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Abstract
Btg1 and Btg2 encode highly homologous proteins that are broadly expressed in different

cell lineages, and have been implicated in different types of cancer. Btg1 and Btg2 have

been shown to modulate the function of different transcriptional regulators, including Hox

and Smad transcription factors. In this study, we examined the in vivo role of the mouse

Btg1 and Btg2 genes in specifying the regional identity of the axial skeleton. Therefore,

we examined the phenotype of Btg1 and Btg2 single knockout mice, as well as novel

generated Btg1-/-;Btg2-/- double knockout mice, which were viable, but displayed a non-

mendelian inheritance and smaller litter size. We observed both unique and overlapping

phenotypes reminiscent of homeotic transformation along the anterior-posterior axis in the

single and combined Btg1 andBtg2 knockout animals. BothBtg1-/- andBtg2-/- mice displayed

partial posterior transformation of the seventh cervical vertebra, which wasmore pronounced

in Btg1-/-;Btg2-/- mice, demonstrating that Btg1 and Btg2 act in synergy. Loss of Btg2, but not
Btg1, was sufficient for complete posterior transformation of the thirteenth thoracic vertebra to

the first lumbar vertebra. Moreover, Btg2-/- animals displayed complete posterior transforma-

tion of the sixth lumbar vertebra to the first sacral vertebra, which was only partially present at

a low frequency inBtg1-/- mice. TheBtg1-/-;Btg2-/- animals showed an even stronger pheno-

type, with L5 to S1 transformation. Together, these data show that bothBtg1 and Btg2 are

required for normal vertebral patterning of the axial skeleton, but each gene contributes differ-

ently in specifying the identity along the anterior-posterior axis of the skeleton.

Introduction
The vertebrate axial skeleton is comprised of similar structures that extend from anterior to
posterior along the body axis: the occipital skull bones, cervical, thoracic, lumbar, sacral and
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caudal vertebrae. In mice, there are 30 precaudal vertebrae distributed into seven cervical, thir-
teen thoracic, six lumbar and four sacral vertebrae [1]. Vertebral development involves two
phases, an early stage of somite segmentation from the presomitic mesoderm (PSM) and a
later stage of somatic patterning and specification [2]. Segmental identity of the axial skeleton
is regulated by a variety of signaling mechanisms and requires the local activation of specific
transcriptional regulators, known as Hox genes. This gene family comprises 39 highly con-
served transcription factors that are organized into four clusters, including HoxA,HoxB,HoxC
andHoxD [3, 4].Hox genes are expressed in gradients along the anterior-posterior axis of the
body [5–7], and as such control the identity of the axial skeleton. Deregulation ofHox gene
function leads to homeotic transformations, in which one structure acquires the morphological
characteristics of an adjacent homologous structure, a phenotype dictated by the cluster of Hox
genes that is affected [8, 9]. Other transcriptional regulators important for proper control of
vertebral identities include the mammalian Trithorax group (TrxG) and Polycomb group
(PcG) proteins, which control the expression ofHox genes [10, 11]. Moreover, Hox gene
expression is regulated by different signaling pathways, including bone morphogenetic protein
(BMP), which is required for normal axial skeletal development [12, 13].

The B cell translocation gene 1 (Btg1) and Btg2 belong to the BTG/TOB family of anti-prolif-
eration genes, and their gene products share 74% protein sequence similarity [14, 15]. Btg1 and
Btg2 proteins regulate various cellular processes including proliferation, differentiation and
apoptosis, while deregulated expression has been observed in various cancers, including B cell
malignancies [16–19]. In addition, the BTG1 gene is frequently affected by monoallelic dele-
tions in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), while this has not
been observed for BTG2 [18, 20]. On the other hand, both genes are targeted by point muta-
tions in diffuse large B cell lymphomas [21, 22]. Furthermore, both proteins enhance the tran-
scriptional activity of the homeodomain protein HoxB9, whereas Btg2 was shown to associate
with receptor regulated SMAD proteins SMAD1 and SMAD8, thereby activating BMP-depen-
dent transcription [23, 24]. Previous studies using Btg2-/- mice revealed posterior homeotic
transformations of axial skeleton vertebrae, which has been attributed to impaired BMP/Smad
signaling [23]. However, it remains to be established whether Btg1 regulates patterning of axial
vertebrae and displays similar functions as Btg2.

Several classes of leukemia-associated genes, including Hox transcription factors and their
upstream regulator Bmi1, play a critical role in regional patterning of the vertebrate body plan
[8, 25–27]. Here, we examined the in vivo role of Btg1 and Btg2 in specifying the regional iden-
tity of vertebrae along the anterior-posterior axis of the skeleton using both single and double
knockout mice for Btg1 and Btg2. This analysis revealed that both Btg1 and Btg2 regulate verte-
bra specification at the cervical-thoracic and lumbar-sacral junction. On the other hand, Btg2
fulfills a unique role in patterning of the thoracic-lumbar junction, which is not affected in the
Btg1-/- mice.

Methods

Experimental Animals
C57BL/6J Btg1-/- and Btg2-/- mice have been described earlier [28] and were a kind gift of J.P.
Rouault and F. Tirone respectively. [23]. Btg1-/-;Btg2-/- mice were obtained by multiple inter-
crossing of Btg1-/- with Btg2-/- mice. Animals were maintained under specific pathogen-free
conditions at our animal facility. All animal experiments were approved by the Animal Experi-
mental Committee of the Radboud university medical center and were performed in accor-
dance with institutional and national guidelines.
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Genotyping of mice was routinely performed by PCR, using DNA derived from ear clips.
To identify mice carrying either null or wild-type alleles, two primers complementary to the
targeted exon 1 (mBtg1_F 5’-CCATGCATCCCTTCTACACCC-3’;mBtg1_R 5’- TGCAGGCT
CTGGCTGAAAGT-3’) and one primer complementary to the neomycin cassette (mBtg1
Neo_R 5’-CGGAGAACCTGCGTGCAATC-3’) were combined. The wild-type (WT) non-
targeted Btg1 allele was identified as a 136bp PCR fragment with the exon 1 primers, and the
Btg1-/- allele as a 360bp PCR fragment with neomycin specific primer. Btg2 null wild-type
alleles were identified by PCR using four primers, two complementary to the targeted exon 2
for detection of the endogenous Btg2 allele (mBtg2_F 5’- CATCCAAAGGTTCTGGCTATC-3’;
mBtg2_R 5’- GCCATCACATAGTTCTTCGAG-3’), one complementary to the neomycin
cassette and one specific for exon 1 (mBtg2 Neo_F 5’-CTTCTATCGCCTTCTTGACGAG-3’;
mBtg2 ExI_R 5’-CCACGGGAAGAGAACCGACAT-3’), which were combined in the PCR
reaction. The wild-type (WT) non-targeted Btg2 allele was identified as a 289bp PCR fragment
with the exon 2 primers, and the Btg2-/- allele as a 1372bp PCR fragment with the exon 1 and
neomycin specific primers.

Skeletal Staining and Analysis
Embryos of day 18.5dpc were eviscerated and fixed in 95% EtOH at 4°C. The skeleton was
stained for cartilage in 70% ethanol/5% acetic acid and 5% Alcian Blue (8GX, Sigma Aldrich)
(0.4% Alcian Blue in 70% EtOH) and bone by addition of 0.005% Alizarin Red S (Sigma
Aldrich) for 24–48 hours at room temperature. Embryos were destained in series of gradual
lower concentrations of KOH and increasing concentrations of glycerol, and finally stored in
100% glycerol.

The skeletons were scored for axial transformations by counting the number of sternebrae,
vertebrae (cervival, thoracic, lumbar and sarcral) and ribs by microscopic analysis.

Results

Generation of Btg1 and Btg2 knockout mice
To investigate the function of Btg1 and Btg2 during normal development we obtained Btg1-/-

and Btg2-/- single knockout [23, 28], and generated Btg1-/-;Btg2-/- double knockout mice on a
C57Bl/6J background and examined their appearance for gross abnormalities (Fig 1A and 1B).
Genotyping the offspring showed a non-mendelian inheritance pattern for the Btg1 knockout
allele in the single knockout crosses (Table 1), while the Btg2 knockout allele was strongly
underrepresented in the compound crosses (Table 2). The different homozygous knockout ani-
mals showed no obvious developmental defects, although the litter size upon interbreeding of
the Btg1, Btg2 or Btg1;Btg2 homozygous knockout lines appeared to be smaller compared to
WT animals (Fig 1C).

Homeotic transformation of the axial skeleton in the cervical and thoracic
region of Btg1- and Btg2-deficient mice
To establish whether Btg1 may display distinct or overlapping functions compared to Btg2 in
specifying the regional identity of the axial skeleton [23], we analyzed the skeletal defects of
Btg1 and Btg2 single knockout, as well as Btg1;Btg2 double knockout embryos at the age of 18.5
days post-coitus (dpc). In total, we examined the skeletons of 18 wild-type, 21 Btg1-/-, 20 Btg2-/-

and 22 Btg1-/-;Btg2-/- animals, which were obtained from three independent breeding pairs.
Inspection of the upper cervical region in the Btg1-/-, Btg2-/- and Btg1-/-;Btg2-/- animals

did not uncover any abnormalities in the structure and shape of the atlas (C1) or axis (C2).
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However, skeletal analysis of the cervical-thoracic junction revealed a common defect among
the Btg1- and Btg2-deficient animals. As expected, most wild-type C57Bl6/Jmice (72%),
showed a small rib anlagen visible as a rudimentary rib attached to the seventh cervical vertebra
(C7) (Fig 2A). In contrast, Btg1- and Btg2-knockout mice displayed a partial or full extensive
rib at C7, ranging from 62% in Btg1-/-, 35% in Btg2-/- and 95% in Btg1-/-;Btg2-/- mice. As a con-
sequence the presence of the rib anlagen on C7 occurred far less frequently in Btg1-/- mice
(38%) and was almost absent in Btg1-/-;Btg2-/- animals (4.5%) (Table 3). This indicates that in
these mice the C7 vertebra acquired the morphological characteristics of the adjacent posterior
T1 vertebra, which is therefore termed posterior homeotic transformation. While Btg1-defi-
cient mice with a C7 to T1 transformation displayed a fusion of the T1 to the T2 rib without

Fig 1. Characterization ofBtg1-/-, Btg2-/- and Btg1-/-;Btg2-/- mice. (A) The mouse Btg1 gene is disrupted by insertion of a neomycin resistance cassette
via SacII restriction sites in the first exon. The second exon of the Btg2 gene is replaced by a neomycin cassette in the antisense direction. The arrows
indicate the position of primers used for genotyping. (B) Genotyping of mice was performed by PCR on genomic DNA using primers specific for the Btg1 and
Btg2 wild-type (WT) and knockout (KO) allele. (C) Number of pups obtained from wild-type, heterozygous and homozygous Btg1, Btg2 and Btg1xBtg2
breedings. Data are from at least 4 independent crossings. *, P< 0.05, **, P< 0.01, ***, P< 0.001.

doi:10.1371/journal.pone.0131481.g001
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direct attachment to the sternum (Fig 2B), loss of Btg2 resulted in both fusion of the T1 to T2
rib as well as direct attachment of the T1 rib to the sternum (Fig 2C). The Btg1-/-;Btg2-/- double
knockout mice displayed a more complete and stronger phenotype, where all mice displayed
an extra rib at C7, and in 82% of mice the T1 rib was directly attached to the sternum (Fig 2D).

Normally, the first seven pairs of ribs (T1-T7) form sternocostal junctions with the sternum,
where five ossified sternebrae can be distinguished as well as the posterior xiphoid process. In
the Btg1-/- and Btg2-/- mice we observed that in about 5% of the animals the T7 rib at one side
was not attached to the sternum. However, a more severe phenotype was observed in the
Btg1-/-;Btg2-/- mice, where 36% of the animals displayed attachment of T7 on only one side and
27% lost the sternocostal junctions of T7 on both sides and had only six ribs attached to the
sternum (Table 3). Interestingly, we observed ectopic ossification centers in the sternum of
Btg2-deficient animals, which resulted in supernumerary sternebrae in 20% of the mice (Fig
2C), probably due to the posterior homeotic transformation. On the other hand, the Btg1-defi-
cient mice showed a reduced number of ossified sternebra(e), where the fourth and fifth sterne-
bra lacked mineralization in 62% of mice, which was observed with much lower penetrance in
Btg2-/- (10%) and Btg1-/-;Btg2-/- mice (27%) (Fig 2B–2D). During sternal development, ossifica-
tion of the cartilage is inhibited at the site where the ribs contact the sternal rudiments.

Table 1. Mendelian inheritance in the offspring of Btg1-, and Btg2 single knockout mice.

Breeding pairs % WT exp./obs. % +/- exp./obs. % -/- exp./obs. P-value

WT x WT 100 / 100 0 / 0 0 / 0 n.s (n = 176)

Btg1+/+ x Btg1+/- 50 / 71 50 / 29 0 / 0 <0.0001 (n = 24)

Btg1+/- x Btg1+/- 25 / 32 50 / 59 25 / 9 0.001 (n = 104)

Btg1+/- x Btg1-/- 0 / 0 50 / 56 50 / 44 n.s (n = 126)

Btg1-/- x Btg1-/- 0 / 0 0 / 0 100 / 100 n.s (n = 234)

Btg2+/+ x Btg2+/- 50 / 49 50 / 51 0 / 0 n.s (n = 61)

Btg2+/- x Btg2+/- 25 / 30 50 / 54 25 / 16 n.s (n = 32)

Btg2+/- x Btg2-/- 0 / 0 50 / 49 50 / 51 n.s (n = 41)

Btg2-/- x Btg2-/- 0 / 0 0 / 0 100 / 100 n.s. (n = 177)

Expected (exp.) mendelian inheritance and observed (obs.) inheritance after WT, Btg1 and Btg2 breedings.

P-values of the mendelian ratios are calculated with the Chi-square test and are either significant if p <0.05

or not significant (n.s).

doi:10.1371/journal.pone.0131481.t001

Table 2. Mendelian inheritance in the offspring ofBtg1; Btg2 double knockout mice.

Breeding pairs % +/+;
+/+ exp./
obs.

% +/+;+/-
exp./obs.

% +/-;
+/+ exp./
obs.

% +/-;+/-
exp./obs.

% +/+;-/-
exp./obs.

% +/-;-/-
exp./obs.

% -/-;
+/+ exp./
obs.

% -/-;+/-
exp./
obs.

% -/-;-/-
exp./obs.

P-value

Btg1+/-;Btg2+/- x
Btg1+/-;Btg2+/-

12,5 / 6 12,5 / 19 12,5 / 14 12,5 / 22 6,25 / 11 12,5 / 10 12,5 / 5 12,5 / 6 6,25 / 1 <0.0001
(n = 118)

Btg1+/-;Btg2-/- x
Btg1+/-;Btg2-/-

0 / 0 0 / 0 0 / 0 0 / 0 25 / 25 50 / 60 0 / 0 0 / 0 25 / 15 0.05
(n = 119)

Btg1-/-;Btg2+/- x
Btg1-/-;Btg2+/-

0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 25 / 56 50 / 44 25 / 0 <0.0001
(n = 40)

Btg1-/-;Btg2-/- x
Btg1-/-;Btg2-/-

0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 100 / 100 n.s.(n = 71)

Expected (exp.) mendelian inheritance and observed (obs.) inheritance after intercrossing compound Btg1;Btg2 knockout animals.

P-values of the mendelian ratios are calculated with the Chi-square test and are either significant if p <0.05 or not significant (n.s).

doi:10.1371/journal.pone.0131481.t002
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Therefore, this process may become disturbed in the Btg1-/- mice due to formation of inappro-
priate connections between the ribs and sternum. In addition, one Btg1 knockout embryo
showed an asymmetric pattern of ossification of the sternebrae, which was even more severe in
another mouse lacking both Btg1 and Btg2 expression (Fig 3). Presumably, this type of sternal
malformation, called crankshaft sternum, results from incorrect positioning of the attachment
points of the costal cartilages on either sides of the sternal bar. In conclusion, these data show
that both Btg1 and Btg2 regulate specification of cervical and thoracic vertebrae, whereas Btg1
has a dominant function in regulating sternal ossification.

Btg2 has a unique role in mediating homeotic transformation at the
thoracic-lumbar region of the axial skeleton
The rib pairs derived from T8 to T13 are termed “false ribs”, since they do not connect to the
sternum. Instead, the T8 to T11 ribs form cartilaginous connections with the adjacent ribs,
while T12 and T13 are considered floating ribs, since they form no connections to adjacent rib
pairs (Fig 4A). Deletion of Btg1 resulted in fourteen thoracic ribs in 62% of mice, as a conse-
quence of the extra rib at C7, without any evidence of posterior transformation at the thoracic-
lumbar junction (Fig 4B/Table 3). In contrast, mice deficient for Btg2 displayed thirteen tho-
racic ribs as they acquired an extra rib at C7, while the thirteenth rib (T13) was often rudimen-
tary or completely absent and acquired the identity of the first lumbar vertebra (L1) (Table 3).
As a consequence, most Btg2-/- mice showed only twelve thoracic ribs compared to thirteen in
wild-type animals, and all Btg2-/- mice displayed posterior homeotic transformation at the tho-
racic-lumbar junction (Fig 4C). Mice deficient for both Btg1 and Btg2 expression showed again
normal numbers of thoracic ribs in 95% of the animals, since these mice displayed both C7 to
T1 and T13 to L1 posterior transformations (Fig 4D/Table 3). These data demonstrate a unique
function for Btg2 in regulating the regional identity of vertebra at the thoracic to lumbar
transition.

Fig 2. Skeletal abnormalities within the cervical-thoracic region in mice deficient for Btg1 andBtg2. (A-D) Lateral view of the skeletons from 18.5 dpc
wild-type, Btg1-/-, Btg2-/- and Btg1-/-;Btg2-/- embryos, which were stained with alizarin red and alcian blue. (A-C) Wild-typeC57Bl6/Jmice show a rib anlage
at C7 (indicated by asterisk), whereas Btg1-/- and Btg2-/-mice display a partial rib at C7 (indicated by asterisk). The extra formed T1 rib in Btg1 knockout
animal is fused to T2 rib. (D) Btg1-/-;Btg2-/- double knockout mice display a full rib at C7 that is directly attached to the sternum (indicated by asterisk). (B and
D) Btg1-/- and Btg1-/-;Btg2-/- embryos show often a reduction in the amount of ossified sternebrae (indicated by arrow) compared to wild-type. (C) Btg2-
deficient mice display occasionally an extra sternebra (indicated by arrow).

doi:10.1371/journal.pone.0131481.g002
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Btg1 and Btg2 function are both required for specifying the vertebral
identity at the lumbosacral region
Next, we examined the regional identity around the lumbosacral region of the axial skeleton in
the Btg1- and Btg2-deleted mice. While Btg1 single knockout mice showed a partial or complete
transformation of the sixth lumbar (L6) vertebra towards the identity of the first sacral vertebra
(S1) with a penetrance of 29%, all Btg2-/- mice displayed a complete transformation of L6 to S1
resulting in 6 lumbar vertebra due to the T13 to L1 transformation (Table 3). Interestingly, we
observed a more severe phenotype in mice lacking both Btg1 and Btg2 expression, which
showed complete transformation of L6 to S1 in 27% of mice, a partial transformation of L5 to
S1 with a penetrance of 23% and a complete L5 to S1 transformation in 45% of the Btg1-/-;
Btg2-/- mice (Fig 5A–5C). As a consequence, mice with the L5 to S1 homeotic transformation
had a reduction in the total amount of lumbar vertebrae. As a consequence of the L6 to S1 and
L5 to S1 transformations, an anterior shift was observed in the position of the hindlimb, which
is normally always connected to the position of the first sacral vertebra. Together these results
demonstrate that there is a synergistic requirement for both Btg1 and Btg2 expression in speci-
fying the correct identity of the lumbar vertebrae.

Table 3. Skeletal malformations in Btg1- and Btg2-deficient mice.

Vertebral transformation WT(n = 18) Btg1-/-(n = 21) Btg2-/-(n = 20) Btg1-/-;Btg2-/-(n = 22)

Cervical region

C7 rudimentary rib 13 8 13 0

C7 ! T1 Fused (T1 to T2) 1 13 4 3

Full 0 0 3 18

Thoracic region

Ossified Sternebrae

#1 18 21 20 22

#2 18 21 20 22

#3 18 21 20 22

#4 18 20 18 22

#5 18 9 14 16

#6 0 0 4 0

Asymmetric sternum 0 1 0 1

Number of Ribs

12 0 0 14 0

13 18 8 6 22

14 0 13 0 0

Ribs attached to sternum

6 0 0 0 6

6/7 0 1 1 8

7 18 20 19 8

Lumbar region

T13 ! L1 partial 0 0 4 0

complete 0 0 16 21

Sacral region

L5 ! S1 partial 0 0 0 5

complete 0 0 0 10

L6 ! S1 partial 0 5 0 1

complete 0 1 20 6

doi:10.1371/journal.pone.0131481.t003
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Discussion
The transcriptional cofactors Btg1 and Btg2 represent homologous proteins that regulate cellu-
lar proliferation and differentiation in different cell lineages. It was shown previously that Btg2
is expressed in the presomitic mesoderm (PSM)-tail bud region of the mouse as well as in
developing somites and that Btg2 is involved in normal patterning of axial vertebrae [23]. How-
ever, a role for Btg1 in regulating the development and regional specification of the mouse skel-
eton has not been reported so far. In this study, we used both Btg1- and Btg2-single and double
deficient mice, to show that both genes play an essential role in conferring positional informa-
tion along the anterior-posterior axis of the skeleton. Interbreeding of Btg1 and Btg2 homozy-
gous knockout lines resulted in a smaller litter size and a non-mendelian inheritance pattern

Fig 4. Posterior homeotic transformation of the thirteenth thoracic vertebra in mice deficient for Btg2. (A-D) Dorsal view of the cervicothoracic region
of the skeleton in 18.5 dpc wild-type, Btg1-/-, Btg2-/- and Btg1-/-;Btg2-/- embryos stained with alizarin red and alcian blue. (A-B) Wild-type C57BL6/Jmice
have thirteen thoracic ribs, while Btg1-deficient mice display fourteen ribs due to the extra extensive rib at C7. (D) Although the T13 rib is absent in Btg1-/-;
Btg2-/- mice they still have thirteen thoracic ribs due to the C7 to T1 posterior transformation.

doi:10.1371/journal.pone.0131481.g004

Fig 3. Targeted deletion of Btg1 andBtg2 results in malformation of the sternum. (A-B) Ventral view of
the sternum with attached ribs of 18.5 dpc wild-type and Btg1-/-;Btg2-/- embryos stained with alizarin red and
alcian blue. Wild-type C57BL6/Jmice display normal ossification of the five sternbrae, whereas an
asymmetric pattern of ossification of the sternebrae is observed in mice lacking both Btg1 and Btg2
expression. The xiphoid process (Xip) of the sternum is not affected in Btg1- and Btg2-deficient mice.

doi:10.1371/journal.pone.0131481.g003
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for the Btg1 single knockout crosses and the Btg2 knockout allele in the compound crosses. Btg1
and Btg2 are separately implicated in regulating patterning of the lower cervical region, but the
combined action of both genes is required for specifying the correct identity of the seventh cervi-
cal and the sixth lumbar vertebra. On the other hand, Btg2 expression appears to be more
uniquely involved in the specification of the vertebra at the thoracic-lumbar junction (Fig 6).

Fig 5. Btg1;Btg2 double knockout mice display posterior homeotic transformation at the lumbo-sacral transition. Skeletal defects in 18.5 dpc wild-
type, Btg1-/- and Btg1-/-;Btg2-/- embryos. (A-C) Dorsal view showing the lumbar-sacral regions. (B) Btg1-/-;Btg2-/-mice frequently show five lumbar vertebrae
compared to six in wild-type mice. (C) Btg1-/- mice may show asymmetric L6 in which the right side (indicated by arrow) indicates a lumbar vertebra and the
left side a sacral vertebra.

doi:10.1371/journal.pone.0131481.g005

Fig 6. Overview of the skeletal phenotypes in Btg1- and Btg2-deficient mice. Axial vertebrae are indicated by different colors: green (cervical), yellow
(thoracic), blue (lumbar) and red (sacral). The thoracic ribs are indicated by the grey horizontal lines, of which T1-T7 form sternocostal junctions with the
sternum. Btg1- and Btg2-deficient mice display C7 to T1 posterior transformation, while Btg1-/- mice show also partial or complete L6 to S1. Btg2-/- mice
display in most cases T13 to L1 and complete L6 to S1 transformations. Btg1-/-,Btg2-/- double knockout animals display a more pronounced phenotype with
C7 to T1, T13 to L1 and L6 to S1 homeotic transformations.

doi:10.1371/journal.pone.0131481.g006
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Our studies demonstrate that deletion of both Btg1 and Btg2 results in an aggravated pheno-
type, revealing a synergistic effect upon a combined loss of these genes. An extra rib at the sev-
enth cervical vertebra was observed with a low incidence in the Btg2 knockout mice, and
posterior homeotic transformation at this position was more pronounced in the absence of
Btg1 expression. In 95% of the Btg1-/-;Btg2-/- double knockout mice a complete C7 to T1 trans-
formation was observed, arguing that the action of both genes is required for instructing the
proper identity of the seventh cervical vertebra. In agreement with previous studies, we found
that Btg2-/- mice displayed homeotic transformation of the thirteenth thoracic vertebra. In con-
trast, Btg1-deficiency had no significant impact on regulating the identity of this last thoracic
vertebra, which was also evident from the fact that the double knockout showed a phenotype
similar to the Btg2-/- mice at the thoracic-lumbar junction. Both Btg1- and Btg2-deficient mice
displayed partial or complete homeotic transformation of the sixth lumbar vertebra towards
the first sacral vertebra (L6 to S1), and this phenotype was even more severe in the Btg1-/-;
Btg2-/- double knockout mice. Thus, Btg1 and Btg2 display both unique and overlapping func-
tions along the anterior-posterior axis in regulating specification of vertebral identity.

Deficiency of Btg1 resulted in reduced ossification of the distal sternebra(e) as a conse-
quence of delayed ossification within the sternal bands. We also observed abnormal ossification
of the sternum where the corresponding costal cartilages invariably inserted into the sternum
at different levels at the two sides leading to an asymmetric sternum, known as “crankshaft
sternum” [29]. Endochondral bone ossification is regulated by several different signaling path-
ways, including the action of Runx1 and Runx2 transcription factors [30, 31]. However, it
remains to be established whether these defects are primarily the consequence of endochondral
ossification defects, or occur secondary to inappropriate connections made between the rib
ends and the sternum.

Previously, Btg2 has been considered to regulate skeletal development by modulating BMP/
Smad signaling, but the skeletal abnormalities observed in the Btg1- and Btg2-deleted mice are
more reminiscent of the phenotype of several knockout mouse models deficient in Polycomb
group genes (PcG), including Bmi1, Mel18 and M33 [32–35]. In addition, similar abnormali-
ties have been described for mice deficient in E2f6 and the spliceosomal protein Sf3b1, which
are known to associate with a number of PcG proteins. The interaction of PcG proteins with
Sf3b1 and E2f6 is essential for the PcG-mediated repression of Hox genes [36–40]. Compared
to single PcG mutants, the Bmi1-/-;M33-/- and E2f6-/-;Bmi1-/- double knockout mice reveal
extended skeletal transformations [35, 41], due to enhanced deregulation and loss of direct
transcriptional control of the Hox genes.

Taken together, our data show that Btg1 and Btg2 play an important role in anterior-poste-
rior patterning along the vertebral column and both genes fulfill largely overlapping functions
in specifying the correct positional identity.

Acknowledgments
The authors thankWIL Research for lending their expertise on defining skeletal malformations
in Btg1 and Btg2 knockout embryos.

This work was funded by “Kinderen Kankervrij” (KiKa; project number 77).

Author Contributions
Conceived and designed the experiments: ET PMH FNVL BS. Performed the experiments: ET
DvIS FvO. Analyzed the data: ET DvIS BS. Contributed reagents/materials/analysis tools: FT.
Wrote the paper: ET PMH FNVL BS.

Mouse Btg1 and Btg2Genes Regulate Vertebral Patterning

PLOS ONE | DOI:10.1371/journal.pone.0131481 July 28, 2015 10 / 13



References
1. Dubrulle J, Pourquie O. Coupling segmentation to axis formation. Development. 2004; 131(23):5783–

93. Epub 2004/11/13. PMID: 15539483

2. Hirsinger E, Jouve C, Dubrulle J, Pourquie O. Somite formation and patterning. International review of
cytology. 2000; 198:1–65. Epub 2000/05/11. PMID: 10804460

3. Krumlauf R. Hox genes in vertebrate development. Cell. 1994; 78(2):191–201. Epub 1994/07/29.
PMID: 7913880

4. Duboule D. The rise and fall of Hox gene clusters. Development. 2007; 134(14):2549–60. Epub 2007/
06/08. PMID: 17553908

5. Duboule D, Dolle P. The structural and functional organization of the murine HOX gene family resem-
bles that of Drosophila homeotic genes. The EMBO journal. 1989; 8(5):1497–505. Epub 1989/05/01.
PMID: 2569969

6. Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox gene complexes have
common features of organization and expression. Cell. 1989; 57(3):367–78. Epub 1989/05/05. PMID:
2566383

7. Alexander T, Nolte C, Krumlauf R. Hox genes and segmentation of the hindbrain and axial skeleton.
Annual review of cell and developmental biology. 2009; 25:431–56. Epub 2009/07/07. doi: 10.1146/
annurev.cellbio.042308.113423 PMID: 19575673

8. Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan.
Developmental biology. 2010; 344(1):7–15. Epub 2010/05/04. doi: 10.1016/j.ydbio.2010.04.024 PMID:
20435029

9. Tschopp P, Duboule D. A genetic approach to the transcriptional regulation of Hox gene clusters.
Annual review of genetics. 2011; 45:145–66. Epub 2011/11/09. doi: 10.1146/annurev-genet-102209-
163429 PMID: 22060042

10. Cernilogar FM, Orlando V. Epigenome programming by Polycomb and Trithorax proteins. Biochemistry
and cell biology = Biochimie et biologie cellulaire. 2005; 83(3):322–31. Epub 2005/06/17. PMID:
15959558

11. Grimaud C, Negre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax
group genes. Chromosome research: an international journal on the molecular, supramolecular and
evolutionary aspects of chromosome biology. 2006; 14(4):363–75. Epub 2006/07/06.

12. Mallo M, Vinagre T, Carapuco M. The road to the vertebral formula. The International journal of devel-
opmental biology. 2009; 53(8–10):1469–81. Epub 2009/02/28. doi: 10.1387/ijdb.072276mmPMID:
19247958

13. Benazeraf B, Pourquie O. Formation and segmentation of the vertebrate body axis. Annual review of
cell and developmental biology. 2013; 29:1–26. Epub 2013/07/03. doi: 10.1146/annurev-cellbio-
101011-155703 PMID: 23808844

14. Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, et al. Identification of BTG2, an
antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nature
genetics. 1996; 14(4):482–6. Epub 1996/12/01. PMID: 8944033

15. Winkler GS. The mammalian anti-proliferative BTG/Tob protein family. Journal of cellular physiology.
2010; 222(1):66–72. Epub 2009/09/12. doi: 10.1002/jcp.21919 PMID: 19746446

16. Sun Q, Hang M, Guo X, ShaoW, Zeng G. Expression and significance of miRNA-21 and BTG2 in lung
cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and
Medicine. 2013; 34(6):4017–26. Epub 2013/07/17.

17. Zhao Y, GouWF, Chen S, Takano Y, Xiu YL, Zheng HC. BTG1 expression correlates with the patho-
genesis and progression of ovarian carcinomas. International journal of molecular sciences. 2013; 14
(10):19670–80. Epub 2013/10/03. doi: 10.3390/ijms141019670 PMID: 24084718

18. Kuiper RP, Schoenmakers EF, van Reijmersdal SV, Hehir-Kwa JY, van Kessel AG, van Leeuwen FN,
et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affect-
ing pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia. 2007; 21
(6):1258–66. Epub 2007/04/20. PMID: 17443227

19. Sheng SH, Zhao CM, Sun GG. BTG1 expression correlates with the pathogenesis and progression of
breast carcinomas. Tumour biology: the journal of the International Society for Oncodevelopmental
Biology and Medicine. 2014; 35(4):3317–26. Epub 2013/11/26.

20. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analy-
sis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007; 446(7137):758–64. Epub
2007/03/09. PMID: 17344859

Mouse Btg1 and Btg2Genes Regulate Vertebral Patterning

PLOS ONE | DOI:10.1371/journal.pone.0131481 July 28, 2015 11 / 13

http://www.ncbi.nlm.nih.gov/pubmed/15539483
http://www.ncbi.nlm.nih.gov/pubmed/10804460
http://www.ncbi.nlm.nih.gov/pubmed/7913880
http://www.ncbi.nlm.nih.gov/pubmed/17553908
http://www.ncbi.nlm.nih.gov/pubmed/2569969
http://www.ncbi.nlm.nih.gov/pubmed/2566383
http://dx.doi.org/10.1146/annurev.cellbio.042308.113423
http://dx.doi.org/10.1146/annurev.cellbio.042308.113423
http://www.ncbi.nlm.nih.gov/pubmed/19575673
http://dx.doi.org/10.1016/j.ydbio.2010.04.024
http://www.ncbi.nlm.nih.gov/pubmed/20435029
http://dx.doi.org/10.1146/annurev-genet-102209-163429
http://dx.doi.org/10.1146/annurev-genet-102209-163429
http://www.ncbi.nlm.nih.gov/pubmed/22060042
http://www.ncbi.nlm.nih.gov/pubmed/15959558
http://dx.doi.org/10.1387/ijdb.072276mm
http://www.ncbi.nlm.nih.gov/pubmed/19247958
http://dx.doi.org/10.1146/annurev-cellbio-101011-155703
http://dx.doi.org/10.1146/annurev-cellbio-101011-155703
http://www.ncbi.nlm.nih.gov/pubmed/23808844
http://www.ncbi.nlm.nih.gov/pubmed/8944033
http://dx.doi.org/10.1002/jcp.21919
http://www.ncbi.nlm.nih.gov/pubmed/19746446
http://dx.doi.org/10.3390/ijms141019670
http://www.ncbi.nlm.nih.gov/pubmed/24084718
http://www.ncbi.nlm.nih.gov/pubmed/17443227
http://www.ncbi.nlm.nih.gov/pubmed/17344859


21. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization
of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proceed-
ings of the National Academy of Sciences of the United States of America. 2012; 109(10):3879–84.
Epub 2012/02/22. doi: 10.1073/pnas.1121343109 PMID: 22343534

22. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of
histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011; 476(7360):298–303. Epub 2011/07/
29. doi: 10.1038/nature10351 PMID: 21796119

23. Park S, Lee YJ, Lee HJ, Seki T, Hong KH, Park J, et al. B-cell translocation gene 2 (Btg2) regulates ver-
tebral patterning by modulating bone morphogenetic protein/smad signaling. Molecular and cellular
biology. 2004; 24(23):10256–62. Epub 2004/11/16. PMID: 15542835

24. Prevot D, Voeltzel T, Birot AM, Morel AP, Rostan MC, Magaud JP, et al. The leukemia-associated pro-
tein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its
transcriptional activation. The Journal of biological chemistry. 2000; 275(1):147–53. Epub 2000/01/05.
PMID: 10617598

25. Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of HOX genes in normal hematopoiesis and
acute leukemia. Leukemia. 2013; 27(5):1000–8. Epub 2012/12/06. doi: 10.1038/leu.2012.356 PMID:
23212154

26. Radulovic V, de Haan G, Klauke K. Polycomb-group proteins in hematopoietic stem cell regulation and
hematopoietic neoplasms. Leukemia. 2013; 27(3):523–33. Epub 2012/12/22. doi: 10.1038/leu.2012.
368 PMID: 23257781

27. Casaca A, Santos AC, Mallo M. Controlling Hox gene expression and activity to build the vertebrate
axial skeleton. Developmental dynamics: an official publication of the American Association of Anato-
mists. 2014; 243(1):24–36. Epub 2013/07/03.

28. Farioli-Vecchioli S, Micheli L, Saraulli D, Ceccarelli M, Cannas S, Scardigli R, et al. Btg1 is Required to
Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone. Fron-
tiers in neuroscience. 2012; 6:124. Epub 2012/09/13. doi: 10.3389/fnins.2012.00124 PMID: 22969701

29. Horan GS, Wu K, Wolgemuth DJ, Behringer RR. Homeotic transformation of cervical vertebrae in
Hoxa-4 mutant mice. Proceedings of the National Academy of Sciences of the United States of Amer-
ica. 1994; 91(26):12644–8. Epub 1994/12/20. PMID: 7809093

30. Ding M, Lu Y, Abbassi S, Li F, Li X, Song Y, et al. Targeting Runx2 expression in hypertrophic chondro-
cytes impairs endochondral ossification during early skeletal development. Journal of cellular physiol-
ogy. 2012; 227(10):3446–56. Epub 2012/01/10. doi: 10.1002/jcp.24045 PMID: 22223437

31. Soung do Y, Talebian L, Matheny CJ, Guzzo R, Speck ME, Lieberman JR, et al. Runx1 dose-depen-
dently regulates endochondral ossification during skeletal development and fracture healing. Journal of
bone and mineral research: the official journal of the American Society for Bone and Mineral Research.
2012; 27(7):1585–97. Epub 2012/03/21.

32. van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, et al. Posterior
transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted
deletion of the bmi-1 proto-oncogene. Genes & development. 1994; 8(7):757–69. Epub 1994/04/01.

33. Core N, Bel S, Gaunt SJ, Aurrand-Lions M, Pearce J, Fisher A, et al. Altered cellular proliferation and
mesoderm patterning in Polycomb-M33-deficient mice. Development. 1997; 124(3):721–9. Epub 1997/
02/01. PMID: 9043087

34. Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M, et al. Mice dou-
bly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for main-
tenance but not initiation of Hox gene expression. Development. 2001; 128(9):1587–97. Epub 2001/04/
06. PMID: 11290297

35. Bel S, Core N, Djabali M, Kieboom K, Van der Lugt N, AlkemaMJ, et al. Genetic interactions and dos-
age effects of Polycomb group genes in mice. Development. 1998; 125(18):3543–51. Epub 1998/08/
26. PMID: 9716520

36. Storre J, Elsasser HP, Fuchs M, Ullmann D, Livingston DM, Gaubatz S. Homeotic transformations of
the axial skeleton that accompany a targeted deletion of E2f6. EMBO reports. 2002; 3(7):695–700.
Epub 2002/07/09. PMID: 12101104

37. Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: specific functions and overlapping interests.
The EMBO journal. 2004; 23(24):4709–16. Epub 2004/11/13. PMID: 15538380

38. Trimarchi JM, Fairchild B, Wen J, Lees JA. The E2F6 transcription factor is a component of the mam-
malian Bmi1-containing polycomb complex. Proceedings of the National Academy of Sciences of the
United States of America. 2001; 98(4):1519–24. Epub 2001/02/15. PMID: 11171983

39. Isono K, Mizutani-Koseki Y, Komori T, Schmidt-Zachmann MS, Koseki H. Mammalian polycomb-medi-
ated repression of Hox genes requires the essential spliceosomal protein Sf3b1. Genes & develop-
ment. 2005; 19(5):536–41. Epub 2005/03/03.

Mouse Btg1 and Btg2Genes Regulate Vertebral Patterning

PLOS ONE | DOI:10.1371/journal.pone.0131481 July 28, 2015 12 / 13

http://dx.doi.org/10.1073/pnas.1121343109
http://www.ncbi.nlm.nih.gov/pubmed/22343534
http://dx.doi.org/10.1038/nature10351
http://www.ncbi.nlm.nih.gov/pubmed/21796119
http://www.ncbi.nlm.nih.gov/pubmed/15542835
http://www.ncbi.nlm.nih.gov/pubmed/10617598
http://dx.doi.org/10.1038/leu.2012.356
http://www.ncbi.nlm.nih.gov/pubmed/23212154
http://dx.doi.org/10.1038/leu.2012.368
http://dx.doi.org/10.1038/leu.2012.368
http://www.ncbi.nlm.nih.gov/pubmed/23257781
http://dx.doi.org/10.3389/fnins.2012.00124
http://www.ncbi.nlm.nih.gov/pubmed/22969701
http://www.ncbi.nlm.nih.gov/pubmed/7809093
http://dx.doi.org/10.1002/jcp.24045
http://www.ncbi.nlm.nih.gov/pubmed/22223437
http://www.ncbi.nlm.nih.gov/pubmed/9043087
http://www.ncbi.nlm.nih.gov/pubmed/11290297
http://www.ncbi.nlm.nih.gov/pubmed/9716520
http://www.ncbi.nlm.nih.gov/pubmed/12101104
http://www.ncbi.nlm.nih.gov/pubmed/15538380
http://www.ncbi.nlm.nih.gov/pubmed/11171983


40. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that
occupies E2F- and Myc-responsive genes in G0 cells. Science. 2002; 296(5570):1132–6. Epub 2002/
05/11. PMID: 12004135

41. Courel M, Friesenhahn L, Lees JA. E2f6 and Bmi1 cooperate in axial skeletal development. Develop-
mental dynamics: an official publication of the American Association of Anatomists. 2008; 237
(5):1232–42. Epub 2008/03/28.

Mouse Btg1 and Btg2Genes Regulate Vertebral Patterning

PLOS ONE | DOI:10.1371/journal.pone.0131481 July 28, 2015 13 / 13

http://www.ncbi.nlm.nih.gov/pubmed/12004135

