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Abstract
Proteins perform their function or interact with partners by exchanging between conforma-

tional substates on a wide range of spatiotemporal scales. Structurally characterizing these

exchanges is challenging, both experimentally and computationally. Large, diffusional

motions are often on timescales that are difficult to access with molecular dynamics simula-

tions, especially for large proteins and their complexes. The low frequency modes of normal

mode analysis (NMA) report on molecular fluctuations associated with biological activity.

However, NMA is limited to a second order expansion about a minimum of the potential

energy function, which limits opportunities to observe diffusional motions. By contrast, kino-

geometric conformational sampling (KGS) permits large perturbations while maintaining the

exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we

extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotri-

meric stimulatory protein Gs exhibits structural features implicated in its activation pathway.

Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP

release and large conformational changes of its α-helical domain. Our method reveals a

coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an

activated conformation. These motions are moderated in the activated state. The motion

centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4.

We find that comparative NMA-based ensembles underestimate the amplitudes of the

motion. Additionally, the ensembles fall short in predicting the accepted direction of the full

activation pathway. Taken together, our findings suggest that nullspace sampling with

explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms

involved in GDP release and protein Gs activation, and further establish conformational

coupling between key structural elements of Gαs.
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Author Summary

Multi-cellular physiology is an emergent property, which depends critically on inter-cellu-
lar signaling pathways. Transmembrane G protein-coupled receptors (GPCRs) mediate a
large variety of physiological events throughout the body, such as vision or cardiovascular
regulation. It is thus no surprise that GPCRs are targeted by more than one third of all
FDA-approved drugs. Molecules such as hormones and neurotransmitters transmit mes-
sages to cells via GPCRs complexed to cytosolic heterotrimeric G proteins. G proteins,
upon activation, interact with other molecules to trigger a cellular response. Despite an
increasing amount of structural data, the precise conformational dynamics and activation
mechanism of G proteins remain poorly understood. The size of the multi-protein com-
plexes and the time scales at which conformational changes occur hinder adequate sam-
pling of the conformational landscape with molecular dynamics simulations. Here, we
extend and use an efficient, robotics-inspired conformational sampling procedure to
probe the conformational landscape of protein G during activation. Our procedure reveals
coupled, molecular mechanisms of the activation pathway, which are absent in a compara-
tive analysis with normal modes. Our exciting results can ultimately lead to modulation of
biological activity by drug design or fine-tuning of conformational heterogeneity.

Introduction
G protein-coupled receptors (GPCRs) mediate a large variety of physiological events through-
out the body by activating intracellular signal transduction pathways [1]. Signaling molecules,
such as hormones and neurotransmitters, can induce conformational changes in GPCRs,
which allow it to complex with intracellular protein partners such as heterotrimeric guanine
nucleotide-binding protein G. β2 Adrenergic Receptor (β2AR), a so-called class A receptor, ini-
tiates activation of stimulatory protein Gs mainly through interactions with the latter’s α sub-
unit (Gαs). Upon activation, Gs interacts with effector proteins in the cell which, ultimately,
leads to a cellular response. However, a precise characterization of the activation mechanism of
Gs has remained elusive [2].

Molecular dynamics (MD) simulations can structurally characterize the dynamics of bio-
molecules in great detail [3]. However, as increasingly sophisticated experimental techniques
yield ever bigger molecular systems and complexes, the computational demands to ensure ade-
quate sampling of the conformational landscape often require highly specialized hardware and
algorithms [4].

In parallel, time-independent or non-deterministic sampling-based algorithms together
with simplified macromolecular representations have also led to tremendous insights. Confor-
mational sampling with CONCOORD has provided seeds for subsequent MD simulations to
overcome large energy barriers in the characterization of recognition dynamics of ubiquitin [5,
6]. Rapid exploration of conformational space in internal coordinates with a traditional
mechanical force field via a biased Monte Carlo approach [7] accurately predicted agonist
binding modes for GPCRs [8]. Exhaustive sampling has predicted ensembles of low-energy
conformers for GPCRs associated with ligand binding and activation [9]. Rosetta-based sam-
pling and energy analysis provided a structural basis for rhodopsin-mediated GDP release
from Gi, a inhibitory protein highly related to Gs [10].

Vibrational modes of a biomolecule are well-approximated with a so-called Elastic Net-
work Model (ENM), in which non-bonded interactions are replaced with a harmonic pseudo-
potential [11]. Analysis of ENMs with NMA, which relies on a Hamiltonian in which the
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kinetic energy is also quadratic, yields the equations of motion around a minimum of the
potential energy of the system. While low-frequency modes are generally associated with bio-
logical activity, the second order approximation underlying NMA limits its ability to access
conformational substates and observe larger, diffusional motions. Nonetheless, NMAs are
enormously successful and have, for instance, proposed GPCR activation mechanisms [12].
Combined with short MD trajectories NMA also predicted a molecular mechanism for GDP
release from Gi [13].

Kinogeometric sampling (KGS) treats a biomolecule as a branched polymer, with rotatable
bonds as degrees of freedom (DoFs) and non-covalent (hydrogen) bonds as distance con-
straints [14–16]. Hydrogen bonds define nested, closed loops that require coordinated changes
of DoFs to avoid breaking the bonds. Kinogeometric sampling maps structural perturbations
onto a subspace of conformation space that accounts for the reduced flexibility of these closed
loops. This procedure intrinsically favors certain directions on the conformational landscape,
namely those that avoid, collectively, native hydrogen bond dissociation. Additionally, repre-
senting biomolecular systems with fewer DoFs enables better exploration of conformation
space and, ultimately, allows fitting sparse experimental data sets while reducing the risk of
overfitting.

Distance constraints from hydrogen bonds can completely rigidify substructures of bio-
molecules. For instance, an α-helix is often rigidified owing to its backbone hydrogen bonding
network. Kinogeometric and similar sampling-with-constraint techniques have relied on
combinatorial constraint counting to explicitly identify rigid substructures in the molecule
that result from the hydrogen bonds [17]. Perturbing a molecular conformation with con-
straints generally required breaking constraints and subsequently reclosing them [18], or iter-
atively refitting the perturbed conformation and the rigid substructures [19].

Here, we extend our kinogeometric computational techniques by abandoning explicit con-
straint counting to proteins. Our procedure efficiently samples conformational degrees of free-
dom in a lower-dimensional subspace in which instantaneous distance constraints are
preserved exactly [20]. The advantage of our method is that a single, exact mathematical analy-
sis both provides constraint satisfaction and infinitesimal, coordinated directions of motion for
the degrees of freedom of the protein. It naturally couples motions throughout the protein by
many interconnected and interdependent cycles, making few additional assumptions on inter-
actions. As a result, collective motions emerge which deform the protein along preferred
dimensions. We apply our algorithm to compute a broad conformational distribution of the
inactive and active states of the α subunit of free (i.e. not receptor-bound), apo (i.e. nucleotide-
free) Gαs. We demonstrate that our ensemble identifies detailed molecular mechanisms impli-
cated in domain opening and activation of protein Gs. We compare the findings to an ensem-
ble obtained with a state-of-the art torsional ENM. An ENM representation with torsional
degrees of freedom is conceptually similar to our approach, and is known to better represent
protein conformational changes than Cartesian ENMs [21, 22]. We selected an implementa-
tion, the iMC module of iMod, that is capable of generating large domain motions by sampling
along low-frequency normal modes [23].

Methods

A kinematic representation of proteins
The linear, branched structure of proteins naturally forms a kinematic linkage, i.e. a chain with
rigid groups of atoms, or rigid bodies, as links and rotatable bonds or degrees of freedom
(DoF), as revolute joints. The DoFs are the backbone torsion angles (ϕ and ψ) and the side-
chain torsion angles (χi). Bond lengths, bond angles and the peptide torsion angle ω are
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assumed fixed at their initial values in this study. Rigid bodies are the largest sets of atoms in a
protein without internal, rotational degrees of freedom (S1 Fig). We initially set each atom or
group of double-bonded atoms as a rigid body. The rigid bodies of atoms connected by a non-
rotatable covalent bond are merged. Hydrogen atoms are explicitly included in the model. A
vector q 2 S

n,q = (q1, . . ., qn)
T completely specifies a conformation for a molecule with n rota-

tional degrees-of-freedom.
We represent the kinematic linkage as a rooted, directed spanning tree, i.e. an acyclic graph

G = (V, E) that connects all vertices V such that each one, except the root, has only one incom-
ing, directed edge E. Vertices Vi, i = 1, . . .B represent rigid bodies, and edges Ej, j = 1, . . ., n rep-
resent DoFs. Hydrogen bonds are encoded as distance constraints, resulting in closed loops or
so-called kinematic cycles in G (Fig 1).

Identifying and perturbing cycles
A cycle-closing hydrogen bond connects two subtrees propagating from a common ancestor
rigid body Vc (Fig 1). To avoid hydrogen bond dissociation, a perturbation Δq should leave the
positions of the hydrogen bond donor atom h and acceptor atom A unchanged with respect to
a local coordinate frame placed at A and h.

We denote the DoFs subject to constraints as cycle DoFs. For each cycle i = 1. . .m, we can

define endpoint maps f : Sk 7!R
3;xL;R

h;A ¼ f L;Rh;AðqÞ, which map the ncycle DoFs of the molecular

conformation q to the hydrogen bond acceptor A and donor h positions xh, A, along the left (L)
or right (R) sub trees stemming from Vc. The six holonomic closure constraints

f LhðqÞ � fRhðqÞ ¼ 0;

f LAðqÞ � fRAðqÞ ¼ 0
ð1Þ

Fig 1. A kinematic representation of proteins. a) A protein is represented by an acyclic graphG = (V, E)
encoding a kinematic chain. A hydrogen bond h–A defines a distance constraint, which results in a closed
loop. A perturbation to the position of h by DoFs along the subtree on the left side needs to be matched by a
perturbation to h by DoFs on the right side. Similarly for the position of A.

doi:10.1371/journal.pcbi.1004361.g001
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define a constraint manifoldM, which is in general (ncycle − 5m)-dimensional. Motions onM
result in coordinated changes to DoFs that satisfy the distance constraints, and thus maintain
hydrogen bonds. However, such motions are difficult to calculate since the constraint manifold
is complex. We approximate the manifold locally by its tangent space TqM at q. Differentiat-
ing Eq (1) yields

d
dt

ðf LhðqÞ � fRhðqÞÞ ¼
df Lh
dq

� dfRh
dq

� �
_q ¼ 0;

d
dt

ðf LAðqÞ � fRAðqÞÞ ¼
df LA
dq

� dfRA
dq

� �
_q ¼ 0;

ð2Þ

which we can rewrite as J _q ¼ 0. The 6m × ncycle Jacobian matrix, J, gives the instantaneous
relationship between the cycle degrees of freedom and the end-point positions and orienta-
tions. Entries of the Jacobian matrix are efficiently computed as

Jij ¼ uj � ðr� rOj
Þ;

where u is a unit vector along DoF j, r denotes the position of the donor or acceptor atom of
the cycle-closing bond, and rOj

denotes the position of the tail atom of DoF j.
Perturbing a molecular conformation with any vector selected from a sufficiently small

neighborhood of the origin in the null-space of J, i.e. Ker(J) = {q 2 S
n:Jq = 0} will maintain

hydrogen-bond distances. The right-singular vectors of the singular value decomposition J = U
S VT form a basis, N, of the null-space of the Jacobian. Note thatN is orthonormal, and that
NNT is the orthogonal projection onto Ker(J). A null-space perturbation projects a trial-vector
Δq onto the null-space, ΔqTqM =NNTΔq.

Previous sampling-with-constraint procedures relied on an elegant combinatorial pebble
game algorithm [17] to identify exactly all rigid and flexible substructures in the molecule [15,
24]. The pebble game algorithm, originally developed for 2D network glasses and later vali-
dated for 3D molecular graphs by the molecular conjecture [25], explicitly counts constraints
and degrees of freedom. Our projection method does not require constraint counting, recog-
nizing that the subset of rigidified degrees of freedom Vrigid span the nullspace of the projection
matrix Ker(NNT) in our method:

Vrigid ¼ fq : NNTq ¼ 0g

Note that Ker(NNT) never requires explicit computation in our method. Mapping a trial move
Δq onto Ker(J) byNNTΔq naturally projects out the rigidified DoFs.

In addition to cycle DoFs, proteins generally have free DoFs that are not part of any closed
loop and, therefore, not subject to constraints. Note that the designation free or cycle DoF is
independent of the choice of the root R.

Conformational energy
Bond lengths and angles are assumed fixed in our kinematic representation, representing
bonded energy terms. Non-bonded van der Waals interactions are represented by a hard-
sphere, repulsive potential that is scaled for each atom type. We use an efficient grid-indexing
method for detecting clashes [26]. While no explicit dihedral energy term is present, disallowed
dihedral combinations are avoided by clashes.
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Validation
To validate our algorithm, we selected the three proteins with the largest RMSD between apo
and holo conformations from a data set curated for predicting apo conformations from holo
conformations [27]. Hydrogen bonds shared between apo and holo conformations were
included as constraints. The domains were determined as follows: L-Leucine binding protein
(leub) domain 1 residues 1–119 and 251–327, domain 2 residues 120–250 and 328–345; Osmo
protection protein (osmo) domain 1 residues 6–109 and 213–275, domain 2 110–212. Alginate
binding protein (algi) domain 1 residues 1–133 and 310–400, domain 2 residues 134–309 and
401–490. For each holo conformation, 20,000 random samples were generated with explora-
tion radius of 8Å for leub, 6Å for osmo and 10Å for algi, see the section KGS sampling below
for details. To analyze the results, the centers of mass of the holo domains were first aligned
with the z-axis of the laboratory coordinate system. Domain 1 in each sample in the conforma-
tional ensemble was aligned with domain 1 of the holo conformation before the zenith and azi-
muth angle of domain 2 of the sample were calculated [28].

We used the ligand-free (PDB 2ZIJ) and bound (PDB 1BB5) crystal structures of human
lysozyme as starting conformations. We made the L96A mutation to the bound structure to
match the wild-type sequence of the ligand-free conformation [29]. Hydrogen bonds shared
between the starting conformations were included as constraints. We generated 20,000 random
samples with an exploration radius of 4Å. To analyze the results, ensemble conformations were
aligned to the backbone heavy atoms of the bound structure. The breathing angle θ was com-
puted from the centers of mass of the CA atoms from three protein regions [29]. The RMSD of
the CA atoms of secondary structure elements from the bound structure was computed for
each ensemble [29]. The angle θ and RMSD were binned in 0.5 degrees and 0.1Å to calculate
‘free-energy’ landscapes of these reaction coordinates.

Hydrogen bonds
KGS takes as input a constraint file, which allows users to identify which distance constraints
to maintain. In this study, hydrogen bonds belonging to our modeled Linkers I and II were
removed. In both systems, the intersection of the sets of hydrogen bonds for active and inactive
states was retained. Eventually, KGS sampling of both states was performed with 130 hydrogen
bonds in total.

System preparation
A structural representative for activated apo Gαs was extracted from the crystal structure of
β2AR:Gs complex with PDB id 3sn6 [30] and inactive apo Gαs was obtained from 1azt [31].
The crystal structure of the inactive state of Gαs had three residue gaps: 1 − 34, 70 − 86, 391
− 402. Residues 70 − 86 (Linker I, Fig 2) were added by Xpleo [16] and subsequently refined in
Coot [32]. Finally, the structure was truncated to include residues 35 to 391 (357 residues). The
crystal structure of active Gαs had four residue gaps: 1 − 8, 60 − 87, 203 − 204, 256 − 262. Resi-
dues 60 − 87 were built by Xpleo, 203 − 204 were added in Coot, 254 − 265 were copied from
the inactive structure of Gαs after alignment, and the sequence was also truncated to include
residues from 35 to 391.

The α subunit of Gs consists of a Ras-like domain and an α-helical (AH) domain (Fig 2).
The Ras-domain is about 260 residues, which is connected to the AH-domain (about 112 resi-
dues) by two linkers. The long α1–αA linker I, spans residues 65 to 88, and a shorter αF–β2
linker II spans residues 200 to 206 (Fig 2).

These structures were then parametrized by the CHARMM27 all-atom force field [33]
including the CMAP correction [34] and solvated in an octahedral unit cell with 19,737 TIP3
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water molecules and electrostatically neutralized by 22 Na and 12 Cl ions (concentration of
0.05 M and no ions within 6Å of any protein atom) for a total of 65,000 atoms. The resulting
system was minimized with Gromacs 4.6.3 [35, 36] by a series of steepest descent and conju-
gate gradient algorithms by gradually reducing constraints on the protein atoms. The mini-
mized structures of active and inactive apo Gαs served as the input models for the sampling
algorithms.

Fig 2. Architecture of Gαs. a) The Gαs subunit consists of a Ras-domain and an α-helical domain. Linker I
and II are shown in yellow, and the binding site of the nucleotide in between the two domains is indicated by a
blue circle. The location of donor and acceptor atoms of the hydrogen bonding network used for KGS are
indicated with white (donors) and red (acceptor) spheres. b) The activated state of Gs (pale cyan)
superimposed onto the inactive state. Upon activation, the α-helical domain undergoes a large rotational
motion. Helix α5 translates and rotates upward to interact with the cytoplasmic core of the receptor.

doi:10.1371/journal.pcbi.1004361.g002
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KGS sampling
The Gs α subunit was represented by 1769 rigid bodies and 1768 directed edges corresponding
to the dihedral DoFs ϕ, ψ, and χi. While any rigid body in the molecule can serve as the root R,
we set R as the first rigid body at the N-terminus of the molecule. There were 767 cycle DoFs in
the system. To ensure rapid and broad diffusion of the sampled ensemble, the sampling proto-
col inspired by Rapidly-exploring Random Trees of previous work was used [14, 15, 37], which
we briefly summarize. The sampling pool was initialized with the minimized conformations of
active or inactive apo Gαs qinit. We generated a pool of 20,000 samples in an exploration sphere
of fixed radius (20Å RMSD) from qinit, which was subdivided into shells Si, i 2 {1, . . ., 100} of
width 0.2Å, as follows. At each sampling step, a shell Sk was selected at random from the subset
of shells containing at least one conformation. Next, an entirely random conformation qrandom
was generated. The conformation that was RMSD-closest to qrandom in Sk was selected as qseed,
and qrandom was discarded. A random perturbation Δq to qseed was proposed, that was then
projected onto the constraint manifold and applied to qseed to obtain a new conformation qnew,
i.e. qnew = qseed+NN

TΔq. If qnew did not contain clashes, it was added to the pool in the shell
corresponding to its RMSD from qinit, else it was discarded. The exploration radius and shell
width are adjustable parameters. The combination of values selected for this study were found
to balance broad exploration and uniform coverage. The collision factor that scales VdW radii
during collision detection was set to 0.75. The maximum rotation of a DoF was scaled to 0.29
degrees, which was found to reflect a good balance between fast divergence from initial struc-
ture and a high acceptance ratio. To test if the sampling trajectories had converged, we addi-
tionally generated a conformational distribution of 50,000 samples around the inactive and
active states. All analyses are based on 20,000 samples, unless otherwise stated.

iMC sampling
We carried out ENM normal modes vibrational analysis (NMA) in internal coordinates (IC)
with the software package iMOD [23]. After first obtaining the IC normal modes for each
structure with the iMODE tool, we generated a conformational ensemble of 20,000 samples
with the default NMAMonte Carlo sampling procedure enabled by the iMC module [23]. We
obtained the first 20 normal modes by using all default settings, except enabling χ dihedral
angles as DoFs to better agree with the KGS DoFs. By default iMC selects from the 5 lowest fre-
quency modes for a Monte Carlo step. S2 Fig. displays all the modes. We used coarse-grained
all heavy-atom representation and a sigmoid function pairwise interaction potential with
default parameterization. We scaled the parameter a (’linear factor to scale motion’) ten-fold to
better match the amplitude of domain motions suggested by experimental measurements. Fur-
ther increasing the scaling did not lead to better agreement.

To examine if a sigmoid function potential possibly over-constrained the system, we also
sampled using a coarse-grained, CA-only representation with an essential dynamics (ED)
potential function. A scale factor of a = 10 agreed with experimental data, but led to distortions
in the models. (S3 Fig).

Thus, to enable a direct, one-to-one comparison between KGS and ENM, we selected an all-
heavy atom, sigmoid function representation for iMC with amplitudes scaled by a = 10, not-
withstanding its slightly overconstrained model.

CONCOORD sampling
We additionally generated conformational ensembles with the distance-restraint based sam-
pling procedure CONCOORD [38]. We used the default, heavy-atom CONCOORD settings
for structure and distance bounds generation with OPLS-AA parameters. We used near-default
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parameters for sampling, using the following command line: disco -on disco.pdb -n
20000 -i 2500 -viol 1. -bump.

Implementation details and availability
The software is implemented in C++. Calculations were performed on a single, 2.6GHz Intel
processor core. Average time to obtain an accepted conformation was 8.9s, at an average accep-
tance ratio of 30%. Depending on the size of the molecule, computations take from several
hours to a few days. No attempts were yet made to optimize the code. The performance limit-
ing step is currently the repeated (O(n2)) calculation of RMSD within shells to ensure broad
sampling. The shell width balances performance with broad diffusion. The RMSD calculation
would be trivially replaced by more modern algorithms that are two orders of magnitude faster
[39]. Our SVD calculation is optionally GPU-accelerated. The software and sampling trajecto-
ries are available from http://smb.slac.stanford.edu/~vdbedem.

Results
We first validated our approach of abandoning explicit constraint counting with protein struc-
tures determined in different conformations. We then used the KGS, iMC, and CONCOORD
ensembles to compare the conformational variability of the α-subunit of free, apo G-protein
(Gαs). We examined the ensembles to identify features of the motion associated with the
release of GDP and activation of Gαs.

Validation
To validate our algorithm, we computed conformational distributions for three two-domain
protein crystal structures that were determined in both holo and apo conformations. For each
protein, the domains open, re-orient and conformationally adjust upon adopting the apo con-
formation. We observed conformational distributions directed along holo-apo pathways. Start-
ing from the holo conformation, we found that conformational ensembles on the constraint
manifold defined by interconnected cycles were highly biased toward the apo conformation
(Fig 3a). Polar plots of the distribution of zenith (θ) and azimuth (ϕ) angles of relative positions
of the centers of mass of the two domains reveal domain opening and collective, reorientating
motions toward the apo conformation. No conformational pathways connecting the holo sub-
state to the apo substate were observed, but it is unknown if ligand-free holo-apo conforma-
tional interconversion occurs for these proteins in solution. Additionally, sampling limitations
or steric barriers between the states can prevent end-to-end pathways. Reaching sparsely popu-
lated, ‘excited’ substates often demand additional (experimental) restraints on conformational
sampling techniques [14, 27, 29].

We furthermore tested whether conformational distributions owing to collective motions
on the constraint manifold can accord with free energy landscapes observed in solution. Apo
human lysozyme displays large breathing motions, characterized by the angle θ between the α
and β domains. The free-energy landscape for the reaction coordinates θ and RMSD to the
holo crystal structure of apo and holo (triNAG-bound) human lysozyme was recently charac-
terized from replica-averaged, RDC-restrained molecular dynamics simulations [29]. While
the free energy of apo lysozyme has a single minimum, the holo state revealed a second,
sparsely populated ‘unlocked’ state centered on (49°,1.5Å) in addition to the main ‘locked’ state
around (58°,0.9Å) (Fig 3b). The holo protein is capable of sampling a wider range of θ angles
than the apo structure, presumably to facilitate product release. Our conformational distribu-
tions starting from the (ligand-free) holo and apo structures revealed surprisingly similar con-
formational distributions compared to those from RDC-restrained simulations (Fig 3b, left
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panel). The holo distribution samples more broadly, and more towards closed conformations
(smaller θ angles) than the apo distribution, in agreement with the free-energy landscape
observed from RDC restrained simulations. Additionally, weak local maxima were observed in
the holo distribution, corresponding to the ‘locked’ and ‘unlocked’ state (Fig 3b, right panel).
The unlocked state corresponds to a sparsely populated, intermediate state, which was vali-
dated experimentally. Thus, collective motions on the constraint manifold enable quick diffu-
sion away from the initial state along biologically-relevant directions that map the
conformational landscape of the protein.

Heterotrimeric G proteins
β2AR can form a complex with heterotrimeric stimulatory protein Gαsβγ[40]. While the pre-
cise mechanism of protein Gs-activation remains poorly understood, interaction with the acti-
vated receptor is incidental with the dissociation of GDP and the βγ subunits [41]. Gαs, which
binds GTP after the release of GDP, subsequently interacts with many effector proteins in the
cell. It is hypothesized that its profound conformational flexibility plays a crucial role in signal
modulation [42].

The activated (nucleotide-free) state of Gαs involves a large motion of the AH-domain with
respect to the stable Ras-domain [43]. Additionally, the α5-helix of Gαs translates and rotates
upward to interact with the cytoplasmic core of the receptor. The domain opening purportedly
facilitates the release of GDP. The β6–α5 loop, which binds the purine ring of GDP, and the β6
strand also change conformation (Fig 2). The large distance separating the crystal structures of
the active and inactive states suggests that Gαs can access many different conformations [2, 42,
44]. However, structurally characterizing and determining the sequence of events in the

Fig 3. Sampling trajectories on the constraint manifold encode collective motions. a) KGS
conformational distributions starting from three ligand-free holo crystal structures (leub, algi, osmo) are
biased toward the apo structures. The polar plots show the distribution of the angles θ (along the radius), and
ϕ (along the circumference) of the center of mass of domain two with respect to domain one (see Methods).
The domains open, reorient, and deform upon adopting the apo conformation (red circle), affecting the
relative position of the centers of mass of the domains. The orientation of domain two starts out at the origin.
The colors of samples are red-shifted toward higher sampling number. The conformations diffuse toward the
apo state as sampling progresses. b) The KGS conformational distribution along the reaction coordinates θ
and RMSD (in Å) to the holo crystal structure of apo and holo human lysozyme. The holo distribution samples
more broadly, and more towards smaller θ angles than the apo distribution, in agreement with the free-energy
landscape observed from RDC restrained simulations (left panel). The middle and right panel show the
sampling distribution for apo and holo in more detail. (Inset: free-energy landscapes from RDC restrained MD
simulations. Images adapted from [29]). Weak local maxima approximately corresponding to the ‘unlocked’
and ‘locked’ state can be observed in the distribution starting from the holo structure.

doi:10.1371/journal.pcbi.1004361.g003
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activation pathway by experimental means has proved challenging. Simulations suggest a cou-
pled motion between the AH-domain and helix α5[13, 45]. Additionally, the opening angle of
the AH-domain upon activation is the subject of intense debate. Several lines of evidence sug-
gest that crystal lattice formation may have played a role in selecting an extreme opening angle
for the AH-domain [10, 44]. Distance distributions obtained in solution indicate that the con-
formational variability of the AH-domain of Gi protein in complex with rhodopsin is more
limited than that observed in the crystal structure of β2AR:Gs [10].

KGS samples the activation pathway of Gαs
We first examined the conformational variability of the AH-domain between the active and
inactive states with the methods KGS, iMC, and CONCOORD. The RMS deviations for KGS
samples starting from the inactive state of the AH-domain of Gαs was 13.5Å, while for the
active state it was 5.8Å (Fig 4a). For iMC, the observed values were 5.2Å and 11.1Å, and for
CONCOORD 9.7Å and 15.8Å (Fig 4b). In addition, all three methods identify large motions of
helix α5 concurrent with the domain motions. The maximum opening angle Θmax between the
two domains was 27.2 degrees (Fig 5 and S4 Fig, 37.9 degrees for 50,000 samples) for the inac-
tive state KGS ensemble, compared to 91 degrees for the activated crystal structure (Fig 2).
iMC reported a maximum opening angle for the inactive AH-domain of around 9.9 degrees
(Fig 5, left panel). The CONCOORD conformational ensemble reported a range of 15 − 20
degrees of an opening angle around the active state, and 18 degrees around the inactive state
(Fig 5, right panel).

Fig 4. Comparison of the KGS, iMC and CONCOORD active and inactive Gs ensembles. a) Conformational ensembles of free, apo Gαs protein
obtained from KGS sampling starting from the active (orange) and inactive (gray) states. Spread of sampling over 20,000 samples is shown for the Gαs AH-
domain and the α5-helix of the Gαs Ras-domain. b) The same as a), but for iMC and CONCOORD sampling. For visualization, we superimposed the Gαs
Ras-domains within the ensembles.

doi:10.1371/journal.pcbi.1004361.g004
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Both iMC and CONCOORD sample with nearly uniformly fixed radius around the active
starting conformation, which is rationalized by their reliance on an equilibrium conformation
(Fig 5). In contrast, KGS, by design of its RRT-based sampling avoiding steric collisions, mim-
ics a trajectory diffusing out of the starting conformation. KGS sampling of the activated state
exhibited a slowing rate of change, while the opening angle of the inactive state still appeared
to increase slightly at 20,000 samples, leveling of at 50,000 samples (S4 Fig). The lack of full
convergence did not appreciably change the conformational distributions, but can moderately
limit interpreting the ensemble as a collection of exchanging conformational substates. Inter-
estingly, while KGS sampling of the active conformation initially exhibits greater conforma-
tional diversity away from the inactive state, later samples are directed more towards the
inactive state.

The KGS ensemble for free, apo Gαs compares very well with the RMSD and opening angle
reported from experimental observations in solution. Double Electron-Electron Resonance
(DEER) spectroscopy measurements suggest that the average displacement of the apo AH-
domain of Gi protein complexed with rhodopsin is 15Å [10]. From the nine models of recep-
tor-bound Gi conformations reporting on the DEER observations, we measured an equivalent
average opening angle Θ of 25.5 degrees (Θmax = 48.8 degrees) after alignment to the Gαs Ras-
domain.

The KGS ensemble suggests that ligand-free Gαs is structurally and evolutionary designed
to access a broad range of opening angles. However, a set of discrete samples connecting the
inactive with the active state of Gαs (Fig 4a and 4b) was not observed. The sample acceptance
ratio in KGS, i.e. samples not rejected owing to collisions between atoms, also differed substan-
tially between the inactive and active states (35% vs 15%). These findings could signify a steep
conformational barrier between the inactive and active crystal structures between 40 to 80
degrees of domain opening angle. For instance, in the activated state of β2AR:Gαs, the α1-helix
of the Ras-domain is partially melted to accommodate the large motion.

Fig 5. Diffusion of the Gαs AH-domain opening angle in the ensemble. The change in opening angle between the AH-domain and the Ras-domain is
shown as sampling progresses for KGS, iMC (left panel), and CONCOORD (right panel). For KGS, the inactive AH-domain opens to nearly 30 degrees (dark-
red), while the active AH-domain ranges from 84.8 to 96.5 degrees (red). The inactive opening angle of iMC reaches 9.9 degrees, and ranges from 79.6 to
103.7 degrees for the active AH-domain. The opening angle of activated Gαs in the β2AR:Gαs crystal structure is indicated in the inset. The inactive opening
angle of CONCOORD reaches around 18 degrees, and ranges from 74.6 to 111.4 degrees for the active AH-domain. For the active state, iMC and
CONCOORD sample uniformly around the starting angle. The angle of the KGS samples slowly decreases towards the inactive state.

doi:10.1371/journal.pcbi.1004361.g005
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Directionality of displacement
In the remainder, we focus on a direct comparison of the directional conformational variability
of KGS and iMC since these methods are conceptually most alike. We calculated a distribution
of angles between the mean displacements of Cα atoms of the Gα AH-domain for the two
ensembles (Fig 6a and S5 Fig). The mean displacement is the vector connecting the center of
mass of all AH-domain Cα atoms of the initial structure to the averaged center of mass of the
ensemble, after alignment to the stable part of the Ras-domain. The angles of mean displace-
ment for the AH-domain are visualized in Fig 6. The angles of mean displacements did not
align but were significantly shifted for both the active (57.6 degrees, Fig 6a yellow bar) and
inactive state (70.2 degrees, Fig 6a gray bar). The long tails for the angle distributions, in partic-
ular for the inactive state, identify a significant number of residues for which the angle differ by
more than 90 degrees. Thus, large-amplitude motions of Gαs are described differently by the
two procedures.

The conformational distributions from KGS starting from the inactive form of Gαs aligns
with the proposed activation mechanism of the β2AR:Gαs after GDP release. The direction of
motion for the KGS inactive ensemble corresponds to a domain opening motion in the viewing
plane, with a small component orthogonal to the viewing plane (Fig 6b). The iMC motion is
nearly orthogonal to the viewing plane, resulting in a transverse ‘rocking’motion, with a mod-
erate component downward towards a domain opening motion. Floquet and coworkers
observed a similar, pivoting motion for the AH domain around the αA helix, which is impli-
cated in GDP release, from Cartesian NMA with the CHARMM27 force field for protein Gi
[13, 46].

The size of the vectors reflects the difference in RMSD amplitude of the ensembles. For the
active state both methods have a significant component orthogonal to the viewing plane. For
neither method the main displacement in the active state appears to be along the activation
pathway, signifying that additional mechanisms, such as GTP hydrolysis, likely play a key role
in Gαs. The direction of mean displacement for iMC is nearly identical for the inactive and
active ensembles. A possible explanation is that local structural changes in the AH-domain
between the active and inactive state are modest, leaving interactions defined by the ENM
largely unchanged between the states.

Receptor-induced conformational changes in helix α5 are believed to contribute to GDP
release [10, 47]. Concomitant with activation, helix α5 undergoes a rotation and translation
towards β6. The magnitude and direction of these fluctuations in the KGS ensemble are strik-
ing, coinciding with those observed in MD simulations [45]. Fig 6c shows the view looking
towards the cytoplasm from the receptor core. The top panel shows the α5 helix in its active
conformation, and the bottom panel in its inactive conformation. The distribution of magni-
tudes and directions of the KGS displacement vectors along the helix in the inactive state (bot-
tom panel) correspond remarkably well to a translation and rotation along a path to reach the
active state (top panel). RMS amplitudes of 8.3Å and 7.9 Å were observed for α5-helix in the
KGS ensemble of the active and inactive states. By contrast, the iMC displacement vectors are
slightly smaller in magnitude in the inactive state (indicated by RMS spread of 1.4Å and 3.6 Å)
and have a component nearly opposite to the activation pathway. Note that while in general
normal mode vectors indicate undirected displacement, our displacement vectors were calcu-
lated directly from the ensembles.

KGS displacements highlight collective motion
Next, we analyzed displacements at the residue level for both domains of Gαs. Fig 7 (S5 Fig)
shows the normalized magnitude of the mean CA atom displacement vectors of the ensembles.
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Fig 6. Direction of displacement of the AH-domain. a) Relative frequency of the angles between KGS and iMC average displacements for each Cα of the
AH-domain in the inactive (grey) and active states (orange/yellow). The average AH-domain displacement is shifted by 50 to 60 degrees for the states
between the two methods. b)Differences in the directions of the mean displacement of the center of geometry of the Gα AH-domain between the KGS (red)
and iMC (blue) ensembles. c) Directionality of the CA displacements of the α5-helix in the KGS (red) and iMC (blue) ensembles in the active state (top) and
inactive state (bottom). The motion in the KGS ensemble is directed from the inactive conformation of α5 to the active conformation. d) Superimposed Ras-
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Each displacement vector was calculated as the average RMSD vector of all conformations after
alignment to the stable part of the Ras-domain (as above), and normalized within the angle val-
ues of its own ensemble.

Mean displacements for the KGS and iMC sampled Gαs ensemble exhibit a clear pattern;
they are larger for the AH-domain and vanishingly small for the Ras-domain in both the active
and inactive state. The coordinated perturbations of DoFs by KGS resulted in intra-domain
displacements shared by groups of contiguous residues. Three regions of the AH-domain sepa-
rately display collective features indicated by elevated mean displacements, corresponding to
the C-terminus of αA and αB, αC and αD, and αE and αF. A remarkably similar pattern is
observed for the iMC ensemble. Helices A − D are located towards the outer radius of the rota-
tion of the AH-domain, explaining the elevated levels of mean displacement in both active and
inactive state (Fig 2b). Surprisingly, their relative orientation remains well-preserved despite a
sparse inter-secondary structure hydrogen-bond network in the AH-domain. The pattern of
displacements is similar for the active and inactive state.

Analysis at the residue level reveals key details suggesting collective motion. In the Ras-
domain, helix α5 shows a large displacement, exceeding the mean displacement values of the
Ras-domain (Fig 7, right-most shaded bands). The growth in amplitude towards the C-termi-
nus is characteristic for the rotational motion we observed in the previous section. Interest-
ingly, the single, unique feature standing out in an otherwise flat Ras-domain is elevated
displacement for helix α4 and loop αG–α4 (residues 320–340) in both active and inactive state
(Fig 7). Fig 6d shows the motion of α4 and the adjacent loop. Helices αG and α4 are implicated
in GDP release. Similar motions were observed using Cartesian NMA with the CHARMM27
force field [13] in protein Gi. Strikingly, both the α5 and motions of α4 and the adjacent loop

domains from the KGS ensembles for the active state (yellow) and inactive (grey) states. The amplitude of the Ras-domain ensemble is limited, except for
marked fluctuations of helices α4 and α5.

doi:10.1371/journal.pcbi.1004361.g006

Fig 7. The normalizedmagnitude of the mean Cα displacement vectors of the KGS and iMC ensembles. The top panel shows the normalized
displacements for the active state KGS and iMC ensembles. The bottom panel for the inactive state. The AH-domain is indicated by orange (active) or grey
(inactive) shading. The α5 helix is shaded in the same color on the far right. The location of the N-terminal part of α4 helix in the Ras-domain is indicated by a
pronounced “bump” in between residues 320 and 340 for the KGS ensemble (red).

doi:10.1371/journal.pcbi.1004361.g007
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are absent in the iMC Gs active ensemble, but both are present in KGS. This strongly suggests
these motions are conformationally coupled, but possibly shifted to higher modes in iMC.

The mean displacements up to residue number 80 suggest anti-correlated motions in
iMC and KGS in the active state (Fig 7, top). The mean displacement reported by iMC is ele-
vated owing to restraints between the BC loop in the AH domain and (truncated) helix α1.
This results in collective motions of the β1-strand with the highly mobile AH domain. The
amplitude of the iMC motions is likely overestimated, as it leads to significant distortions of
the β-sheet in the Ras domain (S6 Fig). Similarly, the proximity of Linker I to helix F leads
to collective motions in iMC. The absence of explicit constraints, i.e, hydrogen bonds in
Linker I suppresses collective motions in KGS. While the precise nature of Linker I motions
remains unclear, the absence of well-defined electron density in the crystal suggests this loop
is highly mobile.

Conformational coupling related to release of GDP
To examine the origin of collective motion, we analyzed the distribution of the DoFs in the
conformational ensembles. We observed key differences between the two methods in the spa-
tial distribution of flexibility throughout the protein. The mean RMSF for free and cycle DoFs
are summarized in Table 1.

Cycle DoFs are uniformly distributed throughout the protein. In KGS, 43.4% of total DoFs
are cycle DoFs and of those 41% are rigidified, indicated by vanishing RMSF for cycle DoFs
(Fig 8). These DoFs are contained in the null space of the projection matrix NNT. Rigidified
cycle DoFs correspond largely to secondary structure elements, where DoFs are overcon-
strained by short or overlapping cycles. Free DoFs have larger RMSF than cycle DoFs
(Table 1). If rigidified DoFs are excluded from the RMSF, a modest reduction of 20.5% in flexi-
bility from free to cycle DoFs is observed.

By contrast, while iMC does not define free or cycle DoFs, we observed a reversed flexibility
trend compared to the corresponding DoFs in KGS–the cycle DoFs are 1.8 times more flexible
than free DoFs for iMC. One possible contributing factor to this somewhat paradoxical find is
that normal modes are obtained from eigenvectors of the Hessian matrix defined by the poten-
tial function. Free DoFs, like those in surface side-chains, are, on average, subject to fewer
restraints, and thus less likely to contribute to major modes. The magnitude of a trial move is
scaled by the eigenvalues of the modes, and more constrained areas may thus dominate the size
of the move. We also observed that large parts of the Ras-domain do not show elevated RMSF
with iMC (Fig 8), signifying that many vibrational frequencies rather than a single mode domi-
nate structural changes for this domain.

iMC locates elevated flexibility mainly in loop residues (Fig 8). Linkers I and II stand out, as
well as the β6–α5 loop. Note that the backbone DoFs for LI and LII are cycle DoFs owing to
hydrogen bonds between, for instance, β1 and β2. By contrast, elevated variability in KGS is
concentrated less in loop areas, and distributed more uniformly throughout the protein.

Table 1. Mean KGS and iMC RMSF (measured in degrees) for free and cycle DoFs in the active and
inactive state.

Inactive Active

free cycle free cycle

KGS 1.104 0.514 (0.860) 0.932 0.445 (0.737)

iMC 0.83 1.43 0.90 1.60

doi:10.1371/journal.pcbi.1004361.t001

Nullspace Sampling Reveals Molecular Mechanisms of Protein Gαs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004361 July 28, 2015 16 / 24



Fig 8. Heatmaps of conformational variability. a) RMS fluctuations of DoFs for KGS (red) and iMC (blue) for 20,000 samples starting from the activated
conformation (top two panels, orange) and the inactive conformation (bottom two panels, grey). The DoFs corresponding to the AH-domain and helix α5 are
colored in darker shades. Free DoFs are circles, cycle DoFs are squares. The horizontal lines correspond to the mean RMSF value of the DoFs plus 2σ. b,c)
Heatmaps representing the contribution of DoFs to conformational variability for KGS (b) and iMC (c). Coupling in the GDP binding pocket (red circle, α5, α1,
and the adjacent β1–α1 loop (P-loop)) extends to include helix αF (bottom of the red circle), Linker II (SW I), and the N-terminus of αE (right side of the blue
oval).

doi:10.1371/journal.pcbi.1004361.g008
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The magnitude of helix α5 RMSD spread is nearly identical in the two states. However,
small, motional differences in specific helical sub-regions can signify different functionalities.
Significant flexibility towards the C-terminal part of the helix would enhance α5-helix confor-
mational selectivity for inactive-like conformers, while a more active-like conformation would
promote specificity through small-scale deformations near the N-terminal part of the helix.
For the inactive state we observe elevated variability in the KGS ensemble from the C-terminus
of α4, through β6, up to the N-terminus of α5 (Fig 8a, dashed rectangle I). The C-terminus of
helix α5 and the α4–β6 loop interact with the receptor. A conserved TCAV motif in the β6–α5
loop binds the GDP guanine ring. Helix α5 and strand β6 transmit receptor-induced confor-
mational changes to facilitate GDP release [40]. KGS elevated variability is present in the inac-
tive state, but moderated in the activated state and shifted away from the β6 strand. The
magnitude of variability is reduced from inactive to active state for both sampling techniques,
suggesting that smaller changes dominate this area in the active state. This interpretation is
supported by iMC motions, where elevated variability shifts from β6 to the N-terminus of α5
upon activation.

A heat map of conformational changes reveals a hotspot of highly elevated flexibility near
the GDP binding pocket in the inactive state (Fig 8b, bottom left circled). Similarities with a
heat map obtained from peptide amide hydrogen-deuterium exchange mass spectrometry
(DXMS) experiments, which report on exchange rates of amide hydrogens, are striking [48].
While the increased exchange rates established general sensitivity to GDP release, our nucleo-
tide-free analysis suggests that increase in dynamics or disordering of this segment is, at least
partly, attributable to motion of helix α5 and the AH domain.

We also observed conformational coupling of the N-terminus of helix α5 to α1, and the adja-
cent β1–α1 loop (P-loop), which binds the nucleotide phosphate (Fig 8a, dashed rectangle II
and circled in inactive state). How the elevated flexibility is further coupled is illustrated in Fig
8b, left panels. Coupling in the GDP binding pocket extends to include helix α1, helix αF,
Linker II (SW I), and the N-terminus of αE. Functional, conformational coupling is revealed to
a lesser extent by iMC (Fig 7b, right panels). In particular, the close coupling around the GDP
binding pocket appears absent, and elevated flexibility is mostly located in loop residues. For
iMC, variability of αE is shifted towards the C-terminal end of helix αD.

Discussion
Proteins interconvert between functional, often sparsely populated conformational substates at
a multitude of spatiotemporal scales to perform their function and interact with other biomole-
cules [49–51]. Understanding how these substates probe the conformational landscape and
how they are coupled through collective motions can provide insights into molecular mecha-
nisms and protein function [52, 53].

Our conformational sampling algorithm maps small random perturbations, highly sugges-
tive of equilibrium fluctuations, onto a constraint manifold that is defined by the hydrogen
bonding network. Our new method does not require explicitly calculating rigid substructures
of the protein. Instead, DoFs are subject to coordinated motion on the constraint manifold,
and DoFs in isostatic or overconstrained substructures are intrinsically rigidified. Cycle DoFs
contribute significantly to the distribution of the resulting conformational ensemble. Cycle
DoFs make up nearly half of the DoFs, are distributed throughout the molecule, and their
RMSF is only moderately reduced compared to free DoFs.

The coordinated motion and distribution of cycle DoFs can potentially provide new informa-
tion about mechanisms of conformational coupling. Compared to iMC, we observed motions
with larger amplitudes, but both methods were in agreement with accepted mechanisms. We
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were better able to distinguish molecular mechanisms, and locate the origin of conformational
flexibility. Important rotational DoFs stand out, and are, surprisingly, located not just in loops
to accommodate inter domain motion. Results for Linker I and (activated) loop residues 254–
265 should be interpreted with care, as experimental evidence to support their initial conforma-
tion is limited. Conformational coupling in the iMC ensemble was less pronounced, and some-
times more difficult to distinguish owing to higher modes or reduced motional amplitudes. The
limited range of motion of the iMC sampling procedure likely results from the assumption of
harmonic vibrations around equilibrium positions in the ENM. Large deviations break the
underlying assumptions and would perturb the topology of the initial conformation–drawbacks
that KGS intrinsically avoids. In contrast to the KGS distributions, the RMSD for the inactive
state are reduced compared to the active state. The interface between the AH-domain and Ras-
domain is subject to restraints imposed by the ENM, which limits the amplitude of the motion
along the activation pathway from the inactive state. Nonetheless, while the active state sampled
ensemble exhibits a larger RMSD than the inactive state, an overall reduced amplitude with
respect to KGS was observed. Interdomain ENM restraints in the direction of the activation
pathway alone do not explain the reduced RMSD.

We observed a KGS ensemble along a pathway associated with activation for the α sub-unit
of protein Gs. Conformational interconversions can occur through a myriad of alternative
transition pathways. Computationally probing a multi-state conformational landscape through
extensive MD simulations to obtain a probable minimum free energy pathway is often prohibi-
tively expensive. In addition, sampling is generally affected by limitations and imperfections of
the force fields [54]. At the expense of highly accurate energy estimates, our method efficiently
explores the conformational space accessible to a protein while it maintains exactly covalent
and hydrogen bond geometry, and avoids steric clashes. Nonetheless, interpretation of the
ensemble as a collection of exchanging conformational substates would require long sampling
trajectories to satisfy ergodic properties. Our method illuminates coupled intra- and interdo-
main motions, complementary to rigid-body domain sampling and subsequent loop rebuilding
[10]. Paired with sophisticated MD simulations or energy relaxation protocols [55, 56] our
conformational ensemble can, for instance, serve as starting points for detailed transition path
sampling.

An exceptionally striking feature of our KGS ensemble is the magnitude of fluctuation of
helix α5 concurrent with the Gαs AH-domain motion. These coupled motions point to a
potential molecular mechanism of concomitant, structural changes between two remote sites
implicated in the release of GDP upon activation. There is increasing experimental evidence to
support this mechanism, which was first predicted by computational means for protein Gi by
Floquet and coworkers [13]. Their NMA-based analysis of GDP-bound Gi identified a motion
for the AH-domain that pivots on the long axis of the αA helix. Surprisingly, this transverse
motion qualitatively agrees with our nucleotide-free iMC analysis. The similarity of nucleotide-
free and nucleotide-bound motions is likely owed to ENM interactions between the Ras and
AH domain in iMC, which mimic interactions of the nucleotide with each domain. Essential
Dynamics Analysis (EDA) of AH domain motions upon ejection of GDP on the phosphate
side from selected nanosecond time scale Targeted Molecular Dynamics trajectories further-
more revealed close agreement with motions from NMA analysis [46]. The transverse motion
likely plays a key role in GDP release and Gi activation at nanosecond time scales. By contrast,
whereas the AH domain motion for Gαs observed from KGS analysis also exhibits the small
transverse component, it is mainly directed along a domain opening trajectory in agreement
with DEER measurements, potentially additionally identifying longer, micro- to millisecond
time-scales motions. While it is speculative to join analyses from two different proteins, these
observations do suggest an activation mechanism whereby a transverse ‘rocking’motion
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facilitates or results from GDP release, which in turn leads to a domain opening motion. For
inactive, apo Gαs, elevated mobility is centered on a hotspot near the GDP binding pocket,
extending to the N-terminus of helix α5, α1, and the adjacent P-loop. The mobile helix α4 is
conformationally coupled to the hub through β6.

Previous studies established that a conformational ensemble obtained by maintaining
hydrogen bonds through iteratively refitting rigid substructures agrees well with MD simula-
tions [57]. In our method, the coordinated motions on the constraint manifold resulting from
hydrogen bond encode ‘natural’modes of deformation. However, these coupled motions and
broad diffusion by a carefully selected sampling strategy come at the expense of a greatly sim-
plified energy function. It allows our method to overcome high-energy barriers, but can lead to
conformations with high physical energies. Thus, care should be taken in interpreting individ-
ual ensemble members prior to extensive energy minimization. Hydrogen bonding networks
enforce collective motions that couple conformational substates implicated in GDP release.
Our results highlight that in addition to stabilizing tertiary structure, hydrogen bonding net-
works mediate molecular mechanisms and dynamics. Indeed, evidence is emerging that hydro-
gen bonds mediate longe-range, correlated motions [58].

Our nullspace sampling procedure with explicit, holonomic constraints can relate motion to
function by revealing molecular mechanisms. It enables researchers to formulate testable
hypotheses about networks of residues that facilitate motions implicated in GDP release and
AH-domain motion. In addition, our procedure could be augmented with intra-molecular dis-
tance constraints obtained from experimental data.

Supporting Information
S1 Fig. Rigid bodies are the largest groups of atoms without internal rotational degrees of
freedom. Five rigid bodies are shown in different colors for a small fragment of a protein. Rota-
tional degrees of freedom (dihedrals) are shown in red. The side-chain of the green rigid body is
truncated at the Cβ atom for clarity. A cycle closing hydrogen bond is shown as a thin red line.
(TIFF)

S2 Fig. Normal modes for free, apo Gαs. a) The ten lowest frequency normal modes for the
active state of Gαs. b) The ten lowest frequency normal modes for the inactive state of Gαs.
(TIFF)

S3 Fig. Domain opening angles for iMC conformational ensembles. The ensembles were
obtained from a coarse-grained, CA-only representation with an essential dynamics (ED)
potential function. A scale factor of a = 10 was applied. The average (25.5 degrees) and maxi-
mum (48.8 degrees) opening angles for the AH domain suggested by DEER experiments are
indicated by dashed horizontal lines. While the opening angle of the inactive ensemble matches
that of the DEER experiment, conformations in the inactive and active ensembles are distorted.
(TIFF)

S4 Fig. Diffusion of the Gαs AH-domain opening angle in the ensemble of 50,000 confor-
mations. a) The change in opening angle between the AH-domain and the Ras-domain as
sampling progresses for KGS. The maximum opening angle levels around 48,000 samples. b)
The distributions of the opening angle for the active (top) and inactive (bottom) state from
20,000 and 50,000 samples. The active state distributions are very similar, while the inactive
distributions differ in the tail. The active, 50,000 sample distribution has min = 83.9°, mean =
90.6°, and max = 96.6° opening angles. For the inactive distributions these numbers are:
min = 0.0°, mean = 14.2°, max = 37.9°.
(TIFF)
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S5 Fig. Direction and magnitude of normalized mean displacements in KGS and iMC con-
formational distributions for 50,000 KGS samples. Top panel. The relative frequency of the
angles between KGS and iMC average displacements for each Cα of the AH-domain in the
inactive (grey) and active states (orange/yellow) is virtually unchanged in the larger KGS
ensemble. Bottom two panels. The normalized magnitude of the mean Cα displacement vectors
of the KGS (50,000 samples) and iMC ensembles. The longer trajectories support stronger cou-
pling for helix α5, but otherwise are similar to those obtained from 20,000 samples.
(TIFF)

S6 Fig. Anti-correlated motions between KGS and iMC at the N-terminus in the active
state Ras domain. a) The proximity of the BC loop (red, with one residue in stick representa-
tion) in the AH domain and N-terminal helix α1 (with one residue in stick representation)
results in ENM restraints for the active state crystal structure. b) A snapshot of the iMC confor-
mational ensemble. The β1 strand (red) is coupled to the AH domain, resulting in large motion
amplitudes that deform the β-sheet.
(TIFF)
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