such as the expression of Erm (Hagedorn et al., 2000). SCPs maintain a close association 

with developing axons in the nerve and undergo additional lineage diversification into 

nonmyelinating and myelinating glial subtypes (Jessen & Mirsky, 2005). Myelinating 

Schwann cells form a myelin sheath around a single axon crucial for nerve transmission, 

while non-myelinating Schwann cells ensheath multiple axons in a Remak bundle.

Delta/Notch signaling acts as a critical module for driving gliogenesis in undifferentiated 

and neurogenic NCCs. Evidence suggests that newly born DRG neurons in the core domain 

upregulate Delta1, which acts on neighboring Notch-expressing NCCs to promote the onset 

of gliogenesis and maintenance of gliogenic precursors (Morrison et al., 2000; Tsarovina, 

Schellenberger, Schneider, & Rohrer, 2008; Wakamatsu et al., 2004). NCC-specific deletion 

of Notch or the canonical downstream effector, Rbpj, results in a profound reduction in 

gliogenic precursors in the DRG, while Notch overactivation drives premature and increased 

gliogenesis in vivo and in vitro (Hu et al., 2011; Mead & Yutzey, 2012; Morrison et al., 

2000; Taylor, Yeager, & Morrison, 2007). Sox2 is a critical intrinsic factor important for 

gliogenesis that is regulated by Notch (Wakamatsu et al., 2004). Sox2 is required for 

maintaining the gliogenic state of SCPs while also preventing melanocyte specification 

(Adameyko et al., 2012; Wakamatsu et al., 2004). As in migratory NCCs, Sox10 continues 

to be vital for maintaining the SCP pool and glial differentiation (Britsch et al., 2001; Kim et 

al., 2003; Paratore et al., 2001). The functional requirement for Sox10 and Notch persists in 

developing Schwann cells; both regulate later stages of Schwann cell differentiation and 

development (Bremer et al., 2011; Britsch et al., 2001; Finzsch et al., 2010; Paratore et al., 

2001).

SCPs are distinct from migrating NCCs in that they are dependent on axonal-derived cues 

for survival (Jessen et al., 1994; Woodhoo et al., 2004). Axonally derived Nrg-1 is a crucial 

component of the neuron-derived signal that instructs gliogenic neural crest toward a glial 

fate, promotes SCP survival, and is required for lineage progression and myelination (Dong 

et al., 1999; Meyer et al., 1997; Michailov et al., 2004; Shah et al., 1994; Taveggia et al., 

2005). ErbB2, ErbB3, and Nrg1 mutant mice exhibit a near complete absence of SCPs in the 

developing peripheral nerve (Lin et al., 2000; Meyer & Birchmeier, 1995; Morris et al., 

1999; Riethmacher et al., 1997; Woldeyesus et al., 1999). Importantly, these mutants also 

exhibit profound sensory and motor neuron death and abnormally fasciculated axons in the 
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peripheral nerve. Moreover, SCP-derived trophic factors have been found to be potent 

stimulators of Nrg1 release from neurons (Esper & Loeb, 2004, 2009; Hapner et al., 2006; 

Ma, Wang, Song, & Loeb, 2011). These data suggest that Schwann cells and axons form 

reciprocal trophic feedback loops that support the development of the neuroglial unit and 

appropriate nerve function.

Nrg1/ErbB and Delta/Notch are critical extracellular modulators of a core transcriptional 

network necessary for subsequent Schwann cell development and myelination. These 

transcriptional regulators exhibit complex interactions with some factors promoting (Sox10, 

Oct6, Egr2/Krox-20, YY1, NF-κB) and others inhibiting (Sox2, Nab, c-Jun, Id2) lineage 

progression in developing Schwann cells (Pereira, Lebrun-Julien, & Suter, 2012). Unlike 

terminally differentiated neurons, mature Schwann cells can dedifferentiate into a 

progenitor-like state following nerve injury and help promote efficient peripheral nerve 

regeneration (Glenn & Talbot, 2013; Napoli et al., 2012). Developmental regulators of 

lineage progression often continue to act as important factors in Schwann cell 

dedifferentiation and remyelination.

It is important to note that SCPs generate cell types other than Schwann cells. SCPs have 

been shown to generate melanocytes and endoneurial fibroblasts that line the peripheral 

nerve sheath (Adameyko et al., 2009; Joseph et al., 2004). Recent exciting work has shown 

that SCPs can even generate neurons in vivo (Dyachuk et al., 2014; Espinosa-Medina et al., 

2014). In these studies, elegant whole mount labeling and 3D imaging demonstrate that 

parasympathetic neurons are derived from SCPs in the developing cranial nerves (Dyachuk 

et al., 2014; Espinosa-Medina et al., 2014). Thus, the developing cranial nerve appears to 

serve as both a guide and source of progenitors for the parasympathetic ganglia it will 

eventually innervate. Further research is clearly necessary to precisely evaluate the 

mechanisms that balance fate restriction and multipotency in the SCP pool.

9. TROPHIC SIGNALING MECHANISMS DURING PNS DEVELOPMENT

The study of trophic factor functions in PNS neurons and glia has served as a classic system 

for dissecting the biochemical pathways that mediate cellular development (Cowan, 2001; 

Dekkers, Nikoletopoulou, & Barde, 2013; Harrington & Ginty, 2013). The intracellular 

signaling cascades downstream of ErbBs and Trks have been well studied and provide a 

model for other receptor tyrosine kinases (RTKs; Lemmon & Schlessinger, 2010). Even 

though there are dozens of RTKs, a number of common core pathways are repeatedly 

implicated, including extracellular signal-regulated kinase 1/2 (Erk1/2), 

phosphatidylinositol-3-kinase (PI3K), phospholipase C, and protein kinase C (Lemmon & 

Schlessinger, 2010). Tight control of the activity of signaling pathways is likely an 

important mechanism to obtain specific responses in certain neural crest populations. For 

example, substantial gene dose-dependent defects in cranial and cardiac neural crest 

derivatives are observed following deletion of Erk1 and Erk2, whereas the initial formation 

of the DRG from trunk neural crest is relatively intact (Newbern et al., 2008). At later stages 

of PNS development, neurons appear to utilize distinct intracellular pathways to achieve 

precise patterns of inner-vation. Signaling through ERK1/2 is critical for promoting 

nociceptive cutaneous innervation in vivo, possibly via disruption of SRF and ETS family 
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transcription factors downstream of NGF (Arber, Ladle, Lin, Frank, & Jessell, 2000; 

Fontanet, Irala, Alsina, Paratcha, & Ledda, 2013; Newbern et al., 2011; Patel et al., 2003; 

Wickramasinghe et al., 2008). In contrast, SAD kinase signaling has little effect on NGF-

dependent nociceptive neurons, but strongly regulates NT-3-dependent proprioceptive 

innervation (Lilley, Pan, & Sanes, 2013).

The study of glial development has provided important insight into the functional 

requirement and regulatory features of trophic signaling mechanisms. The PI3K/Akt 

pathway has repeatedly been implicated in the control of Schwann cell myelination in 

response to Nrg1 and ECM signaling (Heller et al., 2014; Maurel & Salzer, 2000). A number 

of findings suggest that Nrg1-mediated activation of the ERK1/2 pathway is also crucial for 

development of the Schwann cell lineage in vivo. Neural crest-specific deletion of Shp2 or 

Erk1/2 led to a profound absence of SCPs in the developing mouse peripheral nerve without 

a substantial alteration in the initial stages of neurogenesis (Grossmann et al., 2009; 

Newbern et al., 2011). Moreover, hyp-eractivation of ERK1/2 signaling is sufficient to 

rescue mature Schwann cell defects in ErbB3 mutants and even results in hypermyelination 

(Ishii, Furusho, & Bansal, 2013; Sheean et al., 2014). Interestingly, robust reactivation of the 

ERK1/2 cascade in adult myelinating Schwann cells following injury induces reversion to a 

SCP-like state in vivo (Napoli et al., 2012). Thus, the level of ERK1/2 kinase activity 

appears to be tightly linked to the state of glial progenitor differentiation.

In the traditional model, neurotrophic receptors activate intracellular signaling pathways 

after ligand binding and often support neuronal survival in the PNS (Lemmon & 

Schlessinger, 2010; Reichardt, 2006). Recent findings have shown that in the absence of 

ligand, some receptors promote death. These receptors have thus been termed “dependence 

receptors.” TrkA and TrkC have been shown to act as dependence receptors in the 

developing nervous system (Dekkers et al., 2013; Nikoletopoulou et al., 2010; Tauszig-

Delamasure et al., 2007). DRG and spinal cord neurons induced to over-express TrkA and 

TrkC will undergo death unless the associated ligands, NGF or NT-3, are simultaneously 

increased (Nikoletopoulou et al., 2010; Tauszig-Delamasure et al., 2007). Furthermore, a 

comparison of TrkA−/− and NGF−/− mutant mouse embryos revealed that deletion of TrkA 

protects NGF-dependent E11.5 DRG neurons from death in vivo (Nikoletopoulou et al., 

2010). Current findings suggest that the death-promoting effect of dependence receptors in 

the PNS involves complex interactions with p75 and possibly the generation of proapoptotic 

receptor fragments (Dekkers et al., 2013; Ichim et al., 2013; Nikoletopoulou et al., 2010; 

Tauszig-Delamasure et al., 2007). Notably, the sensory and sympathetic neuron loss in 

E13.5 TrkA−/− mutants can be significantly rescued by simultaneous inhibition of p75 NTR 

(Majdan et al., 2001; Nikoletopoulou et al., 2010). It is not yet clear why some receptors act 

as dependence receptors and others do not. For example, the GDNF receptor, c-Ret, can act 

as a dependence receptor, while TrkB does not appear to share this property (Bordeaux et 

al., 2000; Canibano et al., 2007; Nikoletopoulou et al., 2010). Indeed, the rules governing 

the death-promoting effect of dependence receptors deserve further attention. Future studies 

will undoubtedly illuminate additional critical functions of RTK signaling and dependence 

receptors in NCC and PNS development.

Newbern Page 11

Curr Top Dev Biol. Author manuscript; available in PMC 2015 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. CONCLUSIONS

The formation of the PNS from trunk NCCs provides a rich developmental process to study 

how cell–cell interactions, secreted cues, and transcriptional networks contribute to 

embryogenesis. Additional molecules that regulate key cellular events during NCC 

development certainly await discovery. Nonetheless, many extracellular cues and 

transcription factors have been characterized that are necessary for specific stages of trunk 

NCC development. It will be important to continue to define the intracellular signaling 

mechanisms that link these two fundamental processes. Relative to the extremely complex 

repertoire of cellular and subcellular changes in the developing trunk NCCs, the number of 

known extracellular regulatory cues might seem limiting. Furthermore, many of these cues 

act at multiple stages of development. The mechanism of cellular response specificity likely 

depends upon the interaction between distinct canonical cues (Finelli, Murphy, Chen, & 

Zou, 2013). Dissecting these and many other key issues will yield important insight into the 

control of NCC development and assist in defining the pathogenesis of various 

developmental abnormalities.
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Figure 1. 
The initial formation of the PNS from NCCs. (A) After undergoing EMT in the roof plate of 

the neural tube, migratory trunk NCCs are guided by a combination of attractive, repulsive, 

and instructive cues derived from the developing dermomyotome (DM), sclerotome, dorsal 

aorta (DA), and notochord (N). NCCs that generate the PNS migrate ventromedially 

between the neural tube and developing somite, while the dorsomedial NCCs primarily 

generate melanocytes. Some NCCs migrate to distant sites in the trunk, such as the enteric 

nervous system (ENS) and adrenal glands. A population of NCCs cease migration at sites of 
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peripheral ganglia formation and enter a phase of neurogenesis that produces sensory 

neurons in the dorsal root ganglia (DRG) and sympathetic neurons in the sympathetic 

ganglia (SG). (B) Axons from NCC-derived SG and DRG neurons and neuroectodermally 

derived lower motor neurons begin growing into the periphery. The sites where axons enter 

and exit the spinal cord are populated by the boundary cap, a transient NCC-derived stem-

cell niche. The ventral boundary cap (vBC) is localized along outgrowing lower motor 

neurons axons at CNS/PNS boundary, while the dorsal boundary cap (dBC) is found along 

fibers near the dorsal root entry zone (DREZ) where sensory afferents enter the spinal cord. 

TrkC expressing, large-diameter proprioceptive neurons (green) are among the first neurons 

to be produced in the nascent DRG, followed by small-diameter, TrkA-expressing DRG 

neurons (red). Subsequent to the onset of neurogenesis, NCCs and boundary cap generate 

satellite glia progenitors that reside in the ganglia and Schwann cell progenitors (SCPs) that 

migrate along axons in the developing nerve. SCPs can ultimately differentiate into various 

cell types that contribute to peripheral nerve function, including myelinating and 

nonmyelinating Schwann cells and endoneurial fibroblasts. SCPs also generate melanocytes 

and have even been shown to produce parasympathetic neurons in cranial nerves.
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