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Abstract

Objective—Medical coma is an anesthetic-induced state of brain inactivation, manifest in the 

electroencephalogram by burst suppression. Feedback control can be used to regulate burst 

suppression, however, previous designs have not been robust. Robust control design is critical 

under real-world operating conditions, subject to substantial pharmacokinetic and 

pharmacodynamic parameter uncertainty and unpredictable external disturbances. We sought to 

develop a robust closed-loop anesthesia delivery (CLAD) system to control medical coma.

Approach—We developed a robust CLAD system to control the burst suppression probability 

(BSP). We developed a novel BSP tracking algorithm based on realistic models of propofol 

pharmacokinetics and pharmacodynamics. We also developed a practical method for estimating 

patient-specific pharmacodynamics parameters. Finally, we synthesized a robust proportional 

integral controller. Using a factorial design spanning patient age, mass, height, and gender, we 

tested whether the system performed within clinically acceptable limits. Throughout all 

experiments we subjected the system to disturbances, simulating treatment of refractory status 

epilepticus in a real-world intensive care unit environment.

Main results—In 5400 simulations, CLAD behavior remained within specifications. Transient 

behavior after a step in target BSP from 0.2 to 0.8 exhibited a rise time (the median (min, max)) of 

1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot of 9.6 [2.3, 10.8]%. 

Under steady state conditions the CLAD system exhibited a median error of 0.1 [−0.5, 0.9]%; 

inaccuracy of 1.8 [0.9, 3.4]%; oscillation index of 1.8 [0.9, 3.4]%; and maximum instantaneous 

propofol dose of 4.3 [2.1, 10.5] mg kg−1. The maximum hourly propofol dose was 4.3 [2.1, 10.3] 

mg kg−1 h−1. Performance fell within clinically acceptable limits for all measures.

Significance—A CLAD system designed using robust control theory achieves clinically 

acceptable performance in the presence of realistic unmodeled disturbances and in spite of realistic 

model uncertainty, while maintaining infusion rates within acceptable safety limits.
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1. Introduction

Medical coma is a brain state characterized by profound reductions in metabolic demand, 

blood flow, and neuronal activity. It can be reversibly induced by administering anesthetics 

or by cooling the brain [1–3]. Therapeutic uses of medical coma include cerebral protection 

during cardiac surgery with complete circulatory arrest [4, 4–8], induced by deep 

hypothermia and inhaled anesthetics; reduction of intracranial pressure after traumatic brain 

injury, induced by intravenous administration of barbiturate anesthetics [9]; and termination 

of refractory status epilepticus (RSE), a condition of unrelenting seizures, induced by 

intravenous anesthetics such as propofol and midazolam [10–14].

Burst suppression is a qualitative change in the dynamics of neuronal activity that marks the 

onset of medical coma. The state of burst suppression is named for its appearance in 

noninvasive/scalp electroencephalogram (EEG) recordings, in which periods of high voltage 

EEG activity are interrupted at semi-regular intervals by periods of low-voltage EEG 

activity (suppressions) [15, 16]; see figure 1. The probability at any given moment that brain 

activity is suppressed, the burst suppression probability (BSP), relates monotonically to the 

degree of cerebral suppression. For example, increasing the anesthetic infusion rate 

systematically increases the BSP [17–20]. Consequently, induction of medical coma is 

performed under the guidance of continuous electroencephalography (cEEG) monitoring, 

titrating the strength of the inducing stimulus to achieve and maintain a target level of burst 

suppression.

In the case of RSE, no universally agreed upon guidelines exist for the optimal target levels 

or duration of medical coma. In practice, intensive care physicians agree upon a target level 

of burst suppression and aim to maintain this target level for 24–48 h at a time, periodically 

lifting the patient gradually out of coma, and re-inducing burst suppression to repeat the 

cycle if seizures recur [14]. This management is performed under the guidance of cEEG 

displated at the bedside, intermittently hand-adjusting the anesthetic infusion rate to keep 

near target level [14, 21–23]. This current practice pattern is not ideal, because the medical 

staff who act, in effect, as anesthesiologists and clinical electroencephalographers, typically 

lack specialized training in either EEG or anesthesiology, and the numerous other demands 

of providing intensive care unit (ICU) care do not allow for constant monitoring of the EEG 

and adjustment of the anesthetic infusion rate.

A better strategy would be to develop a closed-loop anesthesia delivery (CLAD) system that 

monitors the depth of burst suppression quantitatively and in real time and continually 

adjusts the anesthetic infusion rate automatically, without the need for constant human 

supervision. Such a system could in principle provide tighter control, avoiding the 

morbidities associated with both over- dosing and under-dosing of anesthetics that are 

common in ICU care [24–26]. Outside the practice of medicine, closed-loop control 
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technology is ubiquitous, and rooted on a mature foundation of both theory and a wealth of 

practical experience.

While CLAD systems have been a subject of research for over 60 years [27–31], they have 

had minimal impact on the practice of medicine. Two categories of reasons for this situation 

are commonly cited.

• Concerns about sensor reliability: the most widely used brain monitor, the 

bispectral index (BIS) monitor, has not proved sufficiently reliable for measuring 

the depth of anesthesia, because it assumes the same numerical index indicates the 

same brain state across all anesthetics. Moreover, BIS is based on a proprietary 

algorithm and is thus cannot be manipulated from first principles. Finally, the BIS 

algorithm has been empirically observed to operate in a nonlinear fashion with a 

variable time delay ranging from 15 to 55 s [32, 33]. Such behavior creates the risk 

for undesirable oscillations and instability when incorporated into feedback loops. 

Recent alternatives to BIS have been reported to overcome some of these 

difficulties [34–36].

Automatic monitoring of burst suppression depth is a problem with a substantially 

higher ‘signal to noise ratio’ than the problem of inferring the depth of lighter 

stages of general anesthesia. That is, from a signal processing point of view, the 

essential EEG changes associated with burst suppression, namely a periodic change 

in EEG signal power, are extremely reliable. Effective algorithms for tracking the 

depth of burst suppression in real time have been developed [18–20, 37], and we 

present further refinements in this work. Consequently, sensor reliability is easily 

ensured, and control of burst suppression can be considered an ideal starting point 

for developing robust CLAD systems.

• Concerns about patient safety: patients’ responses to drugs vary considerably. This 

variation includes differences in both parmacokinetics (PK, the rates of drug 

distribution and elimination), and differences in pharmacodynamics (PD, drug 

effect as a function of dose). PK/ PD differences stem from several factors, 

including patient demographics (e.g. age, weight, gender, height), underlying 

medical conditions (e.g. kidney or liver dysfunction), and anesthetic interactions 

with other drugs [14, 35, 38–43]. This variability implies that population-based 

PK/PD models are often crude approximations to the true PK/PD parameters of 

individual patients. Controllers must therefore be designed to perform robustly in 

the face of model error. Furthermore, surgical operating rooms and ICUs are 

fundamentally noisy environments [44–46], with unpredictable internal stimuli 

(e.g. changes in medical condition) and external stimuli (e.g. painful procedures or 

new medications) that change the underlying state of the patient and their 

responsiveness to medication. These internal and external stimuli continually act as 

disturbances and noise in the feedback loop that must be accounted for in the 

controller design to avoid inducing unpredictable, dangerous behavior of the CLAD 

system. Most work to date has failed to deal directly with these safety concerns. 

Dumont [35] has recently pointed out that robust control theory, developed over the 
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last several decades, provides fundamental techniques to address these issues 

rigorously.

Several CLAD system designs for managing medical coma have previously been proposed 

and tested in computer simulations and animal models [17, 37, 47]. Early controllers were 

based on ad hoc designs, and, reported average rather than individualized results, and 

considered only constant target levels of anesthesia without investigating controller behavior 

in response to changes in target burst suppression ratio (BSR) values [17]. Recent work by 

our group has focused on providing rigorous approaches to the initial signal processing [18–

20, 37], and has explored a variety of principled controller design methods, including 

proportional integral (PI), linear quadratic regulator (LQR), and model predictive control 

(MPC) controller designs. However, to date, no work on CLAD design for medical coma 

has explicitly dealt with the problem of ensuring robust performance under real-world 

operating conditions.

In this work we introduce several innovations that prepare the way for real-world 

implementation of a robust CLAD system for automatic control of medical coma in the ICU 

environment. These include an improved real-time algorithm for monitoring burst 

suppression depth; a safe method for estimating PD parameters in critically ill patients; and 

a controller design that ensures robust control in the face of within- and between-patient 

PK–PD variability. We verify these results with thorough and realistic Monte Carlo 

simulations. Our results confirm that the integrated system performs safely under realistic 

operating conditions, including the presence of estimation error, input disturbances, set point 

changes, and model uncertainty.

2. Theory and Methods

2.1. Observations

The amplitude and frequency characteristics of burst suppression EEG recordings can vary 

substantially between patients. However, for the purpose of tracking the depth of burst 

suppression, we will regard the EEG as a sequence of binary observations. We write nt ∈ {0, 

1}, t = 0, 1, … for the sequence of observations, with nt = 0 indicating a sample within a 

burst period and nt = 1 indicating a sample within a suppression period. In prior work, we 

described an algorithm for detecting the onset and offset of bursts in EEG signals and 

outputting a binary signal, and validated the algorithm on a broad set of EEG recordings 

from critically ill patients undergoing burst suppression treatment. Our burst suppression 

segmentation algorithm identifies bursts and suppressions in human EEG recordings with a 

performance comparable to human experts [20]. We have also successfully used this 

algorithm previously in two sets of burst suppression CLAD control experiments in animals 

[37, 48]. In the remainder of this work we therefore treat the binary observations as given.

2.2. Pharmacokinetics

Pharmacokinetic (PK) models (figure 2(A)) describe the time-dependent absorption, 

distribution, and elimination of drugs in the body. Propofol is the most widely used 

anesthetic for induction of burst suppression for treatment of RSE [14, 21, 49–51]. Our 

CLAD system is based on the human PK model of propofol developed by Schnider [41, 52–
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54]. Schnider’s model contains three body compartments connected to a central 

compartment. The central compartment represents blood. Diffusion of propofol between the 

central compartment i and each peripheral compartment j occurs at a rate kij. Mean PK 

values across patients depend on body mass, age, sex, and height, as shown in table 1. The 

table also includes published estimates of the uncertainty in these parameters arising from 

inter-patient variability.

Mathematically the Schnider PK model is a four-dimensional linear dynanmical system. We 

represent this system in discrete time for purposes of computer implementation, taking as a 

time increment Δ = 1 s. Bursts and suppressions nearly always last >0.5 s [20, 55], thus this 

choice for Δ is small enough to ensure that each observation can be assigned uniquely to 

either the burst or suppression state. The state model for drug concentrations is

(1)

where xt = (x1t, x2t, x3t, x4t)′ represents the drug concentrations in the four body 

compartments of the Schnider model, ut is the rate of propofol infusion, and

(2)

(3)

The indices for the drug concentration variables in these equations are x1t for the central 

compartment, x2t and x3t for the ‘fast’ and ‘slow’ peripheral compartments, respectively (so 

called because the diffusion rates k12,, k21 are faster than for k13, k31), and x4t is the drug 

concentration in the brain, also called the effect site compartment. Note from table 1 that the 

rate constants are conventionally determined as ratios between a compartment volume and a 

clearance rate, except in the case of the effect site, for which the value is given directly [41, 

54].

2.3. Pharmacodynamics

To relate the effect site concentration to the binary EEG observations, we next introduce a 

pharmacodynamic (PD) model (figure 3). The effect of interest is the depth of burst 

suppression as a function of the effect site concentration of propofol. In clinical practice 

burst suppression depth is described in terms of the number of visually identified bursts 

present in a 10 s window. A quantitative measure of burst suppression depth sometimes used 

in experimental settings is the BSR, defined as the fraction of the time within a moving time 

window that the EEG is in the suppressed state [55, 56]. However, the BSR lacks a direct 

relationship with the underlying pharmacokinetics, requires a fairly large time window (e.g. 

60 s) to produce stable estimates, and lacks a rigorous statistical foundation [18, 19]. 
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Instead, we use the BSP, a statistically rigorous measure of burst suppression depth [18]. We 

have used the BSP in our prior CLAD work for medical coma [37, 48].

In the BSP estimation algorithm that we develop in the next section, we view the binary 

observations as sequence of random variables produced by a Bernoulli process with a time-

varying rate, λt. Our PD model thus needs to relate the underlying effect site concentration 

x4t to the suppression rate λt.

A parametric form for λt = λt(x4t) must satisfy two contstraints. First, low doses of propofol 

do not cause burst suppression, thus λt(x4t) should remain close to zero at low effect site 

concentrations. Second, λt should saturate at high concentrations of propofol. To satisfy both 

constraints, we adopt as our PD model the Hill sigmoid function

(4)

where C is the effect site concentration at which BSP = 0.5, and γ controls the steepness of 

the sigmoid.

2.4. State estimation

We have developed PK and PD models that relate the rate of propofol infusion to the 

sequence of binary observations derived from burst suppression EEG data. Here we present 

a recursive Bayesian algorithm to estimate the BSP from binary observations. Given the 

instantaneous suppression rate λt, the probability of observing a suppression in any given 

small interval Δ is given by the conditional intensity function in discrete time as

(5)

Note that up to order o(Δ), the observation model is simply the likelihood function for a 

single observation point process model on small interval data. From here on we assume Δ is 

small enough that the o(Δ) term can be safely ignored.

Whereas drug concentration values are strictly positive, it will be mathematically 

advantageous to work with quantities that can take on positive and negative values. 

Consequently we take the logarithm zt = log(xt). Taking logarithms of both sides of the 

discretized PK equation (1) we obtain:

(6)

In this expression, wt = (w1t, w2t, w4t, w4t)′ is an i.i.d. sequence wt ~ N(0, W), W = Iσ2, and zt 

= (z1t, z2t, z4t, z4t)′
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In the appendix, we derive from expressions (5) and (6) a set of alternating prediction and 

update steps. The complete set of prediction and update equations is:

(7)

(8)

(9)

(10)

(11)

(12)

(13)

where Ã is defined in equations (35)–(37). Hereafter we refer to these equations collectively 

as the BSP algorithm.

2.5. Robust feedback controller design

The recursive state estimation algorithm described above provides a real-time estimate of 

drug concentration states at each time step. We now design a controller that takes as 

feedback the estimated state and outputs at each time the appropriate infusion rate to keep 

the BSP near a target value [57]. In contrast with our previous work on CLAD control of 

BSP, here we explicitly design our controller within the framework of robust control theory.

A general block diagram for robust CLAD system design is shown in figure 3. In discussing 

controller design, we will use lower case letters for time-domain quantities, e.g. d = d (t), 

and upper case letters for the corresponding frequency-domain quantities, e.g. D = D(s) for 

Laplace-transformed quantities or D = D(iω)) for Fourier-transfored quantities. The 

arguments of Laplace or Fourier transfors will be omitted where needed to simplify notation.
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The general system contains two components: the process, which represents the patient 

pharmacokinetics (PK) and consists of a nominal model P(s) plus uncertainty ΔP(s) 

(explained further below); and the controller, consisting of the feedback block C(s) and the 

feedforward block F(s). The inputs under our control are the target signal R(s), describing 

the desired BSP trajectory, and the drug infusion rate, U(s). We observe the signal Y(s), 

which represents the estimates produced by the BSP algorithm of the propofol 

concentrations in the various compartments of the body.

State observations are subject to uncertainty, which we model as arising from three sources. 

First, load disturbances D(s), such as noxious environmental stimuli or changes in 

pharmacokinetic parameters, are modeled as entering the system by combining additively 

with the infused drug. Load disturbances act effectively as an unobservable internal random 

source or sink of propofol, thereby causing the depth of burst suppression to drift away from 

the value predicted by the pharmacokinetic model. Second, the Schnider PK model, P(s), is 

a population-based approximation to an individual patient’s pharamacokinetics. We call P(s) 

the nominal PK model. We represent the true underlying PK model for any given patient as 

P′(s) = P (s) + ΔP(s), where ΔP(s) represents the degree of uncertainty associated with the 

nominal model allowed for in our controller design. Finally, the state observations Y(s) 

resulting from the recursive estimation procedure will have some amount of error, such that 

they do not precisely match the true underlying concentration state X(s). We represent this 

error for the purposes of controller design as an additive measurement noise, Y (s) = X (s) + 

N (s).

The system inputs (R, D, N) are related to the system outputs (X, Y, U) by the following 

three equations, derived from inspection of the block diagram in figure 3.

(14)

where

(15)

The closed-loop transfer functions S(s) and T(s) are called the sensitivity and 

complementary sentitivity functions, respectively. They play fundamental roles in the theory 

of robust control. Robust control system design techniques are often called ‘loop shaping’ 

methods, because they achieve robustness by influencing the shapes of the T(s) and S(s) 

functions. Good command following and disturbance rejection can be guaranteed by 

keeping the sensitivity function S(s) small. Insensitivity of the controller to measurement 

noise and PK modeling and avoidance of excessive controller responses to commands can 

be guaranteed by keeping T(s) small. However, it is impossible to keep both S(s) and T(s) 

small at all frequencies because S (s) + T (s) = 1. Consequently, robust controller design 

must trade off between the sensitivity and complementary sensitivity functions. This is 
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possible in practice because reference signals and disturbances generally occur at low 

frequencies, whereas sensor noise and unmodeled dynamics tend to be concentrated at high 

frequencies. The appropriate tradeoff is thus to make S (jω) small at low frequencies and T 

(jω) small at high frequencies. The design strategy used herein achieves these aims, as will 

be seen below.

Many control paradigms are available, including proportional-integral-derivative, LQR, and 

MPC frameworks used in previous animal experiments by our group [37, 48], as well as 

nonlinear and adaptive methods. In the present work we employ a standard PI controller. We 

choose a PI design because of the rich body of theoretical work and practical experience 

using this paradigm to control real-world systems, and because of its mathematical 

simplicity [35, 57, 58]. A PI controller has the following standard form:

The last term is a first-order lowpass filter applied to the measurement signal. In our 

experiments we set Tf to 10 s, which empirically achieves a good trade off between load 

disturbance rejection (better with low values) and noise rejection (better with high values of 

Tf). The other parameters in the PI controller K and Ti are set by solving a constrained 

optimization problem. As the objective function for our controller design optimization 

problem we use the integrated absolute error value  in response to a unit 

step load disturbance d acting on the closed-loop system. The non-convex PI controller 

design optimization problem that we solve can be written as

(16)

where ωs and ωt are peak frequencies for S (iω) and T (iω), respectively. The Ms and Mt 

criteria are known to determine closed loop robustness in the face of model (PK) 

uncertainty/ variation, disturbances, nonlinearities, and measurement noise, as described in 

[57]. The maximum allowed values for the sentitivity and complementary sensitivity 

functions, Ms and Mt, are chosen to achieve pre-specified performance criteria. Values 

known to give generally good robustness are between 1.2 and 2. For our experiments we set 

Ms = Mt = 1.4. This choice yields a phase margin of 41.8° and gain margin of 3.5. To solve 

this optimization problem, we use the software developed and made freely available by 

Garpinger and colleagues [58].

Figure 5 shows examples of Bode plots of the sensitivity function S (jω) and complementary 

sensitivity function T (jω) automatically synthesized by solving the optimization problem 

just described. Their sum is also shown, demonstrating the constraint that |T(jω) + S (jω)| = 

1. These functions successfully trade off to meet the qualitative design criteria outlined 
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previously: T(jω) ≈ 1 and S(jω) ≈ 0 at low frequencies, as is required to ensure good 

command following and load disturbance rejection. At higher frequencies, T(jω) ≈ 0 and 

S(jω) ≈ 1, as required for attenuation of responses to sensor noise, control sensitivity 

minimization, and robustness to PK uncertainty.

2.6. Identification of model parameter values

2.6.1. Pharmacokinetic parameters—For state estimation and controller design we use 

the Schnider PK model, adjusted for patient mass, age, sex, and height [41]. The Schnider 

PK model is denoted P(s) (figure 4). As mentioned above, because P(s) is based on 

population values, we call it the nominal model. The true (unobserved) PK model, P′(s) for 

any given patient may deviate from the nominal model, sometimes substantially. In our 

control system block diagram figure 4, the difference between the nominal and true model 

was denoted ΔP(s) = P′(s) − P (s).

To simulate PK between-patient parameter variability we use published estimates of the 

coefficients of variation (CV) [41]. These CV values are given on an exponential scale. For 

the ith subject the model for each parameter (θi) is written as

(17)

where θμ is the population mean and ηi is the deviation from the mean for the ith subject, 

and deviations are assumed to be normally distributed with zero mean and variance σ2. The 

variance of the log-normal distribution is expressed in terms of the CV [59],

(18)

Rearranging, we obtain

(19)

The mean (μLN) and variance ( ) of these log-normally distributed parameters θi are then 

given by

(20)

(21)

To generate PK values for individual patients in the computer simulations described herein, 

we first transform the desired log-normal distribution into the equivalent normal 
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distributions. The mean and variance of the corresponding normal distribution are then given 

by

(22)

(23)

Figure 6 illustrates the degree of uncertainty in the Bode plot and step response for a patient 

60 year old male with weight 75 kg and height 175 cm.

2.6.2. Pharmacodynamic parameters—In this section we explain how we chose the 

true values for the PD parameters used in the Monte Carlo simulations described below. 

These parameter values are used to simulate patient data, but are treated as unobservable and 

thus are not available to use in designing the state estimator or controller. In the next section 

we present a procedure for estimating these parameters for state estimation and control.

The serum concentration of propofol required to cause the onset of burst suppression falls in 

most surgical patients within the range 4.25–5.4 μg ml−1 [60]. At steady state, the effect site 

propofol concentration is equal to the serum concentration. In the ICU environment propofol 

pharmacodynamics may be altered substantially by the presence of other drugs with similar 

mechanisms of action [43, 61, 62]. In particular, in the treatment of RSE the benzodiazepine 

midazolam is often infused at a constant rate while propofol is adjusted to achieve the 

desired depth of burst suppression. Like propfol, midazolam exerts its primary effect by 

binding to GABAA receptors in the brain. Consequently, smaller propofol effect site 

concentrations are required to reach any given level of burst suppression in the presence of 

midazolam, and this will alter the values of γ and C such that the Hill sigmoid curve may be 

left-shifted and/or steeper than it would be for propofol used in isolation.

Infusion rates of 100–200 mg h−1 often suffice to induce light levels of burst suppression in 

ICU patients undergoing treatment for RSE (BSP = 0.4), and deep levels cab be in induced 

at rates 200–300 mg h−1 (authors’ unpublished observations). These observations suggest 

approximate ranges for the pharmacodynamic parameters. Assuming for illustration a 60 

year old female who weighs 70 kg and with a height of 175 cm, the steady state effect site 

concentrations obtained by solving the Schnider PK model during steady state propofol 

infusions of 100, 200 and 300 mg h−1 are 3.4, 6.9, and 10.3 μg ml−1, respectively. The 

values of γ and C can be calculated from pairs of steady state BSP measurements at two 

different concentrations, (b0, c0) and (b1, c1), using formulas derived from the Hill equation:

(24)

Assuming steady state BSP values of 0.4, 0.95 for rates of 100, 200 mg h−1, respecitively, 

yields γ = 4.8, C = 3.7, whereas assuming that these BSP values are reached for propofol 
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infusion rates of 200 and 300 mg h−1 yields γ = 8.3, C = 10.2. These considerations yield 

approximate ranges for γ of 3.0–8.3 (unitless parameter), and for C, 3.7–7.2 μg ml−1. In our 

simulations we henceforth assume that the correct (but unknown) values are γ = 6.6 and C = 

5.5, corresponding to steady state BSP values of 0.4 and 0.95 achieved at propofol infusion 

rates of 150 and 250 mg h−1, respectively.

2.6.3. Estimated pharmacodynamic parameters—Due to the wide between-patient 

variation that can be expected in practice, the PD values C and γ must be estimated on a 

case-by-case basis. To accomplish this estimation we use a two-step process. First, we take 

the patient through a two-step infusion sequence termed the ‘ramp-drop’ maneuver (figure 

7). At the beginning of each experiment propofol is infused at a rate near the minimum 

required to induce burst suppresion. Then, in the ramp part of the maneuver, the rate of 

infusion is gradually increased in a linear fashion to induce progressively deeper levels of 

burst suppression. While doing this, we monitor the depth of burst suppression by calculting 

the BSR, defined as the fraction of EEG spent in suppression within a time window. In 

general, BSR estimation requires several consecutive seconds or minutes of binary data, so it 

cannot be used to track rapid transition in burst suppression depth. However, BSR is suitable 

for tracking burst supression during slowly changing conditions such as those used in the 

ramp-drop procedure. In our procedure the BSR is estimated using 60 s intervals with 

overlap and averaged by a moving average filter with data points for 60 s. The ramping is 

stopped upon exceding a maximum target value of BSP = 0.9. At this point, the ‘drop’ part 

of the maneuver is excecuted, in which the infusion rate is abruptly decreased back to the 

starting value, and the level of burst suppression is allowed to drift back to the baseline 

value. In practice, if a patient is already in burst suppression when CLAD operation begins, 

burst suppression can be lightened to an acceptable low level, e.g. BSP = 0.2, then gradually 

ramped to the maximum BSP value.

From the binary data that results from this ramp-drop experiment, we perform the following 

calculations in order to estimate the patient’s pharmacodynamic parameters, γ and C. Given 

candidate values for γ and C, the infusion history, the observed binary data, and the nominal 

PK model, we can plug all of these into the BSP algorithm to generate a candidate time 

series for the propofol effect site concentration x̂4t, and in turn a candidate BSP time series, 

λ̂
t, which can be compared with the ‘observed’ BSR. The candidate PD parameters are 

subsequently improved using an iterative nonlinear least squares procedure to minimize the 

objective function

(25)

For this optimization we use the Nelder–Mead simplex algorithm [63] implemented in 

Matlab (Natick, MA).

2.6.4. External disturbances—The PK+PD model predicts that holding the propofol 

infusion rate constant should eventually result in a constant BSP value. In practice, however, 

the BSP exhibits slow random drift. The disturbance signal in the block diagram shown in 
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figure 4 represents this drift as the effect of a random signal added to the infusion rate. We 

model the disturbance signal as a modified first-order autoregressive (AR(1)) process, dt = 

φdt−1 + σnt, where nt is a sequence of independent standard normal random variables. The 

autocorrelation function and standard deviation for dt are

(26)

We choose φ to make the autocorrelation function decay by 90% over 30 min or 1800 

samples. That is, using at the sampling rate of Δ = 1 s−1 used in our simulations, φ = 

exp(log(0.1) 1800). Empirically, the magnitude of random fluctuations in the BSP at steady 

state is generally <30% (authors’ unpublished observations). Therefore we conservatively 

allow the magnitude of fluctuations in the model disturbance signal to be up to 50% of the 

steady state infusion rate needed to maintain a constant BSP. To this end, we set the 

standard deviation of of the disturbance SD(dt) signal to 1/4 the steady state infusion rate u0 

by choosing , and we clip the maximum disturbance values at 1/2 the 

steady state infusion rate. That is, let the , be a candidate update value for the 

disturbance. Then

(27)

As an example, for a 60 year old male, who is 75 kg and 200 cm tall, the steady state 

infusion rates needed to maintain BSP values of 0.8, 0.6, and 0.2 are approximately 2.34, 

2.01, and 1.54 mg kg−1 h−1, respectively, and we set the maximum magnitude of the 

disturbance signal at these points to 1.17, 1.01, and 0.77 mg kg−1 h−1. Examples are shown 

in figure 10 as illustrations for experiments described in section 3.4.1.

2.6.5. Signals to test estimator performance—To test the performance of the 

recursive state estimation algorithm we run the estimator while driving the PK model with a 

random infusion signal, ut. We model ut as a constant rate u0 plus a randomly varying 

signal. We set u0 equal to the steady state infusion needed to produce BSP = 0.8. For the 

random component we use the same model described in the previous section for the 

disturbance signal model, except that we allow maximum fluctuations that are twice as 

large. This choice allows us to thoroughly explore the full dynamic range of the recursive 

estimator.

2.6.6. Observation noise—The true concentration state, xt = (x1t, x2t, x3t, x4t)′ is an 

unobservable quantity. We view the discrepancy between the recursive estimate inferred 

from the binary observations by the BSP algorithm, yt, and the true state xt, as high 

frequency observation noise, nt = yt − xt (figure 3(B)), or in Laplace transform notation, N 

(s) = Y (s) − X (s) (figure 4). We describe methods for evaluating the validity of this additive 

observation noise model in the next section.
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2.7. Evaluation of system performance

We use a factorial experimental design based on four patient characteristics to test each 

component of our system over a full range of clinical conditions. The characteristics are 

mass, divided into groups of 50, 75, and 100 kg; age, divided into groups patients aged 40, 

60, and 80 years old; sex; and height, divided into groups 150, 175, and 200 cm tall. Taking 

all combinations of these divisions creates 3 × 3 × 2 × 3 = 54 distinct groups. For each 

group, and for each performance measure described below, we performed 100 experiments. 

In all experiments the true PK and PD parameters are treated as unobserved quantities. The 

true PK values are randomly generated as described in section 2.6.1. The true PD parameters 

are set in all experiments to γ = 6.6 and C = 5.5, as explained in section 2.6.2.

Except where otherwise specified, we summarize the results for each set of 100 experiments 

in terms of the median, minimum, and maximum value of the relevant performance metric.

In the following subsections we describe methods for evaluating performance of give 

metrics to quantify transient and steady state behavior of the fully integrated closed-loop 

system. We also specify values for these performance metrics that constitute clinically 

acceptable close-loop controller performance.

2.7.1. Controller transient performance specifications—To characterize transient 

responses of the closed-loop system we calculate the rise time, settling time, and percent 

overshoot. We also specify minimum clinically acceptable values for these transient 

controller performance statistics.

• Rise time: we require the initial rise time, defined as the time taken to reach 90% of 

the target value after a step command, to be under 5 min. This specification is 

reasonable in ICU care, as times taken to reach burst suppression under manual 

control (standard practice) are usually substantially longer. For measuring rise time 

we use a step command to take the system from BSP = 0.2 up to BSP = 0.8, which 

is a typical set point for treatment of RSE.

• Percent overshoot: the CLAD system must produce a percent overshoot in 

response to a step input of less than 15% (1.2 BSP units), to protect the patient 

against overdosing.

• Settling time: the system must settle after a step command and remain (in the 

absence of disturbances) within ± 5% of the target value within less than 15 min. 

This requirement is again well within the limits of current medical practice.

2.7.2. Controller steady state performance specifications—To characterize steady 

state performance of the CLAD system we calculate the bias, inaccuracy, divergence, and 

wobble statistics [64, 65]. These statistics are based on the relative performance error (PE), 

defined for time sample t of patient i as the difference between the measured suppression 

rate λ̂
i (t) and the constant target rate λ* expressed as a fraction of the target rate
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In the following descriptions we leave off the i subscripts in order to reduce clutter in the 

notation. We also specify minimum clinically acceptable values for these steady state 

controller performance statistics.

• Bias (median PI): measures any systematic deviation of the BSP from the target 

value. The bias is calculated as the median percent (%) error

• Inaccuracy (median absolute PI): measures the median value of the error 

magnitude, with units of percentage (%)

• Wobble: measures the total within-patient variability of the error over time, 

expressed as a percentage (%). This statistic reflects the CLAD system’s ability to 

maintain a stable depth of burst suppression by quantifying oscillations around the 

target burst suppression depth λ*,

The median values in these expressions are calculated across steady state measurements. We 

also compute the median and interquartile ranges across all experiments within a given 

MASH group to summarize the overall performance of the CLAD system.

3. Results

In this section we present performance and robustness results for each stage of the CLAD 

system design and testing process, including the ramp-drop procedure for PD parameter 

estimation, the Bayesian recursive state estimator, and the final integrated closed-loop 

control system under simulated ICU operating conditions. We present the evaluation of each 

component with an illustrative case, followed by a summary of performance statistics across 

the 54 conditions in our factorial experimental design. All experiments are based on Monte 

Carlo simulation of the PK parameters and external disturbances, as described sections 2.6.1 

and 2.6.4.

3.1. Pharmacodynamic parameter estimation

3.1.1. Illustrative case—The ramp-drop experiment (section 2.6.3) allows us to estimate 

the unobservable PD paraemters C and γ from the binary EEG observations. For illustration, 

consider a 60 year old male with weight 75 kg and height 175 cm. To simulate clinical 

conditions, we characterize the patient’s response to propofol by a set of unobservable PK 

and PD parameters. We take the nominal PK values from the Schnider model equations 
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(table 1). We generate the true (but unobservable) PK parameters by random perturbation of 

the nominal Schnider model values as described in section 2.6.1. The true and nominal PK 

parameter values k10, k12, k21, k13, k31, keo in this example are, respectively,

True values: 0.4206, 0.2478, 0.0688, 0.1725, 0.0031, 0.4560

Nominal values: 0.4091, 0.2628, 0.0694, 0.1958, 0.0035, 0.4560;

where the units are min−1. In this and all subsequent experiments we assume that the true 

PD values are γ = 6.6 and C = 5.5 (section 2.6.2).

Figure 7 shows the results of running the ramp-drop experiment in this example case. The 

parameters estimated by the ramp-drop procedure are γest = 6.0835 and Cest = 5.431. As 

shown in the next sections, these values are close enough to the true values to allow accurate 

state estimation and robust feedback control.

3.2. Performance across patient characteristics

Figure 8 shows results for the ramp-drop PD parameter estimation from 5,400 simulated 

experiments, following the factorial experimental design described in section 2.7. In all 

experiments we set the true value for γ and C as γ = 6.6 and C = 5.5, respectively. 

Parameters in the nominal PK models were set equal to the population values given by the 

Schnider propofol PK model (table 1). True (unobserved) OK values were generated by 

random perturbation of the nominal model (see section 2.6.1).

The global median and range (minimum, maximum) of the estimated values across all 5400 

experiments were, for γ, 6.2 [4.6, 7.8], and for C 5.5 [4.1, 7.8]. Note that some of the 

variation in parameter estimates is attributable to mismatch of the nominal PK model with 

the true PK values, and may hence be ‘helpful’. These experiments suggest that the ramp-

drop estimation procedure yields reasonably accurate estimates of the true parameters.

3.3. State estimation

3.3.1. Illustration—Continuing with the example from section 3.1.1, we next evaluated 

performance of the recursive state estimation algorithm. Figure 9 shows a 12 h simulation 

for the patient from section 3.1.1, in which propofol is infused with a randomly varying rate, 

generated as described in section 2.6.5. In the case shown, the estimated four-compartment 

drug concentrations closely match the true concentrations, yielding a small average 

observation error. A scatter scatter plot derived from repeated simulations with the same 

mass, age, sex, and height parameters demonstrates that the system behaves essentially 

linearly over all relevant concentrations. A regression fit to the data has a slope of 

0.9786[95%CI: 0.9770, 0.9802] and intercept −0.2092 [−0.2267, −0.1916]; while the 

median estimation error and 95% quantile range for all error values across all conditions is 

−0.3991[−1.1217, 0.2442]. Thus, while there is some tendency to systematically 

underestimate the true value, the discrepancy is small. Finally, direct comparison between 

the power spectrum of the signal (effect site concentration) and the noise (estimation error) 

demonstrates excellent quality of the estimated signal over all relevant frequencies. This 

example suggests that the recursive Bayesian state estimate behaves, to a very good 
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approximation, as linear observations of the signal in the presence of additive high 

frequency noise, with high signal to noise ratio, and is thus a suitable control signal.

3.3.2. Performance across patient characteristics—Figure 8 shows the results of 

repeating the state estimation experiment from the previous section 100 times for each of 54 

conditions, following the factorial experimental design described in section 2.7. We 

summarize performance results using box plots and showing the median, maximum, and 

minimum estimation error for each of the 54 conditions in the factorial design. Across all 

conditions the effect site concentration estimation error is tightly concentrated near zero.

3.4. Robust control

3.4.1. Illustration—Expanding on our example from section 3.1.1, we now demonstrate 

the ability of the final CLAD system to maintain target BSP levels for 24 h in four different 

simulated patients (figure 10). In these experiments we simulated the end-to-end operation 

of the CLAD controller in the ICU environment.

In each case we first ran the ramp drop ramp-drop experiment to estimated PD parameters, 

then synthesized the recursive estimator and controller using the estimated PD values and 

nominal (Schnider) PK values. We then simulated 24 h of control. Target values in each 

experiment consisted of, first, a 15 min long transition period in which the patient is brought 

from a state just prior to burst suppression, BSP = 0, to a deep state of burst suppression, 

BSP = 0.8. After maintaining this target for 8 h, we decreased the target value over 10 min 

to a lower depth of burst suppression, BSP = 0.6, as may be done if the treating physician 

decides that a lower dose of anesthetic is needed to reduce cardiovascular side effects. After 

maintaining this target for 8 h, we slowly taper the target BSP values over a period of 8 h to 

minimize the risk of rebound seizures.

In each experiment we again generate the true (but unobservable) PK model by perturbing 

the nominal (Schnider) model as described in section 2.6.1 to simulate PK uncertainty. We 

set the true (but also unobservable) PD parameters equal to γ = 6.6 and C = 5.5. For the 

recursive state estimator, we use the nominal PK values and the PD values estimated from 

the ramp-drop procedure. Finally, throughout each experiment we subject the CLAD system 

to a stochastic input disturbance with maximum amplitude equal to 50% of the infusion rate 

necessary to maintain steady state, as described in section 2.6.4. The presence of PK and PD 

parameter uncertainty and load disturbances in these experiments allowed us to evaluate 

whether the integrated CLAD system met transient and steady state performance 

specifications robustly.

Despite the uncertainties/errors in the PK and PD parameters, the robust CLAD controller 

maintains tight control of burst suppression throughout the 24 h period, both in steady state 

and during transitions. The controller simultaneously makes two types of adjustments to 

attain this level of control. First, the controller gradually reduces the long-term average 

infusion rate as drug accumulates in the patient’s slow compartment, effectively becoming a 

internal source of accumulated propofol. Second, the controller continually makes short-

term adjustments to combat the load disturbance, increasing the propofol rate in response to 

negative load disturbances, and decreasing the rate in response to positive load disturbances.
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The CLAD controller consistently maintains propofol infusion rates within the prescribed 

safety limits, never exceeding 12 mg kg−1 h−1, and always maintaining the maximum hourly 

cumulative propofol rate below 7 mg kg−1. The excellent performance seen in this example 

case holds generally, as demonstrated by the experiments described next.

3.4.2. Performance across patient characteristics—Box plots in figure 11 

summarize the steady state performance results for the 5,400 experiments performed using 

our factorial design. All steady state performance measures were within specification (bias, 

accuracy, and wobble <5%) across all 54 MASH conditions. Global median (minimum, 

maximum) values across all experiments were, bias (MDPE) 0.1 [−0.5, 0.9]%; accuracy 

(MDAPE) 1.8 [0.9, 3.4]%; and oscillation index (‘wobble’) of 1.8 [0.9, 3.4]%.

The median (min, max) value for the maximum cumulative propofol dose in any given hour 

was 4.3 [2.1, 10.3]. The number that exceeded the pre-specified clinical limit (7 mg kg−1 

h−1) was 5.1% (275/4500). These rare cases were almost entirely in the tallest patients, and 

all occurred during periods when the BSP target was high, at 0.8. In clinical practice these 

cases would trigger an alert to the medical team. A typical physician response in such a case 

would be to either lower the target BSP if medically safe, or to add or increase the rate of 

another drug such as midazolam, thereby reducing the dose of propofol required to maintain 

the target BSP level. Note that in the latter case it might be necessary to re-estimate the 

propofol PD parameters used in the CLAD controller after the second drug reached steady 

state.

We performed a second set of 5,400 experiments using the same factorial design to 

investigate transient responses to a step command. We omitted load disturbances were 

omitted for these experiments. For each repetition we measured the rise time, percent 

overshoot, and settling time, in response to a step command chosen to drive the system from 

a BSP of 0 to 50/60 ≈ 83%, which is approximately the level typically targeted in treatment 

of RSE. Figure 12 summarizes the performance statistics. All transient performance 

measures were within specification (rise time <5 min, % overshoot <15%) across all 54 

MASH conditions. The global median (minimum, maximum) values across all experiments 

were, for rise time 1.4 [1.1, 1.9] min; settling time, 7.8 [4.2, 9.0] min; and percent overshoot 

9.6 [2.3, 10.8]%.

The results for the steady state and transient performance simulations indicate that the 

integrated CLAD system, including the ramp-drop PD estimation procedure, recursive 

Bayesian state estimation, and the robust PI controller design, is robust across and performs 

safely under the operating conditions approximating an ICU environment. We conclude that 

good closed-loop performance can be achieved by identifying a nominal PK/PD model 

using published population PK parameter values and safely estimated patient-specific PD 

(sigmoid) parameter values, in combination with well-established robust controller design 

methodology.
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4. Discussion

We have developed a robust feedback control system for medical coma. The system 

maintains the brain state of a critically ill patient near a target depth of burst suppression by 

using EEG-based feedback to provide moment-by-moment adjustments to the rate of an 

infused anesthetic drug. Under conditions simulating realistic pharmacokinetic and 

phamarcodynamic uncertainty, our CLAD system accurately and robustly controlled burst 

suppression across a broad range of patient mass, age, height, and gender parameters. The 

system achieved clinically acceptable steady state performance across all patient conditions, 

with a maximium bias of <1%, maximum inaccuracy <4%, and maximum oscillation index 

of <4%. Transient responses were likewise clinically acceptable, with maximum rise time 

<2 min, maximum percent overshoot <11%, and setting time <10 min. All of these values 

fall well within clinically acceptable limits.

4.1. Relation to prior CLAD research

Our work builds on a growing body of research dating back to the 1950s aimed at regulating 

brain states during anesthesia [66, 67]. Open loop or ‘target controlled infusion’ systems 

enjoy widespread use outside the United States [53, 68, 69]. Several prototype closed-loop 

systems for general anesthesia have been tested in pilot studies [27–31, 66, 67, 70–73]. 

Systems developed to date have relied on a variety of computed EEG features, including 

wavelet coefficients [72], median spectral frequency [74], BIS [27, 28, 75–77], and signal 

entropy [78]. Some of these derived EEG signals have recently come under criticism for 

being unphysiological and for being unreliable indicators of depth of anesthesia [36, 79–81]. 

Consequently the the EEG correlates of general anesthesia remains an area of active 

research. By contrast, burst suppression is a well-defined, ‘high signal to noise ratio’ EEG 

pattern, which is reliably quantifiable in ICU patients [18–20].

In this work we introduced three new innovations, namely, an ICU-safe method for 

obtaining patient-specific estimates of pharmacodynamic parameters; an improved method 

for tracking the depth of burst suppression; and a controller design procedure that is 

explicitly formulated to be robust in the presence of disturbances, estimation noise, and PK 

parameter uncertainty.

4.2. State estimation for tracking burst suppression depth

Our CLAD framework pairs a four-dimensional recursive state estimator with an optimal PI 

controller. The recursive estimation algorithm is a critical factor underlying our controller’s 

ability to acheive good transient performance in response to set point changes. By 

incorporating a full four-dimensional dynamical model of propofol pharmacokinetics, and 

updating the full state vector x(t) = (x1(t), x2(t), x3(t), x4(t)) at each time step, our estimator 

produced estimates which accurately tracked the effects of the time-varying drug infusion 

rate. The ability of the estimator to tightly track the effect site concentration x4(t) with 

negligible lag largely accounts for the fact that the PI controller is able to achieve rise time, 

percent overshoot, and settling time that are all well within clinically acceptable limits.
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An improvement of the BSP estimation algorithm presented herein over a previous design 

[37] is that the current version employs a sigmoidal function (Hill equation) to capture 

patient pharmacodynamics. The logistic link function used in previous work λt = (1 − 

exp(−x4t)/(1 + exp(−x4t) has a maximum slope at an effect site concentration of x4t = 0. 

However, low concentrations of propofol generally induce sedation without causing burst 

suppression. By contrast, the sigmoid link function, , is nearly equal to 

zero up to a positive ‘takeoff point’ which can be matched to an individual patient’s onset of 

burst suppression. The sigmoid equation provides a more flexible and realistic model for 

burst suppression pharmacodynamics.

In this work we also presented a ‘ramp-drop’ infusion experiment to allow safe estimation of 

the sigmoid PD parameters in critically ill patients. This procedure involves a gradual 

increase in the rate of anesthetic to reveal the steady state level of burst suppression as a 

function of effect site concentration. Because this ramp maneuver involves only gradual 

increases in anesthetic infusion rate, there is ample time for a supervising clinician to 

respond to any adverse effects that may develop. This procedure can thus be safely 

performed in critically ill patients. By allowing accurate estimation of patient-specific 

sigmoid parameters, the ramp-drop procedure enhances the tracking ability of the state 

estimator. In the subsequent ‘drop’ part of the procedure, we reduce the propofol infusion 

rate and allow the patient to drift out of burst suppression. This maneuver is also generally 

safe in critically ill patients. Indeed shutting off anesthetic infusions is routinely performed 

in ICU patients to allow reliable neurological examinations.

Unlike previous work in animals, we have not attempted to estimate patient-specific PK 

parameters in this work. This is because safety considerations preclude the type of dynamic 

manipulation of infusion rates needed for full PK model identification. Consequently we set 

the PK parameters to their demographic-adjusted population values. Robust controller 

design techniques compensate for the resulting uncertainty about patient-specific PK 

parameter values.

Because of the excellent tracking performance of the recrusive BSP estimation procedure, 

we were also able to demonstrate that the highly nonlinear transformation x4(t) → y(t) (i.e. 

x4(t) = effect site concentration → binary signal → nonlinear recursive Bayesian estimate = 

y(t)) is well approximated by a a simple additive noise model, y(t) ≈ x4(t) + n(t), where the 

estimation error or ‘noise’ n(t) is high-frequency noise which is spectrally well-separated 

from the effect site concentration dynamics at low/clinically relevant frequencies. In turn, 

this feature allows the entire PK–PD model to be treated mathematically within the 

framework of stochastic linear dynamical systems, a necessary condition for the application 

of robust control system design methodology.

4.3. Robustness

Many previous studies have addressed closed-loop control of anesthesia [27–30]. However, 

most have approached the tuning of control algorithms empirically, without using rigorous 

techniques that explicitly account for uncertainties in pharmacokinetic and 

pharmacodynamics parameters, state estimation error, and external disturbances. As argued 
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in [35], this lack of rigor strongly contributes to the general resistance of the medical 

community at large to closed-loop control devices in anesthesia and other domains. In turn, 

it is likely that for widespread adoption to occur, any CLAD system will need to pass 

through a certification process that will include robust performance criteria.

Previous work on closed-loop control of burst suppression has likewise not taken advantage 

of explicit robust controller design techniques [37, 47], leaving the work open to concerns 

about safety of operation under real-world ICU operating conditions.

In the present work we have closed this gap, by formulating the design of the controller 

component of our CLAD system as the solution to a well studied optimization problem. For 

our PI controller optimization we used a robust loop shaping procedure designed to achieve 

good performance while explicitly allowing for PK modeling error, estimation error, and 

load disturbances. Our design method is automatic, requiring no empirical or hand-tuning of 

parameters. The simulations presented herein demonstrate that it is possible to design safe 

and reliable CLAD systems for robust control of medical coma.

4.4. Limitations

Our primary motivation for the present work is the need for safety in the face of PK and PD 

variability in the ICU population. We have addressed this challenge by formulating our 

CLAD system within a robust control framework, by choosing PD parameters for our 

simulations that reflect the lower propofol requirements of ICU patients, by introducing a 

safe and practical method for estimating individualized PD models, and by performing 

extensive Monte Carlo sampling over possible PK parameters. Nevertheless, despite these 

efforts, caution will be necessary when moving to human testing. In particular, it is 

conceivable that for some critically ill patients the Schnider PK model will be so inaccurate 

that our design may not be able to compensate. Therefore in human pilot studies several 

additional safety measures, not discussed in the present work, will be necessary. These 

include hard limits to drug infusion rates, alerts that sound in case of out-of-range BSP 

values, and a manual override function that allows a human operator to take over at any 

time.

A second limitation is related to the ramp-drop procedure which we have proposed for 

estimating patient-specific PD parameters. In some patients this procedure might lead to 

seizure recurrence. Nevertheless, as described above, this procedure will generally be safe, 

and at minimum will not increase risk beyond current practices, for three reasons. First, in 

clinical practice the induction of burst suppression and titration to target BSP levels typically 

takes longer than the proposed ramp-drop procedure (unpublished observations). Overall we 

expect that our system will allow not only tighter control, but also more reliable and more 

rapid attainment of therapeutic BSP targets. Second, because the ramp maneuver involves 

only gradual increases in anesthetic infusion rate, there is sufficient time for a supervising 

clinician to respond to any adverse effects that may develop. Finally, after attainment of 

target levels, current practice is to periodically reduce or discontinue propofol to allow 

neurological assessments and to assess for seizure recurrence. This routine procedure 

provides a natural window in which to perform the ramp-drop experiment and to begin 

control in patients not recruited immediately at the time of diagnosis and initiation of 
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treatment. An alternative approach would be to start with a reasonable initial population-

based PD model, and to update the model adaptively based on discrepancies between the 

predicted and observed BSP. This approach presents additional challenges for ensuring 

stability of the controller design, but ultimately may provide greater safety and ease of use. 

We are exploring the issue of adaptive estimation in the loop currently.

A final limitation is that the PD model estimated by the ramp-drop procedure could be 

invalidated in case rates of other burst suppression maintenance medications (e.g. 

midazolam) other than propofol are changed. This limitation is addressed in part by the 

robustness of the controller design. However, for initial human pilot studies, we will require 

that either no changes to maintenance medications during the operation of the controller, or 

that in case of a change, the ramp-drop procedure will be repeated to estimate a new PD 

model before resuming control. As mentioned in the previous paragraph, future research on 

in-the-loop adaptive PK/PD estimation may eventually remove the need for these 

precautions.

4.5. Advantages and potential clinical benefits over current practice

Medical coma for the treatment of RSE and severe intracranial hypertension following 

traumatic brain injury must often be maintained for days at a time. Under current practice, 

medical personell monitor the EEG and adjust anesthetic rates manually. Practical realities 

and limited resources dicatate that the majority of this anesthesiologists’ and clinical-

neurophysiologists’ task falls to staff who lack expertise in either clinical EEG analysis or in 

anesthesiology. Moreover, staff necessarily perform manual monitoring and anesthetic 

adjustments only intermittently. Consequently, levels of burst suppression in practice often 

drift out of target range. Automated control of burst suppression holds promise as a more 

efficient and reliable means to regulate medical coma in the these critically ill patients.

Our results show how it is possible to develop a robust CLAD system to manage medical 

coma in critically ill patients. Using the methods presented herein, we can construct a CLAD 

system with proven stability and clinically acceptable transient and steady state 

performance. This can be done in the face of PK and PD values that fall within a clinically 

realistic range of uncertainty. By using a carefully designed dose-response experiment, we 

can safely compensate for additional pharmacodynamic variation introduced by the presence 

of organ system dysfunction and concurrent medications. By using robust control design 

techniques and statistically principled EEG processing methods, the resulting control system 

can be made safe and reliable.

This CLAD design framework paves the way for clinical investigation of the hypothesis that 

automated regulation of burst suppression can provide tighter adherence to therapeutic target 

depths of medical coma, while using less anesthetic and subjecting the patient to fewer large 

changes in anesthetic infusion rates. In turn, with reduced anesthetic doses it is reasonable to 

expect reduced ICU lengths of stay, fewer morbidities, and potentially better outcomes (e.g. 

more rapid resolution of RSE).
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Appendix. Derivation of the BSP algorithm

In this section we derive the update and prediction equations of the BSP algorithm 

(equations (8)–(14)). The BSP equations represent a recursive Bayesian inference procedure 

for estimating the burst suppression probability (BSP) from the binary observations.

Recall from (5) that the probability of observing a suppression in any small interval Δ is 

given by the conditional intensity function in discrete time as

In addition, in equation (6) we expressed the PK dynamics of the log-transformed state 

vector zt = log(xt) as
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where wt = (w1t, w2t, w3t, w4t)′ is an i.i.d. sequence wt ~ N(0, W), W = Iσ2, and zt = (z1t, z2t, 

z3t, z4t)′.

Next, denote the binary sequence of data observed so far by , and the history 

of the state variable as . Then using Bayes rule and noting that nt depends on 

the history only through the current value of zt, we can write the posterior distribution as

(28)

The second term in the numerator is the Bernoulli observation model given above and in 

equation (5), expressed in terms of zt instead of xt (equivalent because the transformation xt 

= exp(zt) is invertible). The first term in the numerator can be written using the Chapman–

Kolmogorov equation and the Markov structure of the state model as

(29)

The term p(zt|zt−1) comes from the prior model (6), and the second term is the posterior 

density from the previous time step. Hence substituting (29) and (5) into (28) yields the 

recursion

(30)

Evaluating (30) is difficult, because the prior (state dyanmics model) (6) is nonlinear and the 

observation model is binomial rather than Gaussian. Therefore we make two 

approximations: (1) a linear approximation to the prior at each time step, which allows us to 

approximate the prediction density  as Gaussian; (2) a Gaussian approximation to 

the update equation (posterior),  at each time step.

Denote the mean and covariance matrix of the posterior by

(31)

(32)

and similarly for the mean and covariance matrix of the one step prediction density write
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(33)

(34)

Linearizing the prior (6) around the posterior mean from the previous step we have

with

(35)

where for i = 1,

(36)

and for i = 2, 3, 4

(37)

Using this approximation the prediction density will be approximately Gaussian, and the 

approximate prediction mean and covariance are

(38)

(39)

Next we introduce a Gaussian approximation to the posterior distribution (30):

(40)
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The first expression approximates the Chapman–Kolmogorov integral as a Gaussian 

centered at the one step prediction estimate, and the second line approximates the entire 

function as a Gaussian density with parameters zt|t and Wt|t, which remain to be determined. 

To find these parameters, we first take the log of both sides to get

(41)

where R is a constant that does not depend on zt. Differentiating with respect to zt gives

(42)

Substituting zt = zt|t−1 gives

(43)

Solving for zt|t gives the posterior mean state update equation

(44)

Diffentiating (42) again and once more setting zt = zt|t−1 gives the posterior variance 

equation,

(45)

Working out the derivatives and substituting yields the expressions for the prediction and 

update equations.
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Figure 1. 
Electroencephalogram samples from six different patients undergoing pharmacologically 

induced burst suppression as treatment for refractory status epilepticus. In each case burst 

suppression depth was controlled manually by nursing staff adjusting the rate of propofol 

anesthetic infusions, according to standard clinical practice. Bursts are highlighted in pink, 

while suppression periods are not highlighted. The approximate burst suppression 

probability (BSP) values for these examples, given as percentages (100% = complete 

suppression, 0% = no suppression) are (A) 68%, (B) 55%, (C) 83%, (D) 70%, (E) 39%. 

Only case (C) is within 5% of the clinical target value, which in all cases was 80%.
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Figure 2. 
Schnider model for propofol pharmacokinetics.
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Figure 3. 
Block diagram for propofol pharmacodynamic model and state estimation (A) the drug 

concentration state vector xt enters the sigmoid nonlinearity, where the fourth element 

(effect site concentration, x4t) is transformed by the sigmoid nonlinearity (Hill equation) into 

the burst suppression probability, λt (BSP). The BSP is a time-varying rate in a Bernoulli 

process that gives rise to the observed binary data nt. Although the pharmacodynamic model 

and state estimation procedures are nonlinear, the resulting input-output relationship is 

approximately linear (see figures 4 and 9). In the method used to design a robust controller 

for this system, we view the estimated state as a noisy observation of the true state (B).
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Figure 4. 
Block diagram of the process model and robust controller. Symbol meanings are as follows: 

R, reference signal (effect site concentration corresponding to the target BSP value); E, error 

signal (target minus estimated effect site concentration); C, controller; U, control signal 

(propofol infusion rate); D, disturbance signal; Ubar, the input to the process dynamics, 

consisting of the control signal plus the unknown disturbance signal; ΔP, plant error term, 

representing the discrepancy between the nominal model and the true PK dynamics model; 

W, the input to the plant error term; V, output of the plant error term; X, true 

pharmacokinetic state of the patient, consisting of the drug concentrations in each body 

compartment; N, estimation error, represented here as additive observation noise; Y, 

observed PK state of the patient, obtained by the BSP algorithm.
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Figure 5. 
Bode plots for the magnitude of the sensitivity function |S (iω)| and complementary 

sensitivity function T (iω) that result from the controller design optimization procedure, for a 

typical patient (60 year old, 70 kg, 175 cm male).
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Figure 6. 
Examples of Bode (A) and step response (B) plots. For this example, the simulated patient 

was 60 year old male with weight 75 kg and height 175 cm. Solid blue lines correspond to 

the nominal (population-based) model for this patients demographics, calculated from the 

Schnider PK equations (table 1). Shading indicates the maximum and minimum values 

obtained from 1000 simulations in which PK values were generated by the random sampling 

process described in the main text.
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Figure 7. 
Illustration of the ramp-drop experiment performed before commencement of control, used 

to estimate the pharmacodynamics parameters γ and C of the Hill equation. The propofol 

infusion rate is linearly increased over a period of 20 min (A), and the resulting EEG signal 

is automatically segmented to yield a binary observation sequence (B). The binary data and 

infusion history are used to estimate parameter values for γ̂ and Ĉ such that the BSR (blue), 

estimated without reference to the Hill equation, provides a close match to the BSP tracing 

(red) estimated by the BSP algorithm, which does depend on the Hill equation parameter 

values. Both curves agree well with the true BSP value (black). (C) Example of the match 

between the true PD curve (Hill equation) based on the values γ and C (black), and the PD 

curve based on the estimated values γ̂ and Ĉ (red).
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Figure 8. 
Box plots for factorial estimation experiments. Each experiment consists of 100 repetitions 

for each of 54 combinations of patient age (40, 60, 80 years), mass (50, 75, 100 kg), height 

(150, 175, 200 cm) and sex (male, M; female, F). Color groupings indicate patient ages. The 

top panels show results of the ramp-drop experiments for estimating the pharmacodynamic 

parameters C (A) and γ (B). The true parameter values C = 5.5 and γ = 6.6 used to generate 

the observations are indicated by pink dashed horizontal lines. The bottom panel (C) shows 

testing results for the state estimator. The results are expressed as the true minus the 

estimated effect site concentration. The estimated values for C and γ from the ramp-drop 

experiments were used in these experiments.
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Figure 9. 
Estimation error of the BSP algorithm. The panels show an example of a randomly varying 

infusion rate (A), the resulting four-compartment drug concentrations (state) (B), burst 

suppression probability (BSP) (C), the resulting binary observations (D), the estimated state 

(E), the estimated BSP (F), and the discrepancy between the estimated and actual BSP, 

which is considered observation noise (G). (H) Effect site concentration values sampled 

every 5 min for 100 simulations like the one shows are plotted against the estimated values, 

demonstrating that the estimates are consistently accurate with minimal bias over the range 

of clinically relevant effect site concentrations, despite underlying uncertainty about the PK 

parameters and imperfect accuracy in the PD parameter estimation routine. (I) Power 

spectral density for the driving signal (black line) relative to the observation noise/

estimation error power spectrum. The signal is well above the noise ratio at all relevant 

frequencies.
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Figure 10. 
Examples of 24 h simulations of CLAD-assisted treatment for refractory status epilepticus in 

(A) a 40 year old, 50 kg, 150 cm tall female, (B) a 60 year old, 75 kg, 175 cm tall male, (C) 

a 40 year old, 100 kg, 150 cm tall female, and (D) an 80 year old, 100 kg, 200 cm tall male. 

In each case the target BSP level (top panel, red dashed line) is increased from zero to 80% 

over 10 min, held for 8 h, reduced over 10 min to 60%, held for another 8 h, then tapered 

gradually over 8 h to 0.2. The patient PK dynamics are subject to a continuous stochastic 

load disturbance (dist., red curve). The robut controller adjusts the infusion rage 

continuously (cont., blue curve) without exceeding the maximum allowed rate (12 mg kg−1 

h−1, red dashed line). The cumulative dose over the preceding hour (cum., shaded blue 

curve) also stays within the safety limit (red dashed line).
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Figure 11. 
Steady state performance statistics for the CLAD system, including bias (median 

performance error, MDPE), inaccuracy (median absolute performance error, MDAPE), and 

oscillation index (WOBBLE). These values are obtained by repeating the experiment 

illustrated in figure 8 one hundred times for each of 54 patient demographic conditions, 

which vary according to a factorial design by patient mass, age, sex, and height. In these box 

plots, circles with central dots show median values, vertical lines show the upper and lower 

95% parameter bounds, and empty circles show outliers. In all cases performance is within 

specification.
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Figure 12. 
Transient response performance statistics for the CLAD system, including rise time, settling 

time, and percent overshoot in response to a step command to bring the BSP from 0 to 80%. 

These values are obtained by repeating the experiment illustrated in figure 8 one hundred 

times for each of 54 patient demographic conditions, which vary according to a factorial 

design by patient mass, age, sex, and height. In these box plots, circles with central dots 

show median values, vertical lines show the upper and lower 95% parameter bounds, and 

empty circles show outliers. In all cases performance is within specification.
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Table 1

Schnider model for propofol pharmacokinetics (PK). Vi, volume of body compartment i; CLi, drug clearance 

for compartment i; kij, rate constant for drug transport from compartment i into compartment j. LBM, lean 

body mass. LBM is calculated according to the James formula as: males: LBM (1.10 × weight(kg)) −128 × 

(weight2/(100 × height(m))2), females: (1.07 × weight(kg)) −148 × (weight2/(100 × height(m))2).

Parameter Value/Equation CoV Units

V1 4.27 4.04 L

V2 18.9–0.391 (age-53) 1 L

V3 238 14.35 L

CL1 1.89 + 0.0456 (mass-77)−0.068 (LBM-59) + 0.0264 (height-177) 10.05 L/min

CL2 1.29–0.024 (age-53) 1 L/min

CL3 0.836 11.79 L/min

k10 CL1/V1 — min-1

k12 CL2/V1 — min-1

k21 CL2/V2 — min-1

k13 CL3/V1 — min-1

k31 CL3/V3 — min-1

k14 0.456 — min-1

k41 0.456 — min-1
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