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Abstract

We develop a Bayesian nonparametric model for a longitudinal response in the presence of 

nonignorable missing data. Our general approach is to first specify a working model that flexibly 

models the missingness and full outcome processes jointly. We specify a Dirichlet process mixture 

of missing at random (MAR) models as a prior on the joint distribution of the working model. 

This aspect of the model governs the fit of the observed data by modeling the observed data 

distribution as the marginalization over the missing data in the working model. We then separately 

specify the conditional distribution of the missing data given the observed data and dropout. This 

approach allows us to identify the distribution of the missing data using identifying restrictions as 

a starting point. We propose a framework for introducing sensitivity parameters, allowing us to 

vary the untestable assumptions about the missing data mechanism smoothly. Informative priors 

on the space of missing data assumptions can be specified to combine inferences under many 

different assumptions into a final inference and accurately characterize uncertainty. These methods 

are motivated by, and applied to, data from a clinical trial assessing the efficacy of a new 

treatment for acute Schizophrenia.
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1 Introduction

In longitudinal clinical trials it is often of interest to assess the efficacy of a treatment on one 

or more outcome processes of interest. Often the recorded outcome process is incomplete 

due to subject dropout; when dropout depends on the missing data, the dropout processes is 

nonignorable and must be modeled in order to draw valid inferences (Rubin, 1976). It is well 

known that the marginal distribution of a response is not, in general, identified in the 

presence of dropout (Little, 1993). Untestable assumptions about the process which 

generated the missingness are necessary to draw inferences in this setting, but often 

inferences are highly sensitive to the particular assumptions made (Molenberghs et al., 

1997). It is desirable to assess the robustness of inferences by varying these assumptions in a 

principled fashion (Scharfstein et al., 1999; Vansteelandt et al., 2006; Daniels and Hogan, 

HHS Public Access
Author manuscript
J Am Stat Assoc. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
J Am Stat Assoc. 2015 March ; 110(509): 45–55. doi:10.1080/01621459.2014.969424.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2008; National Research Council, 2010). In this paper we present a Bayesian nonparametric 

model for conducting inference on (continuous-valued) longitudinal responses which 

accommodates a sensitivity analysis.

1.1 Schizophrenia Clinical Trial

Our work is motivated by a multi-center, randomized, double blind clinical trial which 

aimed to assess the safety and efficacy of a test drug (81 subjects) relative to placebo (78 

subjects) and an active control drug (45 subjects) for individuals suffering from acute 

schizophrenia. The primary instrument used to assess the severity of symptoms was the 

Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987), a clinically validated 

measure of severity determined via a brief interview by a clinician. Measurements were 

scheduled to be collected at baseline, Day 4 after baseline, and Weeks 1,2,3, and 4 after 

baseline.

Let Yi = (Yi1, …, YiJ) denote the vector of PANSS scores that would have been collected had 

we continued to follow subject i after (potential) dropout, and let Ȳij = (Yi1, … Yij) be the 

history of responses through the first j visit times. J = 6 is the total number of observations 

scheduled to be collected. Dropout was monotone in the sense that if Yij was unobserved 

then Yi,j+1 was also unobserved, and we define Si = j if Yij was observed but Yi,j+1 was not 

(with Si = J if all data was collected). We write Vi = 1, 2, 3 if subject i was assigned to the 

test drug, active control, or placebo respectively. The observed data for subject i is (ȲiS, Si, 

Vi).

The targeted effects of interest in this study were the intention-to-treat effects

(1.1)

and in particular the contrasts η1−η3 and η2−η3 were of interest. Moderate dropout was 

observed with 33%, 19%, and 25% of subjects dropping out for V = 1, 2, 3 respectively.

Subjects dropped out for a variety of reasons including lack of efficacy and withdrawal of 

patient consent, and some unrelated to the trial such as pregnancy or protocol violation. The 

active control arm featured the smallest amount of dropout, and dropout on this arm was 

often for reasons that are not likely to be associated with missing response values (33% of 

dropout). Dropouts on the placebo and test drug arms were more often for reasons which are 

thought to be predictive of missing responses (100% and 82% of dropout, respectively). It is 

desirable to treat the different causes separately, particularly because the different treatments 

have different amounts of dropout and different proportions of dropout attributable to each 

cause.

The primary analysis for this clinical trial was based on a longitudinal model assuming 

multivariate normality and MAR with the mean unconstrained across treatment and time and 

an unconstrained correlation structure shared across treatments. There is substantial 

evidence in the data that the multivariate normality assumption does not hold - there are 

obvious outliers and a formal test of normality gives a p-value less than 0.0001. Our 

experience is that this tends to be the rule rather than the exception. In addition to outliers 
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there appears to be heterogeneity in the data that cannot be explained by a normal model. 

For example, Figure 1.1 shows two groups of observations in the placebo arm discovered 

from the latent class interpretation of the Dirichlet mixture we develop; subjects are grouped 

together if they have a high posterior probability of being the same mixture component. One 

group consists of 40 individuals who are relatively stable across time and the other consists 

of 16 individuals whose trajectories are more erratic but tend to improve more over the 

course of the study.

These deviations from normality do not necessarily imply that analysis based on 

multivariate normality will fail as we might expect a degree of robustness, but it motivates 

us to assess the sensitivity of our analysis to the normality assumption and search for robust 

alternatives - particularly in the presence of nonignorable missingness where we are 

unaware of any methods with theoretical guarantees of robustness under model 

misspecification of the observed data distribution.

1.2 Missing Data in Longitudinal Studies

Identifying the effect (1.1) can be accomplished by specifying a joint distribution p(y, s | υ, 

ω) for the response and missingness, where ω denotes a (potentially infinite dimensional) 

parameter vector. In the presence of dropout, missingness is said to be missing at random 

(MAR) if the probability of an observed dropout depends only on outcomes which were 

observed; formally, p(s | y, υ, ω) = p(s | ȳs, υ, ω) for the realized ȳs. We call dropout 

missing not at random (MNAR) if this does not hold (Rubin, 1976).

Existing methods for addressing informative dropout can be broadly characterized as 

likelihood based (parametric) or likelihood-free (semiparametric). Likelihood-free methods 

based on estimating equations were developed in the seminal works of Rotnitzky et al. 

(1998) and Scharfstein et al. (1999) and characterize informative missingness with weakly 

identified selection model parameters which can be interpreted as deviations from MAR. 

Likelihood based approaches can be distinguished by how the joint distribution of the the 

outcome and dropout is factorized. These include selection models (Heckman, 1979; Diggle 

and Kenward, 1994), pattern mixture models (Little, 1993, 1994; Hogan and Laird, 1997), 

and shared-parameter models (Henderson et al., 2000; Wu and Carroll, 1988). Related to our 

method, in a cross-sectional setting Scharfstein et al. (2003) modeled the outcome of interest 

using a Dirichlet process and parameterized beliefs about the missing data mechanism in a 

weakly identified selection bias parameter, with an informative prior elicited from a field 

expert. A contribution similar to ours was made by Wang et al. (2010) who considered a 

longitudinal binary response with a densely parametrized joint model equipped with a 

shrinkage prior to flexibly model the observed data distribution.

1.3 Our General Approach

The extrapolation factorization, p(y, s | υ, ω) = p(ymis | yobs, s, υ, ω)p(yobs, s | υ, ω) factors 

the joint into two components, with the extrapolation distribution p(ymis | yobs, s, υ, ω) 

unidentified by the data in the absence of strong, uncheckable, distributional assumptions 

about the full data (Daniels and Hogan, 2008). To specify p(yobs, s | υ, ω) we propose the 

specification of a working model p⋆ and set p(yobs, s | υ, ω) = ∫ p⋆(y, s | υ, ω). As a result, 
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any inference which depends only the observed data distribution may be obtained by 

conducting inference as though the working model were the true model. This allows for a 

high degree of flexibility on the observed data distribution while leaving the extrapolation 

distribution unidentified. We specify the working model so that sensitivity analysis is 

straightforward by taking it to be a Dirichlet process mixture (Escobar and West, 1995) of 

models in which the mixing distribution satisfies a missing at random (MAR) assumption. 

The restriction to mixtures of MAR models has computational properties which are 

exploited in Section 3.

We see the primary benefit of our approach as the meeting of two goals: robust modeling of 

the observed data distribution p(yobs, s | υ, ω) and ease of sensitivity analysis on the 

unidentified distribution p(ymis | yobs, s, υ, ω). Importantly we feel that, because the 

extrapolation distribution does not appear in the observed data likelihood, different 

assumptions about the extrapolation distribution should not result in different inferences 

about the observed data. While our approach assumes that dropout is monotone, we note that 

if missingness is not monotone we may still apply the methodology developed under the 

partial ignorability assumption p(r | y, s, υ, ω) = p(r | yobs, s, υ, ω) (Harel and Schafer, 2009) 

where rj = 1 if yj is observed.

We conduct a sensitivity analysis by applying different identifying restrictions (Little, 1993, 

1994), introducing continuous sensitivity parameters representing deviations of the model 

from MAR (Daniels and Hogan, 2008; Scharfstein et al., 1999), and varying the sensitivity 

parameters continuously. There are at least two problems with this approach. First, it is 

inconvenient that this gives no final inferences, but rather a range of inferences, none of 

which the data prefer. When there are many sensitivity parameters, the range of inferences is 

also cumbersome to display. Second the individual interval estimates at each value of the 

sensitivity parameter do not account for our uncertainty in the sensitivity parameter and may 

be too narrow. A natural alternative is to place informative priors on the sensitivity 

parameters to average the separate inferences together in a principled fashion and 

differentially weight possible values of the sensitivity parameter based on subject matter 

knowledge specific to the data set.

1.4 Outline

In Section 2 we describe our approach to fitting flexible Bayesian models, and describe the 

Dirichlet process mixture model we implement as the working model. We then describe 

ways to complete the model specification by specifying the extrapolation distribution. In 

Section 3 we give an algorithmic framework for conducting inference using Markov chain 

Monte Carlo. In Section 4 we conduct a simulation study to assess the appropriateness of 

our model relative to parametric alternatives and show that it is capable of sufficient 

flexibility while giving up little in terms of performance if the true model is simpler. In 

Section 5 we implement our approach to draw inferences on the schizophrenia clinical trial. 

We close in Section 6 with a discussion.
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2 Model Specification

2.1 The Working Model

We stratify the model by treatment, and the treatment variable υ is suppressed to simplify 

notation. We begin by specifying a working model for the joint distribution of the response 

and dropout processes.

Definition 1—For a model p(y, s | ω), a model p⋆(y, s | ω) is a working model if for all s,

(2.1)

A given specification of p⋆(y, s | ω) identifies p(y, s | ω) only up-to p(yobs, s | ω), leaving 

p(ymis | yobs, s, ω) unidentified. The parameter ω is the same for both p⋆ and p, but it will 

determine the joint distribution of (Y, S) in different ways for the two models. The following 

trivial proposition shows that, for the purposes of likelihood based inference, it suffices to fit 

p⋆(y, s | ω) to the data.

Proposition 2—A model p(y, s | ω) and corresponding working model p⋆(y, s | ω) have the 

same observed data likelihood.

Proof: The observed data likelihood is

This simple proposition has two significant implications.

1. We can focus on specifying p⋆ to fit the data well without affecting the 

extrapolation distribution. It may be easier conceptually to design p⋆ to induce 

desired sharing of information across dropout times without needing to take 

precautions in leaving the extrapolation distribution unidentified rather than 

specifying p directly.

2. For computational purposes, Ymis may be imputed via data augmentation using p⋆, 

which is substantially simpler than using p.

Here we will take p⋆ to be a mixture of models in which the missing data mechanism 

satisfies an MAR assumption. We note that mixtures of such MAR models are typically not 

themselves MAR models, an example being many shared parameter models. Let f(y | θ1) be 

a density for the full data response and g(s | y, θ2) a mass function for the dropout satisfying 

(abusing notation slightly)
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That is, the probability under g that S ≥ j depends only on the observed data up-to time j − 1. 

Any choice of g satisfying this condition will admit an inference procedure as described in 

Section 3. We set

(2.2)

F is modeled as drawn from a Dirichlet process with base measure H and mass α > 0, 

written (αH) (Escobar and West, 1995). The specification above is equivalent to the 

following “stick breaking” construction due to Sethuraman (1994), which shows that the 

Dirichlet process mixture is a prior on infinite latent class models,

(2.3)

where , and .

A typical choice for f(y | θ1) for continuous data is the normal kernel with θ1 = (μ, Σ). We 

specify a shrinkage prior as described in Daniels and Pourahmadi (2002) for Σ. For g(s | y, 
θ2) we model the discrete hazard of dropout at time j sequentially with a logistic regression 

(Diggle and Kenward, 1994),

with θ2 = (γ, ζ). Exact details on the shrinkage prior on θ and associated hyperprior may be 

found in the supplemental materials.

2.2 The Extrapolation Distribution

We now discuss specification of the extrapolation distribution p(ymis | yobs, s, ω). Identifying 

restrictions, which express the extrapolation distribution as a function of the observed data 

distribution, provide a natural starting point. The available case missing value (ACMV) 

restriction sets

(2.4)

for all k < j and 2 ≤ j < J, where subscripting by k and ≥ j denotes conditioning on the events 

S = k and S ≥ j respectively. This restriction was shown by Molenberghs et al. (1998) to be 

equivalent to the MAR restriction under monotone missingness. Other restrictions have been 

proposed in the literature (see for example Thijs et al., 2002).

A subclass of identifying restrictions is generated by the non-future dependence assumption 

(NFD) of Kenward et al. (2003). NFD results in missing data mechanisms with the attractive 

feature that the probability of dropout at time j depends only on ȳj+1,

(2.5)
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In words, the probability that (j + 1) is the first time at which we fail to observe the outcome 

depends only on the observed data and the potentially missing data at time j + 1. In terms of 

identifying restrictions, NFD holds if and only if

for k < j − 1 and 2 < j ≤ J, but places no restrictions on the distributions pj−1(yj | ȳj−1, s, ω). 

A schematic representation of the NFD restriction is provided in Table 1.

To identify the distribution pj−1(yj | ȳj−1, s, ω) we assume the existence of a transformation 

j(yj | ȳj−1, ξj) such that

(2.6)

where  denotes equality in distribution. Wang and Daniels (2011) implicitly take this 

approach, with j(Yj | Ȳj−1, ξj) assumed to be an affine transformation. If j is chosen so 

that j(Yj | Ȳj−1, 0) = Yj then deviations of ξj from 0 represent deviations of the assumed 

model from MAR.

3 Computation and Inference

We work with an approximation of the Dirichlet process mixture based on truncating the 

stick-breaking construction at a fixed K by setting ,

(3.1)

This approach was studied in detail by Ishwaran and James (2001), who provide guidance 

for the choice of K. We break posterior computation into two steps.

1. Draw a sample (θ(1), β1, …, θ(K), βK) from the posterior distribution given the 

observed data using the working model p⋆(y, s | ω).

2. Calculate the posterior distribution of desired functionals of the true distribution p(y 

| ω).

We use a data-augmentation scheme similar to the one used by Ishwaran and James (2001), 

but which also includes augmenting the missing data, to complete step 1; see the 

supplementary material for details.

Once we have a sample from the posterior distribution of (θ(k), βk), interest lies in 

functionals of the form
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This will typically not be available in closed form as it depends on p(s = j | ω) and E [t(Y) | S 

= j, ω]. The expectation E [t(Y) | S = j, ω] has a complicated form and depends on our 

assumption about the missing data. For example, under MAR,

We calculate E [t(Y) | ω] by Monte Carlo integration, sampling pseudo-data , 

and forming the average  for some large N⋆. We note that this is 

essentially an application of G-computation (Robins, 1986; Scharfstein et al., 2013) within 

the Bayesian paradigm.

To sample a pseudo-data point Y⋆ under NFD we implement the following algorithm.

1. Draw S⋆ = s and  from the working model p⋆ by choosing a class k with 

probability βk and simulating from , retaining the observed 

data.

2. Draw  from ps(ys+1 | ȳs, ω).

3. For j > s + 1, sequentially draw  from p≥j−1(yj | ȳj−1, ω).

MAR is attained as a special case when ps(ys+1 | ȳs, ω) = p≥s+1(ys+1 | ȳs, ω) and p≥j−1(yj | 

ȳj−1, ω) = p≥j(yj | ȳj−1, ω).

In both steps 2 and 3 we may need to sample from a distribution of the form

(3.2)

where

and g(≥ j | ȳj−1, θ2) is the probability under g(· | y, θ2) of observing S ≥ j. (3.2) is a mixture 

of the within-class conditional distributions with class probability ϖk,j and is easy to sample 

from given ȳj−1.

Sampling under NFD requires sampling from both pj−1(yj | ȳj−1, ω) (step 2) and p≥j−1(yj | 

ȳj−1, ω) (step 3). To sample from pj−1(yj | ȳj−1, ω) we draw from (3.2) and apply the 

transformation j. A straight-forward calculation shows that we can draw from p≥j−1(yj | 

ȳj−1, ω) in the following steps:

1. Draw R ~ Bernoulli(r) where r = p(S ≥ j | ȳj−1, S ≥ j − 1, ω).
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2. Draw ; if R = 0 apply j, otherwise retain .

We now note the relevance of the restriction to mixtures of MAR models. Because the 

model  satisfies MAR, the within-class probability of observing S ≥ j depends 

only on ȳj−1. This is relevant in computing the weights ϖk,j and in drawing R ~ Bernoulli(r) 

above.

4 Simulation Study

4.1 Performance for Mean Estimation Under MAR

We first assess the performance of our model to estimate the population mean at the end of a 

trial with J = 3 time points. Data was generated under (1) a normal model with AR-1 

covariance matrix with Cov(Yj, Yj+1) = 0.7 and a lag-1 selection model and (2) a mixture of 

normal distributions and piecewise-constant hazard of dropout. Details on parameter 

specification can be found in the supplemental material.

We compare our Dirichlet mixture working model with ACMV imposed to (a) an assumed 

multivariate normal model with noninformative prior and (b) augmented inverse-probability 

weighting (AIPW) methods (Rotnitzky et al., 1998; Tsiatis, 2006; Tsiatis et al., 2011). The 

AIPW estimator used solves the estimating equation

where ∑i φ(Yi, θ) = 0 is a complete data least-squares estimating equation for the regression 

of Y1 on Y2 and (Y1, Y2) on Y3 and λj(Yi) is the dropout hazard at time j. This estimator is 

“doubly robust” in the sense that if either the dropout model or mean response model is 

correctly specified then the associated estimator is consistent and asymptotically normal. 

Our AIPW method used the correct dropout model and hence is consistent. A “sandwich 

estimator” of the covariance matrix of the parameter estimates was used to construct interval 

estimates.

One thousand datasets were generated with N = 100 observations per dataset. Results are 

given in Table 4.1. When the data is generated under normality all methods perform 

similarly. Under the mixture model, however, normal-based inference is now inefficient, 

although it does attain the nominal coverage rate. The AIPW estimator and Dirichlet process 

mixture give similar performance. These results suggest the Dirichlet mixture is a reasonable 

alternative to the normal model - even when the data are normally distributed we lose little 

by using the mixture while allowing robustness if the data is not normal. The AIPW method 

also performs well and is a reasonable semiparametric alternative but is not directly 

applicable to our desired approach to sensitivity analysis. The proposed modeling approach 

provides in this example the robustness of AIPW within a Bayesian framework and thus 

naturally allows for quantification of uncertainty about the missingness via priors and allows 

inference for any functional of the full data observed response model.
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4.2 Performance for Effect Estimation Under MNAR

To determine the suitability of our approach for the Schizophrenia clinical trial we 

conducted a simulation study to assess the accuracy and robustness under several data 

generating mechanisms. We consider three different working models for data generation:

M1. A lag-2 selection model, Y ~ (μ, Σ) and logitP(S = s | S ≥ s, Y) = ζs + γ1sYs + 

γ2sYs−1.

M2. A finite mixture of lag-1 selection models, C ~ Categorical(ξ), [Y | C] ~ (μC, 

ΣC), and logitP(S = s | S ≥ s, Y, C) = ζsc + γscYs.

M3. A lag-2 selection model, Yj ~ Skew- ν(μj, σj, ωj) where ωj is a skewness 

parameter (see Azzalini, 2013) and logitP(S = s | S ≥ s, Y) = ζs + γ1sYs + γ2sYs−1. The 

marginals of Y are linked by a Gaussian copula.

We took α ~ log (−3, 22) to induce a strong preference for simpler models; recall α is the 

concentration parameter of the Dirichlet process prior. Parameters were generated by fitting 

the models to the active control arm of the Schizophrenia Clinical Trial and the sample sizes 

for the simulation was set to 200. A total of 300 datasets were generated under each 

assumption. Our approach was compared to a default analysis based on a the multivariate 

model in M1. Setting M1 was chosen to assess the loss of our approach from specifying the 

nonparametric mixture model when a simple parametric alternative holds. Setting M2 was 

chosen to determine the loss of accuracy of the inference based on a multivariate normal is 

used for analysis when a model similar to the Dirichlet mixture holds. At sample sizes of 

200, datasets generated under M2 are not more obviously non-normal than the original data. 

M3 was chosen to assess the robustness of both the multivariate normal and the Dirichlet 

mixture to the presence of skewness, kurtosis, and a non-linear relationship between 

measurements. To generate data under M3 we generated data under M1 and transformed it 

to be more skewed, kurtotic, and nonlinear by applying a normal distribution function and 

skew-T quantile function; details and parameter values are given in the supplemental 

material, as well as sample datasets generated under M2 and M3.

To complete these models, the NFD completion 

 was made, where σj was chosen to be the 

standard deviation of [Yj | Ȳj−1] under MAR. The parameter ξ represents the number of 

standard deviations larger Yj is, on average, for those who dropped out before time j 

compared to those who remained on study at time j.

Figure 4.1 shows the frequentist coverage and average width of 95% credible intervals as 

well as the root mean squared error (RMSE) of the posterior mean η̂ of η = E[Y6] for each 

value of ξ along the grid {0, 0.5, …, 1.5, 2}; exact values and Monte-Carlo standard errors 

can be found in the supplementary material. We take ξ ≥ 0 to reflect the belief that those 

who dropped out had stochastically higher PANSS scores than those who stayed on study. 

This was done to assess whether the quality of inferences varies as the sensitivity parameter 

increases; intuitively this might happen for large values of ξ as the extrapolation distribution 

becomes increasingly concentrated on regions where we lack observed data.
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The Dirichlet mixture appears to perform at least as well as the normal model under M1 and 

uniformly better when either M2 or M3 hold; the Dirichlet mixture attains its nominal 

coverage under M2 and M3 while analysis based on the normal distribution does not and 

appears to degrade for larger values of ξ under M3. Given the negligible loss incurred using 

the Dirichlet mixture when the normal model generated the data and the larger drop in 

coverage and RMSE when the normal model did not generate the data we see little reason to 

use the normal distribution for analysis. Finally we note that under M3, while the average 

interval length is roughly the same for both models, the interval length varies twice as much 

for the Dirichlet mixture, so while on average the Dirichlet mixture produces intervals of 

similar length, intervals may be wider or smaller depending on the data.

These results again suggest that our approach may add a layer of robustness while giving up 

little when the corresponding parametric model holds, and we see no reason to prefer the 

parametric approach over the nonparametric approach.

5 Application to Schizophrenia Trial

We use our methodology to analyze the data from the Schizophrenia clinical trial. Recall 

that the effects of interest are ηυ = E(Yi6 − Yi1 | Vi = υ, ω) where υ = 1, 2, 3 denotes 

randomization to the test drug, active control, and placebo respectively, and in particular we 

are interested in the improvement of each treatment over placebo, ηυ − η3.

5.1 Comparison to Alternatives and Assessing Model Fit

We consider two parametric models for p⋆(y, s | ω) in addition to a Dirichlet process mixture 

of lag-2 selection models. We considered several variants of pattern mixture models and 

selection models and found that the following provided reasonable fits within each class.

1. A pattern mixture model. [S | ω] is modeled with a discrete distribution across time 

points and [Y | S, ω] ~ N(μS, ΣS). Due to sparsity in the observed patterns we must 

share information across S to get practical estimates of (μS, ΣS). Observations with 

S ∈ {1, 2, 3}, S ∈ {4, 5}, or S ∈ {6} were treated as having the same values of μS, 

while ΣS = Σ was shared across patterns. ACMV is imposed on top of this, with 

ACMV taking precedence over the sharing of μS.

2. A selection model. The outcome is modeled [Y | ω] ~ N(μ, Σ) and dropout is 

modeled with the a discrete hazard logistic model, 

 which for j ≥ 3 was simplified further to expit(αj 

+ β1jYj + β2jYj−1).

The Dirichlet mixture used is a mixture of the selection model above. Models were assessed 

by their posterior predictive ordinates,

where Yobs,−i and S−i denote the observed data with observation i removed (Geisser and 

Eddy, 1979). The PO’s can be easily calculated from the MCMC output and combined to 
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give an omnibus model selection criteria , the log pseudo-marginal 

likelihood - see Lopes et al. (2003) and Hanson et al. (2008) for examples in a Bayesian 

nonparametric setting. See Table 5.1 for a comparison of model fit and a comparison of 

inferences. LPML selects the Dirichlet mixture over the selection model and pattern mixture 

model.

Improvement over the selection model is unsurprising in light of the established failure of 

multivariate normality. Like the Dirichlet mixture, the marginal response distribution for the 

pattern mixture model is a discrete normal mixture, so an improvement in LPML here is 

more informative. In addition to the improvement in LPML, the simulation results 

suggesting robustness argue for inference based on the Dirichlet mixture. We also note the 

Dirichlet mixture results in narrower interval estimates.

To confirm that the Dirichlet mixture reasonably models the observed data we compare 

model-free estimates and intervals of the dropout rates and observed-data means at each 

time point to those obtained by the model under each treatment. Results are displayed in 

Figure 5.1. There do not appear to be any problems with the model’s fit to results obtained 

from the empirical distribution of the data.

5.2 Inference and Sensitivity Analysis

Reasons for dropout were partitioned into those thought to be associated with MNAR 

missingness - withdrawal of patient consent, physician decision, lack of efficacy, and 

disease progression - and those which were thought to be associated with MAR missingness 

- pregnancy, adverse events such as occurrence of side effects, and protocol violation. We 

let Mij = 1 if a subject dropped out at time j for reasons consistent with MNAR missingness 

and Mij = 0 otherwise. Given that a subject is last observed at time S we model

(5.1)

λυ(ȳs) can be estimated from the data using information about dropout. To make use of this 

information in the G-computation we make the NFD completion given by the mixture 

distribution

(5.2)

This is a mixture of an ACMV completion and the transformation based NFD completion. 

This encodes the belief that, if a subject drops out for a reason associated with MAR 

missingness, we should impute the next missing value under ACMV. In selecting a model 

for λυ(ȳs), S and ȲS were found to have a negligible effect on the fit of (5.1) while the 

treatment V was found to be very important, so we take λυ(ȳs) = λυ to depend only on V. 

The coefficients λυ were given independent Uniform(0, 1) priors and were drawn from their 

posterior during the MCMC simulation.

To identify the effect of interest it still remains to specify the transformation (y; ξ) and 

place an appropriate prior on ξ. We take  (y; ξ) = y+ξ to be a location shift. This encodes 

the belief that the conditional distribution of Yj for an individual who dropped out at time j − 
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1 is the same as it is it would be for a hypothetical individual with the same history who is 

still on study but shifted by ξ. This can be explained to clinicians as an adjustment to the 

PANSS score of an individual who remained on study at time j that would need to be made 

to make this individual have the same average as an individual with the same history who 

dropped out for an informative reason, with the caveat that the same adjustment must be 

made regardless of their history and response value. In general if subject matter experts feel 

constrained by needing to specify a single adjustment this may be reflected by revising the 

transformation chosen.

Information regarding the scale of the data can be used as an anchor for prior specification. 

The residual standard deviation in the observed data pooled across time was roughly 8, and 

it is thought unlikely that deviations from MAR would exceed a standard deviation. The ξj 

were restricted to be positive to reflect the fact that subjects who dropped out were thought 

to be those whose PANSS scores were lower than predicted under MAR. From this we 

specified ξj ~  (0, 8) independently, and the ξj were shared across treatment. While it may 

seem as though sharing the ξj across treatment will cause the effect of MNAR to cancel out 

in comparisons, the differing amounts of dropout and differing proportions of dropout 

attributable to each cause will cause ξ to affect each treatment differently.

Results are summarized in Figure 5.2. The effect η1 − η3 had posterior mean −1.7 and 95% 

credible interval (−8.0, 4.8) under MAR and posterior mean −1.6 and credible interval (−8.4, 

5.4) under MNAR. η2 − η3 had posterior mean −5.4 and credible interval (−12.6, 2.3) under 

MAR and posterior mean −6.2 and credible interval (−13.8, 2.0) under MNAR. There 

appears to be little evidence in the data that the test drug is superior to the placebo, and for 

much of the trial the placebo arm appears to have had better performance. The effect of the 

MNAR assumption on inferences is negligible here due the fact that the placebo and test 

drug arms had similar dropout profiles, and because the sensitivity parameters ξj had the 

same prior mean across treatments. The data does contain some evidence of an effect of the 

active control, and we see here that the MNAR assumption increases the gap between the 

active control and the placebo due to the fact the attrition on the active arm was less frequent 

and when it occurred was more frequently for noninformative reasons.

We varied this prior specification in two ways. First, we considered sensitivity to the 

dependence assumptions regarding the ξj by allowing the ξj to be dependent across j and 

allowing different values ξjυ across treatment, while keeping the marginal prior on each ξjυ 

the same. The ξjυ were linked together by a Gaussian copula parameterized by ρtime and 

ρtreatment determining the correlation between ξjυ with ρtime = 0 and ρtreatment = 1 

corresponding to the original prior. The result of this analysis was that inferences were 

invariant to the choice ρtime and ρtreatment to within Monte-Carlo error, so detailed results are 

omitted.

Second, we considered the effect of the mean and variability of the prior on inferences by 

giving each ξ a point-mass prior and varying the prior along a grid. This analysis is useful in 

its own right, as some may feel uncomfortable specifying a single prior on the sensitivity 

parameters. To ease the display of the inferences, we assume all ξj equal within treatment 

and we write ξP, ξT, and ξA for the sensitivity parameters corresponding to the placebo, test, 
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and active control arms respectively. Figure 5.3 displays results of this analysis in a contour 

plot. To illustrate, if we chose as a cutoff a 0.95 probability of superiority as being 

significant evidence of an effect then we see that even for the most favorable values of ξT 

and ξP we do not reach a 0.95 posterior probability of η1 − η3 > 0. Conversely, a 0.95 

posterior probability of η2 − η3 > 0 is attained, although it occurs in a region where ξA is 

substantially smaller than ξP. The additional uncertainty in the ηυ induced by using a prior 

itself appears for this data to have little effect on the posterior, as inference when ξP = ξT = 

ξA = 4 gives roughly the same inferences as the original prior.

6 Discussion

We have introduced a general methodology for conducting nonparametric Bayesian 

inference under nonignorable missingness which allows for a clear separation of the 

observed data distribution and extrapolation distribution as well as the ability to characterize 

uncertainty about untestable missing data assumptions. We attain both flexible modeling of 

the observed data and flexible specification of the extrapolation distribution. We note that 

there is nothing particular about the Dirichlet process to our specification; in principle our 

method could be applied to any joint distribution p⋆ for which the inference in Section 3 is 

tractable.

An alternative to the transformation based sensitivity analysis presented here is an 

exponential tilting assumption pj−1(yj | ȳj−1, s, ω) ∝ p≥j(yj | ȳj−1, s, ω) exp (qj(ȳj)). The 

function qj(ȳj) has a natural interpretation in terms of the log-odds of dropout at time j − 1 

(Rotnitzky et al., 1998; Birmingham et al., 2003; Scharfstein et al., 2013). Our method is 

also amenable to this approach if the normal kernel is used and qj(ȳj) is piecewise-linear in 

yj. Since qj(ȳj) is unidentified and typically will be elicited from a subject-matter expert, the 

piecewise-linearity assumption may not be a substantial restriction.

In future work we hope to develop similar tools for continuous time dropout; when dropout 

time is continuous there is no longer a natural characterization of MAR in terms of 

identifying restrictions. Additionally, there is scope for incorporating baseline covariates. 

Often covariates are used to help imputation of missing values, or to make the MAR 

assumption more plausible, but are not of primary interest (i.e. auxiliary covariates). 

Another area for future work is extending our method to non-monotone missingness without 

needing to invoke a partial ignorability assumption. An R package is being developed to 

implement these methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.1. 
Trajectories of two latent classes of individuals in the placebo arm of the trial, and mean 

response over time, measured in days from baseline, within class. Each figure contains 16 

trajectories for the purpose of comparison.
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Figure 4.1. 
Results from the simulation study in 4.2. Normal refers to M1, Mixture to M2, and Skew-T 

to M3.
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Figure 5.1. 
Top: modeled dropout versus observed dropout over time. Bottom: modeled observed means 

versus empirical observed means. The solid line represents the empirical statistics, solid dots 

represent the modeled statistics. Dashed error bars represent frequentist 95% confidence 

intervals and solid error bars represent the models 95% credible intervals.
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Figure 5.2. 
Improvement of treatments, measured as the difference in change from baseline, over 

placebo over time. Smaller values indicate more improvement relative to placebo. Whiskers 

on the boxes extend to the 0.025 and 0.975 quantiles, the boundaries of the boxes represent 

the quartiles, and the dividing line within the boxes represents the posterior mean.
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Figure 5.3. 
Contour plot giving inference for the effects ηυ − η3 for different choices of the sensitivity 

parameters. The color represents the posterior mean while dark lines give contours of the 

posterior probability of ηυ − η3 > 0.
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Table 1

Schematic representation of NFD when J = 4. Distributions above the dividing line are not identified by the 

observed data (dependence on (υ, ω) is suppressed).

j = 1 j = 2 j = 3 j = 4

S = 1 p1(y1) ? p≥2(y3 | ȳ2) p≥3(y4 | ȳ3)

S = 2 p2(y1) p2(y2 | y1) ? p≥3(y4 | ȳ3)

S = 3 p3(y1) p3(y2 | y1) p3(y3 | ȳ2) ?

S = 4 p4(y1) p4(y2 | y1) p4(y3 | ȳ2) p4(y4 | ȳ3)
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Table 2

Comparison of methods for estimating the population mean at time J = 3. DP, Normal, and AIPW refer 

inferences based on the Dirichlet mixture model, the normal model, and AIPW methods respectively. Monte-

Carlo standard errors are given in parentheses. Interval estimates were constructed at a 95% level.

Bias CI Width CI Coverage Mean Squared Error

Normal Model

DP −0.001(0.004) 0.493(0.001) 0.963(0.006) 0.01443(0.0006)

Normal −0.005(0.004) 0.494(0.002) 0.944(0.007) 0.01524(0.0007)

AIPW −0.001(0.004) 0.470(0.002) 0.943(0.007) 0.01530(0.0007)

Mixture of Normal Models

DP −0.010(0.004) 0.542(0.001) 0.542(0.001) 0.0182(0.0008)

Normal −0.039(0.005) 0.586(0.001) 0.586(0.001) 0.0220(0.0010)

AIPW 0.001(0.004) 0.523(0.001) 0.523(0.001) 0.0185(0.0008)
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Table 3

Comparison of results under MAR assumption. The posterior mean is given for ηυ − η3 and standard error is 

given in parenthesis.

Model η1 − η3 η2 − η3 LPML

Dirichlet Mixture −1.7(−8.0, 4.8) −5.4(−12.6, 2.3) −3939

Selection Model −1.8(−8.8, 5.5) −6.1(−14.2, 2.0) −4080

Pattern Mixture model −2.2(−10.1,5.3) −6.8(−15.6,2.3) −4072
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