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In interdisciplinary biomedical, epidemiologic, and population research, it is increasingly necessary to consider

pathogenesis and inherent heterogeneity of any given health condition and outcome. As the unique disease prin-

ciple implies, no single biomarker can perfectly define disease subtypes. The complex nature of molecular pathol-

ogy and biology necessitates biostatistical methodologies to simultaneously analyze multiple biomarkers and

subtypes. To analyze and test for heterogeneity hypotheses across subtypes defined by multiple categorical

and/or ordinal markers, we developed a meta-regression method that can utilize existing statistical software for

mixed-model analysis. Thismethod can be used to assess whether the exposure-subtype associations are different

across subtypes defined by 1 marker while controlling for other markers and to evaluate whether the difference in

exposure-subtype association across subtypes defined by 1marker depends on anyothermarkers. To illustrate this

method in molecular pathological epidemiology research, we examined the associations between smoking status

and colorectal cancer subtypes defined by 3 correlated tumor molecular characteristics (CpG island methylator

phenotype, microsatellite instability, and the B-Raf protooncogene, serine/threonine kinase (BRAF ), mutation) in

the Nurses’ Health Study (1980–2010) and the Health Professionals Follow-up Study (1986–2010). This method

can be widely useful as molecular diagnostics and genomic technologies become routine in clinical medicine and

public health.

causal inference; genomics; heterogeneity test; molecular diagnosis; omics; transdisciplinary epidemiology

Abbreviations: BRAF, B-Raf protooncogene, serine/threonine kinase; CIMP, CpG island methylator phenotype; HPFS, Health

Professionals Follow-up Study; MPE, molecular pathological epidemiology; MSI, microsatellite instability; MSS, microsatellite

stable; NHS, Nurses’ Health Study; RR, relative risk.

Based on the underlying premise that individuals with the
same disease name have similar etiologies and disease evo-
lution, epidemiologic research typically aims to investigate
the relationship between exposure and disease. With the ad-
vancement of biomedical sciences, it is increasingly evident
that many human disease processes comprise a range of het-
erogeneous molecular pathological processes, modified by
the exposome (1). Molecular classification can be utilized
in epidemiology because individuals with similar molecular
pathological processes likely share similar etiologies (2).
Pathogenic heterogeneity has been considered in various neo-
plasms such as endometrial (3), colorectal (3–20), and lung

(21–24) cancers, as well as nonneoplastic diseases such as
stroke (25), cardiovascular disease (26), autism (27), infec-
tious disease (28), autoimmune disease (29), glaucoma (30),
and obesity (31).

New statistical methodologies to address disease heteroge-
neity are useful in not only molecular pathological epidemi-
ology (MPE) (32) with bona fide molecular subclassification
but also epidemiologic research that takes other features of
disease heterogeneity (e.g., lethality, disease severity) into
consideration. There are statistical methods for evaluating
whether the association of an exposure with disease varies
by subtypes that are defined by categorical (33–36) or ordinal
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(33–35) subclassifiers (M.W., unpublished manuscript, 2015);
the published methods by Chatterjee (33), Chatterjee et al.
(34), and Rosner et al. (35) apply to cohort studies, and the
method by Begg et al. (36) focuses on case-control studies.
For simplicity, we use the term “categorical variable” (or the
adjective “categorical”) when referring to “nonordinal cate-
gorical variable” throughout this paper.
Given the complexity of molecular pathology and patho-

genesis indicated by the unique disease principle (1), no single
biomarker can perfectly subclassify any disease entity. Nota-
bly, molecular disease markers are often correlated (37). For
example, in colorectal cancer, there is a strong association be-
tween high-level microsatellite instability (MSI) and high-
level CpG island methylator phenotype (CIMP) and between
high-levelCIMPand theB-Raf protooncogene, serine/threonine
kinase (BRAF), mutation (38).
Cigarette smoking has been associated with the risk of high-

level MSI colorectal cancer (16–18, 20, 39–42), high-level
CIMP colorectal cancer (17, 20, 42, 43), and BRAF-mutated
colorectal cancer (17, 19, 20, 42). Given the correlations be-
tween these molecular markers, the association of smoking
with a subtype defined by 1 marker may solely (or in part)
reflect the association with a subtype defined by another
marker. Thus, it remains unclear which molecular marker
subtypes are primarily differentially associated with smok-
ing, and how a marker can confound the association between
smoking and subtypes defined byothermarkers. Although the
published methods (33–35) are useful to analyze the exposure-
subtype associations according to multiple subtyping markers
in cohort studies using existing statistical software, analysis
using those methods can become computationally infeasible
in large data sets. In this article,we present an intuitive and com-
putationally efficient biostatistical method for the analysis of
disease and etiological heterogeneity when there are multiple
disease subtypingmarkers (categorical and/or ordinal), which
are possibly, but not necessarily, correlated.

METHODS

Cohort and nested case-control studies

In cohort studies where age at disease onset is available,
a commonly used statistical model for evaluating subtype-
specific exposure-disease associations is the cause-specific
hazards model (44, 45):

λjðtjXiðtÞ;W iðtÞÞ ¼ λ0jðtÞ expfβ1jXiðtÞ þ β2jW iðtÞg; ð1Þ

where λj(t) is the incidence rate at age t for subtype j, λ0j(t) is
the baseline incidence rate for subtype j, Xi(t) is a possibly
time-varying column vector of exposure variables for the
ith individual,Wi(t) is a possibly time-varying column vector
of potential confounders, and β1j and β2j are row vector-
valued log relative risks (RRs) for the corresponding covari-
ates for subtype j. Model 1 can be estimated in cohort studies
and incidence density–sampled case-control studies (46). As-
sume that J subtypes result from cross-classification of mul-
tiple categorical and/or ordinal markers. We create binary
indicators for categorical markers; thus, hereafter, we treat
the marker variables as either binary or ordinal. Let spj denote

the level of the pth marker variable corresponding to the jth
subtype; it is 1 or 0 if the pth marker variable is binary, and it
is the ordinal or median score of the marker level correspond-
ing to the jth subtype if the pth marker is an ordinal marker,
p = 1, . . ., P, j = 1, . . ., J.

One-stage method. The method developed by Rosner
et al. (35), Chatterjee (33), and Chatterjee et al. (34) can be
usefully applied in cohort studies to investigate multiple
markers. In that method, β1j in model 1 is modeled by using
the marker variables, for example, by β1jðγÞ ¼ γ0 þ

PP
p¼1

γpspj; where some interaction terms of marker variables can
be added. Model 1 then becomes

λjðtjXiðtÞ;W iðtÞÞ

¼ λ0jðtÞexp γ0XiðtÞ þ
XP
p¼1

γpspjXiðtÞ þ β2jWiðtÞ
( )

: ð2Þ

To distinguish this method from the proposed 2-stage method
below, we name it “1-stage method.” The parameters of inter-
est, γ0 and each γp, which have the same dimension as β1j,
characterize how the levels of multiple markers are associated
with differential exposure associations. We can obtain the
maximum partial likelihood estimate (33, 34) of γ = {γ0, γp,
p = 1, . . ., P} using existing statistical software for the Cox
model analysis, such as PROC PHREG in SAS (SAS Insti-
tute, Inc., Cary, North Carolina), through the data duplication
method (47), which is based on the following transformation
of model 2:

λjðtjXiðtÞ;W iðtÞÞ

¼ λ0jðtÞexp γ0XiðtÞ þ
XP
p¼1

γp~XpjiðtÞ þ
XJ
l¼1

β2lW liðtÞ
( )

;

where ~XpjiðtÞ ¼ spjXiðtÞ; Wli(t) =Wi(t) for l = j, and Wli(t) =
0 for l ≠ j. In this data duplication method, model 2 can be fit
by using stratified Cox regression (stratified by subtype) on an
augmented data set, in which each block of person-time is
augmented for each subtype, and the variables ~Xpji and Wji

are created for p = 1, . . ., P, j = 1, . . ., J. Rosner et al. (35)
also proposed an adjusted RR for the exposure-disease asso-
ciation for a disease subtype defined by 1 or more marker(s)
while adjusting for other markers. The data duplication
method may become computationally infeasible when the
augmented data set becomes too large; this can easily hap-
pen when the original data set is sizable and the number of
subtypes cross-classified from the multiple markers is large.
For example, in our colorectal cancer example, there are
3,099,586 rows in our original data set. With P = 3 and J = 8,
in the augmented data set there will be about 3,099,586 × 8 =
24,796,688 rows, P × J = 24 new variables created for each
exposure variable, and J = 8 variables created for each con-
founding variable. If more markers are being considered, the
large augmented data set can easily make the Coxmodel anal-
ysis computationally infeasible.

Two-stage method. When subtypes are definedbymultiple
categorical and/orordinalmarkers, we propose ameta-regression
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method that is intuitive, does not need augmentation of the
data set, and can be easily implemented by using existing
statistical software for the mixed-model analysis. We first as-
sume that the exposure variable Xi(t) in model 1 is scalar. This
includes the situations in which the exposure is continuous or
binary, and the trend analysis for categorical exposure in which
a new continuous variable, median level in each exposure cat-
egory, is included in model 1. The meta-regression method
includes 2 stages of analysis. The first stage is to conduct the
subtype-specific analysis for each cross-classified subtype
from the multiple markers. For the cohort and nested case-
control study, this analysis can be based onmodel 1. Typically,
a standard competing risks framework can be used, where it is
assumed that only 1 disease subtype can be observed in each
individual. The occurrence of a disease subtype that is different
from the subtype for which the exposure association is studied
is censored at the date of diagnosis. The model for the second-
stage analysis is

β̂1j ¼ γ0 þ
XP
p¼1

γpspj þ ej; ð3Þ

where β̂1j; the estimated log(RR) representing the exposure as-
sociation with the jth subtype, is obtained in the first-stage
analysis, and ej’s are within-study sampling errors; that is,
VarðejÞ ¼ dVarðβ̂1jÞ: Because, in the competing risk frame-
work, the relative risks for distinct tumor subtypes are asymp-
totically uncorrelated (45), this meta-regression for J subtypes
is the same as the standard meta-regression for J independent
studies. Interactions of spj can be included as covariates in
model 3 if appropriate. We can use theWald test to test the hy-
pothesis H0 : γp = 0 for each p. This null hypothesis implies
that the exposure-subtype association does not change over
the level of the pth marker variable while controlling for the
other marker variables. For a categorical marker, we can also
test whether γp = 0 for all p’s corresponding to the binary
marker variables created for this categorical marker; the null
hypothesis implies that the categorical marker does not con-
tribute to the possible etiological heterogeneity. Note that the
difference between this 2-stage method with a fixed-effects
meta-regression model and the 1-stage method is essentially
only in the estimation method, not the model.

We can also add subtype-specific random effects in model
3 to account for heterogeneity between subtypes that cannot
be explained by the variables in model 3. Below is a random-
effects meta-regression model (48),

β̂1j ¼ γ0 þ
XP
p¼1

γpspj þ bj þ ej; ð4Þ

where bj ∼ Nð0; σ2bÞ are subtype-specific random effects ac-
counting for heterogeneity between the subtypes that cannot
be explained by the variables spj and ej, and ej, defined in
model 3, is assumed independent of bj. This random-effects
2-stage method uses a different model from the fixed-effects
2-stage and 1-stage methods. It has the advantage over both
the fixed-effects 2-stage method and the 1-stage method in that
it can incorporate additional heterogeneity between subtypes

that cannot be explained by the given marker variables. If
σ2b ¼ 0; where model 4 agrees with model 3, the random-
effects meta-regression model method is typically less effi-
cient than the fixed-effects method, and because the 1-stage
method is a maximum likelihood method, it should be the
most efficient among the 3 methods. In the random-effects
model, the test H0 : σ2b ¼ 0 assesses the significance of the
random-effects term. Note that when the number of subtypes
is small, this test may be underpowered and the estimate of σ2b
may be imprecise. When the test rejects H0 : σ2b ¼ 0 or when
we believe there is heterogeneity in addition to those ex-
plained by the marker variables, we may use the random-
effects model in the 2-stage method.

Unmatched case-control study

In the unmatched case-control design, the first-stage model
of the 2-stage method can be the nominal polytomous logistic
regression

PðYi ¼ j jXi;W iÞ
PðYi ¼ 0 jXi;W iÞ ¼ expðβ0jþ β1jXiþβ2jW iÞ; j¼ 1; : : :;J;

where Y = j represents subtype j cases, Y = 0 represents con-
trols, and β1j represents the subtype-specific log odds ratio,
assumed to be scalar. The scenarios where the exposure is
a vector will be considered in a later section. If the disease is
rare, exp(β1j) approximates RR. In this design, the subtype-
specific association estimates, β̂11; : : :; β̂1J ; are typically cor-
related. The second-stage model of the 2-stage method is the
meta-regression model 3 or 4 with an additional condition:
Covðej1 ;ej2Þ ¼ dCovðβ̂1 j1 ; β̂1 j2Þ: R function rma.mv() can
be used to estimate γ̂p; p = 1, . . ., P, in models 3 and 4 and
the variance of γ̂p (49). We can then use the Wald test to
test the hypothesis H0 : γp = 0 for each p, or we can test
whether γp = 0 for all p’s corresponding to the binary marker
variables created for a categorical marker.

Interaction between markers

The adjusted cRR proposed by Rosner et al. (35) can also be
estimated in models 3 and 4. For example, if there are 2 binary
markers, cross-classification of which defines 4 subtypes, and
the second-stage model of the fixed-effects meta-regression
method is β̂1j ¼ γ0 þ γ1s1j þ γ2s2j þ ej; j¼1; : : :; 4; where
γp represents the difference in exposure-disease subtype associ-
ations between the 2 subtypes defined by the pth marker while
the level of the other marker is the same, p = 1,2. The meta-
regression method can also be used to evaluate whether the
difference in exposure-disease subtype association across the
subtypes defined by 1 marker depends on the level of another
marker by including appropriate interaction terms for these
markers in the meta-regression model. For example, in the
second-stage fixed-effects model, β̂1j ¼ γ0 þ γ1s1j þ γ2s2j þ
γ3s1j × s2j þ ej; rejection of the null hypothesis H0 : γ3 = 0
implies that the difference in exposure-disease subtype associa-
tions across the subtypes defined by the first marker depends
on the level of the second marker. The discussion above,
which is for the fixed-effects 2-stage method, can be easily
extended to the random-effects method.
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Categorical exposures and multiple exposures

Let β1j = (β1j1, . . ., β1jK), K > 1, represent the subtype-
specific exposure-disease association corresponding to bina-
ry indicators created for a categorical exposure with K + 1
levels, or multiple exposures, 1 or more of which could be
categorical exposures, for which binary indicators are created.
The first-stage analysis of the 2-stage method, which is the
subtype-specific analysis for each cross-classified subtype, is
the same as in the cases when β1j is scalar. At the second
stage, 1 strategy is to conduct the meta-regression analysis
for each element of β1j separately. For the kth element of β1j,
the random-effects meta-regression model β̂1jk ¼ γ0kþ

PP
p¼1

γpkspj þ bjk þ ejk; or the fixed-effects meta-regression model,
which does not include the random-effects term bjk, may be
used to characterize the relationship between β1jk and levels of
the multiple markers. For an any given k, in cohort and nested
case-control studies, ejk’s, j = 1, . . ., J, are independent, and in
unmatched case-control studies, Cov(e j1k; e j2kÞ ¼ Covðβ̂1 j1k;
β̂1 j2kÞ:
Alternatively, the second-stage model can be a random-

effects multivariate meta-regression model (50, 51)

β̂1j1
: : :
β̂1jK

0@ 1A ¼
r01
: : :
r0K

0@ 1Aþ
XP
p¼1

rp1
: : :
rpK

0@ 1Aspj þ bj þ ej; ð5Þ

where the error term ej = (ej1, . . ., ejK) is a K-dimension nor-
mal distribution with Covðe jk1 ; e jk2Þ ¼ dCovðβ̂1jk1 ; β̂1jk2Þ for
k1≠ k2, and Varðe jkÞ ¼ dVarðβ̂1jk Þ: In cohort and nested case-
control studies, Covðe j1k1 ; e j2k2Þ ¼ 0; and for unmatched
case-control studies, Covðe j1k1 ; e j2k2Þ ¼ Covðβ̂1 j1k1 ; β̂1 j2k2Þ;
for j1 ≠ j2, k1, k2 = 1, . . ., K. The random-effects term bj is
a K-dimension normal distribution with mean 0, independent
from ej. The fixed-effects multivariate meta-regression model

is model 5 with bj excluded. As pointed out previously (50,
51), the estimator of rpk using the multivariate random-effects
meta-regression method is more efficient than that from the
univariate random-effects meta-regression method presented
above. Presumably the same conclusion can be made on the
fixed-effects models. R function rma.mv() can be used to
estimate γ̂ pk in the random-effects and fixed-effects multivar-
iate meta-regression models.

EXAMPLE

To illustrate the proposed meta-regression method for mul-
tiple markers, we examine the associations between smoking
status (never, former, current) and 8 possible colorectal can-
cer subtypes defined by 3 binary markers, CIMP (high vs.
low/negative), MSI (high vs. microsatellite stable (MSS)),
and BRAF (mutant vs. wild type). The smoking status is
coded as 0 for never, 1 for former, and 2 for current, and the
trend association is examined. The analysis includes 88,620
women in the Nurses’ Health Study (NHS), following from
1980 to 2010, and 46,251 men in the Health Professionals
Follow-up Study (HPFS), following from 1986 to 2010,
with 3,099,586 person-years of follow-up. In each cohort,
1 subtype with fewer than 5 cases (low-level/negative CIMP,
high-level MSI, mutated BRAF) was excluded, leading to a
total of 1,118 colorectal cancer cases (654 women in NHS
and 464 men in HPFS) in the remaining 7 subtypes.
In the first stage of the 2-stage meta-regression approach,

a subtype-specific multivariate Cox model analysis, stratified
by age (months) and calendar year of the questionnaire cycle,
as well as adjusted for potential confounders, was performed
for each cohort. Table 1 contains subtype definitions, subtype-
specific case numbers, and the estimated smoking status-
colorectal cancer subtype associations in the NHS and HPFS.
In the second-stage analysis, we modeled the subtype and
cohort-specific log(RR) using the 3markers considered (MSI,

Table 1. Subtype Definitions, Subtype-Specific Case Numbers, and Estimated Smoking Status-Colorectal Cancer

SubtypeAssociations, Based on theNurses’Health Study (1980–2010) and theHealth Professionals Follow-up Study

(1986–2010)a

Subtype CIMP MSI BRAF No. of Cases RR 95% CIb P Valueb

1 L/N MSS Wild type 832 1.12 1.01, 1.25 0.039

2 L/N MSS Mutant 47 0.86 0.54, 1.37 0.53

3 L/N High Wild type 42 1.35 0.80, 2.25 0.26

4 High MSS Wild type 34 1.28 0.71, 2.32 0.41

5 High MSS Mutant 31 1.00 0.57, 1.78 0.99

6 High High Wild type 43 1.93 1.18, 3.14 0.008

7 High High Mutant 95 1.45 1.05, 2.00 0.026

Abbreviations: BRAF, B-Raf protooncogene, serine/threonine kinase; CI, confidence interval; CIMP, CpG island

methylator phenotype; L/N, low/negative; MSI, microsatellite instability; MSS, microsatellite stable; RR, relative risk.
a The analysis includes only subtypes with≥5 cases. The subtype-specific analyses were controlled for bodymass

index expressed as weight (kg)/height (m)2 (<25, 25–29.9, ≥30), family history of colorectal cancer (yes/no), physical

activity in metabolic equivalent tasks (quintiles), red meat intake (quintiles of servings/day), alcohol consumption

(0, quartiles of g/day), total caloric intake (quintiles of calories/day), regular aspirin use (2 or more tablets/week or

at least 2 times/week or less) and stratified by age (months) and calendar year. Postmenopausal hormone use

(never/ever) is also adjusted in the Nurses’ Health Study.
b The cohort-specific estimates were combined by using a fixed-effects meta-analysis method.
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CIMP, andBRAF) and cohort (NHS vs. HPFS) and compared
the results with those from the 1-stage method (33–35); in the
1-stage method, we conducted the Cox model analysis for
each cohort using the data duplication method and then com-
bined the estimates from NHS and HPFS by the fixed-effects
meta-analysis approach. Table 2 shows inferences for the
function exp() of the coefficients of the marker variables in
the model for log(RR) that represent the ratios of RRs between
marker levels. For example, based on the meta-regression
method, the estimated ratio of the RR for the association of
smoking with high-level CIMP colorectal cancer over the RR
for low-level/negative CIMP colorectal cancer, while the MSI
and BRAF levels stay the same, was 1.23 (95% confidence in-
terval: 0.84, 1.82). As shown in Table 2, the results from these 2
methods were consistent. The results from this analysis suggest
that we do not have sufficient statistical evidence to conclude
that the smoking-colorectal cancer subtype associations are dif-
ferent across subtypes defined by any 1 of the biomarkers (MSI,
CIMP, and BRAF) while controlling for the other 2 biomarkers.

In a second analysis for illustrating the proposed meta-
regression method, the first-stage analysis was the same as
before, but in the second stage, we started from a model with
all 3 markers, 2-way interactions of the markers, and cohort,
and then used stepwise model selection with a cutoff P = 0.05
for entering or removing the variables. This analysis was for
selecting covariates in the meta-regression model that are
important for characterizing the subtype-specific exposure-
disease association. Only MSI was in the final model (ratio
of RR for high-level MSI vs. MSS = 1.38, 95% confidence
interval: 1.07, 1.79; P value = 0.015).

DISCUSSION

When subtypes are defined by multiple categorical and/or
ordinal markers, we propose a meta-regression method that is
intuitive, does not need augmentation of the data set, and can
be easily implemented using existing statistical software such
as SAS procedures for the mixed-model analysis. This meta-
regression method can be used to test for etiological hetero-
geneity across multiple disease subtypes classified by multiple
markers, to assess whether the exposure-disease subtype as-
sociations are different across subtypes defined by 1 marker
while controlling for other markers, and to evaluate whether
the difference in exposure-disease subtype association across
subtypes by 1 marker depends on any of other markers.

Addressing etiological heterogeneity by MPE research has
relevance to disease prevention. As an example, we herein
discuss smoking, colonoscopy, and colorectal cancer risk.
Colonoscopy has been associated with lower colorectal can-
cer risk for up to 10 years after the procedure in individuals
with average risk for developing colorectal cancer (52); how-
ever, it remains to be determined whether colonoscopy every
10 years is also effective for colorectal cancer prevention in
high-risk individuals. A recent MPE study suggests that the
preventive effect of colonoscopy may be weaker for high-
level MSI colorectal cancer than for non–high-level MSI co-
lorectal cancer (52). MPE studies (16–18, 20, 39–42) have
also shown that smokers are susceptible to developing high-
level MSI colorectal cancer. Taken together, it is implied that
the preventive effect of colonoscopy is not as effective for
smokers compared with nonsmokers. Hence, MPE research
can help us toward more personalized disease- prevention
strategies.

In addition to heterogeneity between tumors across indi-
viduals, accumulating evidence has indicated heterogeneity
within 1 tumor in 1 individual. An integrative concept (“the
unique tumor principle”) on intra- and intertumor heteroge-
neity along with epidemiologic exposures has been discussed
in detail (53). Though our current paper primarily addresses
intertumor (or interindividual) heterogeneity, it is of interest
to develop new statisticalmethodologies to address both intra-
and intertumor heterogeneities in the future.

As advancements of biomedical technologies, molecular
pathology tests are increasingly common in clinical practice,
as well as epidemiologic studies (54–56). TheMPE approach
is useful for not only assessment of risk of developing disease
but also evaluation of predictive biomarkers for intervention
in a disease population (57). In the future, routine clinical mo-
lecular pathology data may be integrated into population-
based disease registries and databases, and large-scale MPE
studies can be routine research practice (58). Thus, our meth-
odology will be widely useful.

We developed a user-friendly SASmacro%stepmetareg
implementing this meta-regressionmethod. It includes a step-
wise selection procedure to select covariates considered in the
meta-regression model that are important for characterizing
the subtype-specific exposure-disease association, represented
by β̂1j: The SAS macro can be obtained at the website http://
www.hsph.harvard.edu/donna-spiegelman/software/.

This meta-regression method will be most useful in situa-
tions where the number of subtypes is relatively low; other-
wise, the number of cases for each unique tumor subtype
defined by cross-classification of the multiple markers may
be too small to obtain stable estimates of each β1j. The min-
imum number of cases required for each tumor subtype for
obtaining stable estimates of each β1j depends on the number
of covariates in the first-stage model. A rule of thumb for the
minimum events per covariate is 5–10. An advantage of the
proposed 2-stage method for cohort studies is that β̂1j; j =
1, . . ., J can be estimated separately, without using the data
duplication method, which becomes computationally infeasi-
ble when the augmented data set becomes too large. In addi-
tion, the random-effects model has the advantage that it can
incorporate additional heterogeneity between subtypes that
cannot be explained by the given marker variables.

Table 2. Results From Modeling the Smoking Status-Colorectal

Cancer Subtype Association Using 3 Markers, Based on the Nurses’

Health Study (1980–2010) and the Health Professionals Follow-up

Study (1986–2010)

Marker
Two-Stage Approach One-Stage Approach

RRR 95% CI P Value RRR 95% CI P Value

CIMP 1.23 0.84, 1.82 0.29 1.28 0.87, 1.88 0.21

MSI 1.34 0.93, 1.91 0.11 1.31 0.92, 1.87 0.13

BRAF 0.78 0.55, 1.09 0.14 0.78 0.56, 1.10 0.16

Abbreviations: BRAF, B-Raf protooncogene, serine/threonine ki-
nase; CI, confidence interval; CIMP, CpG island methylator pheno-
type; MSI, microsatellite instability; RRR, ratio of relative risks.
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Disease subtype data are often missing in some proportion
of cases. Chatterjee et al. (34) developed an estimating func-
tion method based on model 2 that can be used to handle
missing subtype data under a missing-at-random assumption.
That method can be used directly to handle missing subtype
data for estimating β1j in the first stage of the 2-stage models.
Statistical methods for handling missing marker data, which
are covariates data now, in the second-stage model of the
2-stage method may be developed through extension of exist-
ing methods for missing covariates data problems in the
mixed-model analysis; this is a topic of future research. Alter-
natively, we may use the conventional method of creating
missing indicators for missing markers data, as well as the
method of imputing the missing marker data based on regres-
sion models that link the marker data and covariates that con-
tain information about the marker data. When these methods
are used, the 2-stage method with a random-effect meta-
regression model could have the advantage of partially taking
into account additional variability due to using missing indi-
cators or using imputed marker data through the random-
effect term; future research is needed for this topic.
In conclusion, in consideration of pathogenesis and etiolog-

ical heterogeneity of disease, we developed a meta-regression
method to study etiological heterogeneity across disease sub-
types defined bymultiple biomarkers. This method is useful in
the emerging interdisciplinary field of molecular pathological
epidemiology (32, 59). There is an increasing need to integrate
molecular pathology and epidemiology to better understand
disease etiologies and causalities (59–62).Ourmeta-regression
method can be widely useful, as use of molecular pathology
and genomic technologies is increasingly common in clinical
medicine and public health.
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