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Abstract
Infants recovering from anesthesia are at risk of life threatening Postoperative Apnea

(POA). POA events are rare, and so the study of POA requires the analysis of long cardiore-

spiratory records. Manual scoring is the preferred method of analysis for these data, but it is

limited by low intra- and inter-scorer repeatability. Furthermore, recommended scoring rules

do not provide a comprehensive description of the respiratory patterns. This work describes

a set of manual scoring tools that address these limitations. These tools include: (i) a set of

definitions and scoring rules for 6 mutually exclusive, unique patterns that fully characterize

infant respiratory inductive plethysmography (RIP) signals; (ii) RIPScore, a graphical, man-

ual scoring software to apply these rules to infant data; (iii) a library of data segments repre-

senting each of the 6 patterns; (iv) a fully automated, interactive formal training protocol to

standardize the analysis and establish intra- and inter-scorer repeatability; and (v) a quality

control method to monitor scorer ongoing performance over time. To evaluate these tools,

three scorers from varied backgrounds were recruited and trained to reach a performance

level similar to that of an expert. These scorers used RIPScore to analyze data from infants

at risk of POA in two separate, independent instances. Scorers performed with high accu-

racy and consistency, analyzed data efficiently, had very good intra- and inter-scorer

repeatability, and exhibited only minor confusion between patterns. These results indicate

that our tools represent an excellent method for the analysis of respiratory patterns in long

data records. Although the tools were developed for the study of POA, their use extends to

any study of respiratory patterns using RIP (e.g., sleep apnea, extubation readiness). More-

over, by establishing and monitoring scorer repeatability, our tools enable the analysis of

large data sets by multiple scorers, which is essential for longitudinal and multicenter

studies.
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Introduction
Anesthesia enhances the susceptibility to apnea in infants [1–5], leading to Postoperative
Apnea (POA) events that may be life threatening, so infants require continuous cardiorespira-
tory monitoring [1, 2, 6]. POA events are rare with most occurring in the initial postoperative
hours, but a delayed onset, as late as 12 hours after surgery, has been reported [2–4]. Thus, any
comprehensive study of POA requires the analysis of long data records.

Measuring infant respiration for extended periods of time requires a sensor that is well tol-
erated during both sleep and wakefulness. The initial studies of POA monitored respiration
with thoracic impedance [2, 7, 8], the sensor of respiration most commonly used clinically in
Postanesthesia Care Units (PACU). However, this sensor has important limitations leading to
missed apneas, as both obstructive apnea and cardiogenic oscillations may often be misinter-
preted as breathing [9]. Consequently, thoracic impedance is not recommended for research
applications. The American Academy of Sleep Medicine (AASM) recommends the use of an
airflow sensor (e.g., oronasal thermistor, or nasal pressure) to measure respiration and detect
apnea [10]. However, airflow measurements require that sensors be attached to the face. These
sensors are poorly tolerated by infants during recovery from surgery as they interfere with both
sleep and feeding.

The AASM guidelines also designate the respiratory inductive plethysmograph (RIP) as an
alternative sensor for apnea detection [10]. RIP uses two elastic bands that encircle the torso to
measure ribcage (RCG) and abdominal (ABD) respiratory movements. These bands are well
tolerated by infants and do not interfere with clinical care or the infant’s behavioral state. RIP
is the standard sensor for respiratory effort [10] in polysomnography and cardiorespiratory
studies. It is also used to study respiration in other research applications including: prediction
of extubation success in mechanically ventilated infants [11, 12], study of sudden infant death
syndrome [13], and investigations of asthma [14] and bronchopulmonary dysplasia [15]. We
have developed a data acquisition system that incorporates RIP sensors to monitor respiration,
and a digital pulse oximeter to measure blood oxygen saturation (SAT) and photoplethysmo-
graphy (PPG) [16], for the study of respiratory behavior of infants at risk of POA.

The investigation of POA using these data requires a consistent, reliable analysis method
that fully characterizes the respiratory behavior of infants. The AASM endorses manual scoring
as the “gold standard” for the study of apnea, and has published a set of rules to standardize the
manual detection of apneas using RIP signals [10]. However these rules have 4 important limi-
tations. First, they assume that the RIP signals are calibrated; that is, the RCG and ABD signals
are scaled so that their sum is proportional to tidal volume. This process is valid for a fixed spi-
nal angle and constant posture [17], but becomes inaccurate when the measurement conditions
and/or breathing patterns change [18, 19]. Consequently, the RIP calibration is likely to change
throughout a long recording session invalidating the accuracy of the calibrated sum, making its
use questionable. Second, the AASM rules only define clinically relevant apnea events, but do
not define other respiratory patterns such as short respiratory pauses, thoraco-abdominal
asynchrony, sighs, and normal breathing. Yet, these other patterns are relevant to the compre-
hensive study of respiratory behavior, since there is evidence that POAs are associated with
abnormal respiratory patterns [2]. Indeed, we have found that an increased frequency of respi-
ratory pauses, longer than 2 s, was associated with POA [20]. Third, the AASM rules must be
applied by certified sleep laboratory technicians. As a result the analysis is costly and not widely
available, since many sleep laboratories have long waiting times [21]. This severely constrains
the amount of data that can be analyzed. Fourth, even when the AASM rules are applied by cer-
tified sleep laboratory technicians, the results have low intra- and inter-operator repeatability
[22]. This adversely affects studies where multiple scorers are needed (e.g., large datasets,
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longitudinal, multicenter), because the repeatability of the analysis decreases with the number
of scorers.

Advancement of the study of POA requires that these limitations be addressed. To do so we
believe it is necessary to: (i) adapt the manual scoring rules to analyze uncalibrated RIP data;
(ii) define a comprehensive set of RIP patterns; (iii) provide a computer-aided, scoring tool to
improve accuracy and consistency, and reduce the time required for manual analysis; and (iv)
develop a training and evaluation strategy to standardize the analysis and improve intra- and
inter-operator repeatability. This paper describes a comprehensive set of tools developed to
address these needs. These tools comprise 5 components: (i) a clear, comprehensive set of defi-
nitions and scoring rules for 6 mutually exclusive RIP patterns, (ii) a computer aided tool for
efficient manual scoring, (iii) a library of data segments representing each of the 6 RIP patterns,
(iv) a formal training protocol for scorers to standardize performance, and (v) a method to
monitor the ongoing performance of scorers.

This paper is organized as follows. Section II describes the 5 manual scoring tools intro-
duced above. Section III describes the methods used to evaluate these tools. Section IV reports
the results obtained by applying the tools to representative data from infants recovering from
anesthesia. These results demonstrate that use of our tools produces efficient and accurate scor-
ing with high intra- and inter-scorer repeatability regardless of operator expertise. Section V
discusses the findings, and Section VI provides concluding remarks.

Tools for Manual Scoring

Pattern Definitions and Scoring Rules
Our objective was to define a comprehensive set of respiratory inductive plethysmography
(RIP) patterns that would provide a complete description of the respiratory behavior on a con-
tinuous, sample-by-sample basis. To this end, we carried out an extensive literature review
related to the scoring rules for infant RIP data. Key sources included: (i) the Infant Sleep Apnea
section of the revised International Classification of Sleep Disorders: Diagnostic and Coding
Manual from the American Academy of Sleep Medicine (AASM) [6]; (ii) the updated AASM
Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical
Specifications [10]; (iii) a series of articles on manual scoring published in the Journal of Clini-
cal Sleep Medicine [23–30]; (iv) publications on POA in infants [1–4, 31]; and (v) publications
on thoraco-abdominal synchrony in infants [15, 32, 33]. This led us to define 6, mutually exclu-
sive, unique patterns that would comprehensively characterize RIP signals. These patterns are:
synchronous-breathing (SYB), asynchronous-breathing (ASB), sigh (SIH), respiratory pause
(PAU), movement artifact (MVT), and unknown (UNK). Table 1 describes each pattern in
detail, and provides the scoring rules for the unambiguous assignment of each data sample to
one of the 6 patterns.

RIPScore
RIPScore is an interactive computer application with a graphical user interface developed to
support the efficient, manual scoring of RIP signals on a sample-by-sample basis. RIPScore is a
redesign, and re-engineering of a rudimentary, prototype, manual scoring interface described
in [34].

Main Screen. RIPScore displays data in 30 s epochs, and allows the scorer to segment the
signals and assign a RIP pattern to each segment. Fig 1 shows the main screen of RIPScore
which comprises these main components:

Operating Modes. RIPScore has 4 operating modes: Visualization/Review, Scoring, Train-
ing, and Evaluation. These modes support different aspects of the scoring process.
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Visualization/Review Mode supports viewing the signals and reviewing the RIP patterns
and annotations assigned throughout the record. In this mode, the “Previous” and “Next”
buttons scroll the data in 20 s increments. Entering a value in “Epoch Start Time”moves the
epoch display to that value. The RIP Pattern Scoring buttons move the data to the next segment
assigned to that pattern.

Clicking a segment on the RIP Pattern bar selects the segment, highlights the segment in Sig-
nals, plots the corresponding Lissajous Figure, and updates the segment start and end time text
boxes. The “Comment” command can be used to assign a comment to the segment, while the
“Delete” command removes the RIP pattern assigned to it.

Scoring Mode supports manual scoring. When activated, the cursor changes to crosshairs,
the display moves to the first unscored segment, the segment start is set to the first unscored
sample, and RIPScore prompts the user to select the end of the segment. The selected Signals
segment is highlighted in red, and RCG and ABD are plotted in the Lissajous Figure. The scorer
then assigns a RIP pattern to the segment using a RIP Pattern Scoring button or its hot-key; the
segment’s assigned pattern, start and end time, and a timestamp are stored. The RIP Pattern
bar is updated; and the display moves to the start of the next, unscored segment. This proce-
dure continues until the scorer stops (by selecting the“(S)top Scoring” button) or all data have
been scored. RIPScore then returns to Visualization/Review mode.

Training Mode supports the training of scorers by having users analyze simulated data with
known RIP patterns. The interface is similar to that in Scoring Mode with the addition of an

Table 1. Unique, mutually-exclusive patterns of respiratory inductive plethysmography and their scoring rules.

Pattern Definition Scoring Rule Example

Synchronous-
breathing (SYB)

Quasi-sinusoidal breathing patterns in RCG and ABD,
where the inspiration and expiration movements of RCG
and ABD are in phase.

Phase difference of less than 90°. Fig 3

Asynchronous-
breathing (ASB)

Quasi-sinusoidal breathing patterns in RCG and ABD,
where the RCG and ABD movements are out of phase.

Phase difference of 90° or more. Fig 4

Sigh (SIH) A breath with considerably larger amplitude and duration
than preceding breaths.

Breath amplitude and duration twice that of the epoch’s
average breath in both RCG and ABD.

Fig 5

Movement artifact
(MVT)

A period during which both RCG and ABD signals are
corrupted by movements not related to respiration.

RCG and ABD display a chaotic, non-sinusoidal, low
frequency motion.

Fig 6

Respiratory pause
(PAU)

A period where respiratory movements are absent in both
RCG and ABD.

RCG and ABD have amplitudes less that 10% of those of
the preceding normal breath. A PAU begins at the start of
inspiration of the first breath that is clearly reduced, and
ends with the start of inspiration of the first breath whose
amplitude returns to the epoch’s average breath
amplitude. If the start or end time of a PAU differs
between RCG and ABD, the priority is given to the signal
with higher SNR. All respiratory pauses are scored
regardless of duration. Special cases:

Fig 1

(i) PAU following SIH: RCG and ABD have amplitudes of
less than 10% of that of the breath preceding the sigh in
both signals.

Fig 7

(ii) PAU following MVT: RCG and ABD have amplitudes
of less than 10% of that of the breath that follows the
pause in both signals.

Fig 8

Unknown (UNK) Any other pattern arising from technical problems (e.g.,
loss of a connector, high noise), or ambiguous patterns
(e.g., MVT during SYB, different patterns in RCG and
ABD).

RCG and/or ABD do not correspond to any other pattern. Fig 9

RCG = ribcage, ABD = abdomen, SNR = signal-to-noise ratio.

doi:10.1371/journal.pone.0134182.t001
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Actual Pattern bar for scored segments. If the trainee assigns an incorrect pattern to a segment,
RIPScore displays an error message and provides the trainee with the opportunity to review the
scored segment and reassign the pattern. Conversely, if the trainee assigns the correct pattern,
RIPScore updates the Actual Pattern bar and allows the trainee to continue. A Training Mode
session ends once the trainee has either: (i) scored the complete record, or (ii) correctly scored
5 patterns of each type consecutively.

Fig 1. Elements of the RIPScore interface. (A) Respiratory Inductive Plethysmography (RIP) Pattern; (B) Signals from ribcage (RCG), abdomen (ABD),
photoplethysmograph (PPG), and blood oxygen saturation (SAT); (C) Notes; (D) Segment and Epoch Control; (E) Lissajous Figure; (F) RIP Pattern Scoring;
and (G) Mode Control. The epoch shows a representative example of Pause (PAU). The quasi-sinusoidal pattern in RCG and ABD stops during the PAU
highlighted in red. The horizontal dotted cursors in RCG show an estimated variation of ± 90% of the amplitude of the breath preceding the PAU. Note that
these cursors do not take into account low frequency trends, and so are only an approximate reference. a.u. = arbitrary units. (A) RIP Pattern: a color-coded
bar showing the RIP pattern assigned by the scorer at each time; (B) Signals: plots of the cardiorespiratory signals including ribcage (RCG), abdomen (ABD),
photoplethysmograph (PPG), and blood oxygen saturation (SAT). Clicking on a breath from RCG or ABD plots three horizontal cursors, one at the estimated
breath’s amplitude, and two at ± 90% of that amplitude. Note that these cursors are not an exact amplitude reference for the epoch because they do not take
into account low frequency trends frequently observed in RIP signals [35]; (C)Notes: text boxes showing time stamped notes made during data acquisition,
and comments entered by the scorer during analysis; (D) Segment and Epoch Control: text boxes showing the start and end times for the current segment
(highlighted in red in Signals); command buttons to add a “Comment” or “Delete” the RIP pattern assigned to the current segment; command buttons to scroll
through epochs (“Previous”, “Next”), and a text box with the start time of the current epoch; (E) Lissajous Figure: a plot of RCG versus ABD for the current
segment to aid the user in evaluating thoraco-abdominal synchrony. During breathing, the plot will be an ellipse tilted to the right for a phase less than 90
degrees, a circle for a phase of 90 degrees, and an ellipse tilted to the left for a phase greater than 90 degrees; (F) RIP Pattern Scoring: color-coded
command buttons that assign a RIP pattern to the current segment; each button may also be activated by hitting the corresponding keyboard “hot-key”
defined by the character in parenthesis for each button (e.g., the hot-key for Pause is ‘1’); (G) Mode Control: command button to switch between scoring and
visualization mode.

doi:10.1371/journal.pone.0134182.g001
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The simulated infant RIP records used in Training Mode are generated by concatenating,
i.e., linking together, signal segments with known RIP patterns to yield continuous signals. Fig
2 illustrates the concatenation method, which consisted of the following 4 steps:

i. two input signal segments were selected to be concatenated;

ii. the 2 signal segments were aligned with an overlap (transition window T) of NT samples;
that is, the last NT samples of the first segment overlapped the first NT samples of the second
segment;

iii. the samples of the first segment in the transition window were gradually attenuated by mul-
tiplying them by a decaying sigmoid factor that varied from 1 to 0 over the length of the
window; samples of the second segment were gradually amplified by multiplication with a

Fig 2. Concatenation of signal segments. (A) Sample input segments. (B) Input segments are aligned and overlapped over a transition window T. (C) The
output during this window is computed by gradually attenuating the end of the first segment, gradually incrementing the start of the second segment, and
adding the two parts to yield a smooth transition. (D) The output signal consists on the first segment up to the start of T, followed by the transition, followed by
the second segment starting after T.

doi:10.1371/journal.pone.0134182.g002
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sigmoid factor that increased from 0 to 1 over the window length; the modified signals in
the transition window were then added to yield a smooth transition; and

iv. the output signal consisted on the first segment up to the start of T, followed by the transi-
tion, and then by the second segment starting after T.

The concatenation method overlapped the input segments to produce a smooth transition.
This was done to avoid transition artifacts, which could generate sharp transients that do not
resemble natural RIP patterns.

RIPScore uses two types of simulated data, and investigators are required to configure
which type to use before scoring sessions start. Type I “simulated-pattern” data was based on
signals generated using a breath-by-breath time-series model of infant breathing; other RIP
patterns were simulated by manipulating these signals as described in [36]. Type II “true-pat-
tern” data comprised segments of real data whose RIP pattern was determined during a refer-
ence analysis (REF) performed by one of the authors (KAB) as described below. Type II data
were more complex and realistic than Type I because they incorporated the inherent variability
of real infant breathing.

A new, 1 hr long, Training Mode data record is generated for each training session as
follows:

i. segments of each RIP pattern category are simulated and stored in a list, until the total length
of data is> 1.5 hr;

ii. the list of simulated segments is re-ordered randomly;

iii. the list is examined to ensure that contiguous segments have different RIP patterns, if two
contiguous segments have the same pattern, the second segment is pushed to the end of the
list;

iv. the list is truncated to the first N segments whose total length is 1 hr; and

v. the segments on the list are concatenated as described in Fig 2.

Evaluation Mode is used to evaluate a scorer’s accuracy and consistency. In this mode, the
user analyzes a simulated data record with an interface similar to Training Mode, but with no
feedback. Upon completion, RIPScore: (i) estimates the accuracy and consistency of the scorer;
(ii) stores the accuracy and consistency values, the simulated data record, and the assigned RIP
patterns; (iii) displays the accuracy and consistency to the scorer; and (iv) reveals the Actual
Pattern bar in Review Mode so that the scorer can compare their assigned patterns to the
actual, simulated patterns.

Data for Evaluation Mode are generated as follows:

i. the first 30 min of data segments are simulated and stored in a list as for the Training data;

ii. the list is duplicated;

iii. the duplicate list is re-ordered randomly, and contiguous segments with equal RIP patterns
pushed to the end;

iv. the two lists are joined, and the segments concatenated.

Thus, in the evaluation data record each simulated segment appears in both the first and
second half but in a different, random order.

Performance is assessed in terms of the accuracy and consistency of the assigned RIP pat-
terns. Accuracy is measured as the agreement between patterns assigned by the trainee and the
actual pattern. Consistency is measured as the agreement between the patterns assigned to the
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same segments in the first and second half of the evaluation record. Agreement is quantified
using the Fleiss’ kappa (κ) statistic [37, 38] computed on a sample-by-sample basis as in [36,
39]. This kappa implementation generalizes the traditional Cohen’s κ statistic [40] to evaluate
agreement between multiple scorers when classifying observations into two or more categories.

Sample Patterns in RIPScore. Examples of the RIP patterns and special cases defined in
Table 1 are illustrated in the following figures.

• Synchronous-Breathing (SYB, Fig 3): the selected breaths in RCG and ABD (in red) are in
phase, and the Lissajous plot is an ellipse tilted to the right;

• Asynchronous-Breathing (ASB, Fig 4): the selected breaths are out of phase, and the Lissa-
jous plot is elliptical and tilted to the left;

• Sigh (SIH, Fig 5): the dotted horizontal cursor in RCG provides an approximate reference
showing that the sigh has an amplitude of more than 190% of that of the preceding breath,
with a duration longer than that of the other breaths;

Fig 3. Representative example of Synchronous-Breathing (SYB). The ellipse in the Lissajous plot of ribcage (RCG) against abdomen (ABD) is tilted to
the right. PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g003
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• Movement Artifact (MVT, Fig 6): low-frequency motion corrupts both RCG and ABD;

• Pause (PAU, Fig 1): the pause at the middle of the epoch has an amplitude of less that 10% of
that of the preceding breath, as evidenced by the horizontal cursor in RCG;

• PAU which follows a SIH (Fig 7): the horizontal cursors in the ABD signal show approximate
reference amplitudes for the breath preceding the sigh; it is clear that the sigh’s amplitude is
much larger, and that at least part of the pause’s amplitude is below the 10% dotted line;

• PAU which follows a MVT (Fig 8): the horizontal cursor in RCG suggests that the amplitude
during the pause is less than 10% of that of the breath that follows the pause;

• Unknown (UNK, Fig 9): RCG and ABD have different patterns; RCG shows low-frequency
movement artifact, while ABD shows breathing.

Fig 4. Representative example of Asynchronous-Breathing (ASB). The Lissajous plot of ribcage (RCG) against abdomen (ABD) for the segment
highlighted in red shows ellipses tilted to the left. PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g004
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Library of Segments with Known Patterns
A library containing “true-pattern” data segments representative of each of the 6 RIP patterns
was created for use in RIPScore Training and Evaluation Modes.

Infant Data. The library was built using data acquired from 24 infants (19 male, birth age
31 ± 4 weeks, postmenstrual age 43 ± 2 weeks, weight 3.7 ± 1.0 kg) recruited for a prospective
POA study. Inclusion criteria were: (i) postmenstrual age< 60 weeks at the time of surgery in
preterm infants, and< 48 weeks in term infants, (ii) elective surgery for inguinal herniorrha-
phy, and (iii) American Society of Anesthesiology physical status 1 or 2. Exclusion Criteria
were: (i) post-operative admission to the Neonatal Intensive Care Unit or Pediatric Intensive
Care Unit, (ii) emergency surgery, and (iii) spinal anesthesia. The anesthetic technique was not
standardized.

Data were acquired in the Postanesthesia Care Unit (PACU) of the Montreal Children’s
Hospital using a custom-built monitoring system [16]. Upon admission to the PACU, infant
respibands (Inductobands, Ambulatory Monitoring Inc., Ardsley, NY, USA) were placed

Fig 5. Representative example of Sigh (SIH). The SIH highlighted in red has larger amplitude and longer duration than the other breaths. The horizontal
dotted cursors in the ribcage (RCG) signal show an estimated variation of ± 90% of the amplitude of the breath preceding the SIH. Note that these cursors are
not an exact amplitude reference. Also, the Lissajous plot shows an ellipse tilted to the right. ABD = abdomen, PPG = photoplethysmograph, SAT = blood
oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g005
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around the ribcage (at the nipple line) and abdomen (at the umbilicus) and interfaced with a
Respiratory Inductive Plethysmograph (Battery Operated Inductotrace, Ambulatory Monitor-
ing Inc., Ardsley, NY, USA). An infant oximeter probe (Nonin 8600 Portable Digital Pulse
Oximeter, Nonin Medical Inc., Plymouth, MN, USA) was taped to a digit. The outputs were
low-pass filtered (cut-off frequency 10 Hz) with an 8-pole, anti-aliasing, Bessel filter (Kemo,
Jacksonville, FL, USA), sampled at 50 Hz, and stored. Subsequent, off-line analysis was per-
formed using MATLAB (The MathWorks Inc., Natick, MA, USA). No attempt was made to
calibrate the RIP signals. Recordings were 9.0 ± 2.2 hr long. Subsets of these data have been
used in previous work [39, 41–43].

Recording sessions were continuously attended, and a paper record of the infant’s behav-
ioral state, i.e., sleeping, feeding, diaper change, etc., was kept, referenced to the clock time and
recording time. These handwritten entries were transcribed to an electronic text file and dis-
played as acquisition Notes in RIPScore. Demographic data and relevant clinical variables,
including anesthetic and analgesic drug regimen, were recorded.

Fig 6. Representative example of Movement Artifact (MVT). The MVT in the ribcage (RCG) and abdomen (ABD) signals is highlighted in red.
PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g006
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Ethics Statement. The study was approved by the Institutional Review Board of the
McGill University Health Centre / Montreal Children’s Hospital (approval numbers PED-07-
30, and 12-308-PED). Written, informed parental consent was obtained for each infant
recruited to the study. Consent for publication of raw data was not requested specifically at the
time the study was carried out. However, all materials have been thoroughly inspected, and all
possible identifiers (as defined in [44]) were removed before the data were made available pub-
licly. Thus, we believe that publication of these data poses negligible risk to the privacy of study
participants.

Reference Manual Analysis. One of the authors (KAB) served as the reference scorer
(REF). REF has extensive experience in the manual scoring of infant cardiorespiratory data,
participated in the data acquisition, and contributed to the development of RIPScore.

REF used RIPScore to analyze the full records of 23 infants in two independent instances;
the order in which the data records were analyzed was randomized between instances. One
record was excluded because the infant was continuously handled by nurses and parents
throughout the recording session. REF’s overall intra-scorer repeatability, measured with the

Fig 7. Representative example of a Pause (PAU) which follows a Sigh (SIH). The horizontal dotted cursors in the abdomen (ABD) signal show an
estimated variation of ± 90% of the amplitude of the breath that precedes the SIH. Note that these cursors are not an exact amplitude reference.
RCG = ribcage, PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g007
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Fleiss’ kappa statistic [37, 38], was “substantial” (κ = 0.80) [45]. Samples where REF assigned
the same RIP pattern in the two instances were considered to be correct and defined the “true-
pattern” for these samples.

This reference scoring task was very labor intensive and required 8 months to complete. For
this reason, data were partitioned into two subsets: (i) a validation subset used to evaluate the
performance of scorers, and (ii) a library of “true-pattern” segments used to generate the Type
II “true-pattern” simulated data. Fig 10 summarizes how the validation subset and the “true-
pattern” segment library were created.

The validation subset comprised data from 21 infants, truncated to a maximum of 20,000 s
per record, representing a 54% of the complete data set. Records from 2 infants that were ana-
lyzed by REF were excluded due to bad quality in the recordings. To ensure that the validation
subset was representative, the proportion of “true-pattern” samples assigned to each RIP pat-
tern was computed for both the complete and truncated data records. The Wilcoxon signed
rank test [46] indicated that the proportions were not significantly different as Table 2 shows.

Fig 8. Representative example of a Pause (PAU) which follows a Movement Artifact (MVT). The horizontal dotted cursors in the ribcage (RCG) signal
show an estimated variation of ± 90% of the amplitude of the breath that follows the PAU. Note that these cursors are not an exact amplitude reference.
ABD = abdomen, PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g008
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Training Protocol
All scorers underwent a common training protocol, using RIPScore Training and Evaluation
Modes, to standardize the analysis and performance of scorers using our tools.

Fig 11 shows a block diagram of the training protocol. Training had 2 levels, each having
two stages: training and evaluation. Trainees started at Level 1, where they were familiarized
with RIPScore, the 6 mutually exclusive RIP pattern definitions, and the scoring rules, by ana-
lyzing Type I “simulated-pattern” records (Fig 12A). Each level began with a training stage
where trainees scored data in RIPScore Training Mode. Upon completing the training stage,
their accuracy and consistency were evaluated using RIPScore Evaluation Mode. If their perfor-
mance was adequate (see Fig 11) they advanced to Level 2 of training, if not, they repeated the
Level 1 training stage.

Level 2 training proceeded in a similar manner except that the data analyzed were the more
realistic Type II “true-pattern” data records (Fig 12B). Training was completed after successful
completion of the Level 2 evaluation stage (see Fig 11).

Fig 9. Example of Unknown (UNK). It is not possible to determine the pattern in the selected segment (red) because the ribcage (RCG) signal shows a low-
frequency, chaotic pattern, while the abdomen (ABD) signal has a quasi-sinusoidal breathing pattern with an additional low-frequency movement component.
PPG = photoplethysmograph, SAT = blood oxygen saturation, a.u. = arbitrary units.

doi:10.1371/journal.pone.0134182.g009
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Reference values of performance were obtained by having REF analyze two sessions of each
training level. These analyses showed that REF had excellent consistency and accuracy values
ranging from κ = 0.76 to κ = 0.89.

Table 2. Proportion of “true-pattern” samples in the records used to create the validation data subset.

Pattern Complete Record Truncated, Validation Record p-value

SYB 0.73 [0.08] 0.75 [0.06] 0.13

ASB 0.03 [0.05] 0.02 [0.05] 0.13

SIH 0.01 [0.00] 0.01 [0.00] 0.28

PAU 0.02 [0.03] 0.02 [0.02] 0.25

MVT 0.12 [0.03] 0.12 [0.06] 0.15

UNK 0.08 [0.04] 0.08 [0.04] 0.39

Results presented as median [interquartile range]. SYB = synchronous-breathing, ASB = asynchronous-

breathing, SIH = sigh, PAU = respiratory pause, MVT = movement artifact, UNK = unknown. The library of

“true-pattern” segments was created from remaining data and comprised 16,285 segments.

doi:10.1371/journal.pone.0134182.t002

Fig 10. Study Data Flowchart.

doi:10.1371/journal.pone.0134182.g010
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Fig 11. Scorer training protocol.Criteria to successfully complete levels: (A) Level 1, the trainee obtained
accuracy and consistency values of κ� 0.8; and (B) Level 2, the trainee obtained accuracy and consistency
values of κ� 0.8 on two consecutive sessions.

doi:10.1371/journal.pone.0134182.g011
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Monitoring of Scorers for Quality Control
Scorer accuracy and consistency were evaluated on a record-by-record basis using a quality
control method based on the pre-processing phase described next.

Pre-processing. The validation dataset was pre-processed by inserting Type II “true-pat-
tern” segments into each data record (Fig 12C). Thus, for this pre-processing phase, a total of
152 segments (1,000 s worth of data) were selected from the “true-pattern” segment library,
such that each RIP pattern was equally represented. The distribution of these 152 segments
was: 25 SYB, 26 ASB, 27 SIH, 22 PAU, 27 MVT, and 25 UNK.

For each data record in the validation subset, the 152 segments were randomly ordered and
inserted into the first 3 hrs of the record at randomly selected times. These “true-pattern” seg-
ments were then randomly re-ordered, and inserted into the last 3 hr of the record at random
times. Segments were inserted by splitting the data record (see Fig 12C), and concatenating the
segment as in Fig 2. Thus each of the 21 pre-processed data records contained two copies of the
152 “true-pattern” segments.

These inserted “true-pattern” segments were then used to evaluate scorer accuracy and con-
sistency using the same methods as in RIPScore’s Evaluation Mode.

Evaluation of the Manual Scoring Tools
The manual analysis tools were evaluated by examining the performance of three scorers in the
analysis of the pre-processed validation data subset.

Scorer Recruitment and Training
The three scorers had quite different backgrounds and experience in the analysis of respiratory
data. The first (SC1) was a pediatric anesthesiologist with expertise in infant respiratory physi-
ology, who participated in data acquisition and is a co-author (GB). The second (SC2) was a

Fig 12. Data formats. (A) Type I, and (B) Type II data segments were concatenated to generate the training
records. (C) Validation records were pre-processed such that Type II segments were inserted into the
validation subset. Red vertical lines indicate the concatenation point.

doi:10.1371/journal.pone.0134182.g012
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senior respiratory pediatric sleep laboratory technician with extensive experience in manual
scoring of pediatric cardiorespiratory data. The third (SC3) was a computer network analyst
with a master’s degree in telecommunications but no clinical expertise. All three scorers were
trained using the protocol.

Validation of the Manual Analysis Tools
The three scorers analyzed the entire, pre-processed, validation data subset in two independent,
blinded instances; the order of the data records was randomized between instances and
between scorers. Scorer performance was evaluated in terms of the following parameters.

Accuracy and Consistency. The two copies of the 152 “true-pattern” segments inserted in
each data record were analyzed to evaluate the scorers’ ongoing accuracy and consistency.

Scoring Rate. The time required to score a data record was estimated by summing the dif-
ference between the timestamps of consecutive scores. Differences greater than 2 min were
excluded because they likely resulted from interruptions in the analysis. The overall scoring
rate was estimated as the ratio of the length of a data record (in data hours) to the hours
required to score it. Pattern-specific scoring rates were estimated as the ratio of the total length
of segments assigned to a RIP pattern to the time required to score those segments.

Intra and Inter-Scorer Repeatability. Intra- and inter-scorer repeatability of the RIP pat-
terns assigned to the validation data were assessed using the Fleiss’ kappa (κ) statistic [37, 38]
on a sample-by-sample basis.

Confusion Analysis. Confusion in the scoring of the 6 RIP patterns Θ = {SYB, ASB, SIH,
PAU,MVT, UNK} was assessed by computing the confusion matrix P whose elements Pi,j gave
the conditional probability that a sample with consensus pattern i would be scored as pattern j.
A sample xk was assigned a consensus RIP pattern Cn(xk) 2 Θ if it was assigned that pattern in
the absolute majority (4 or more) of the 6 scoring iterations. Samples without consensus pat-
tern were excluded from the confusion analysis. Thus, to estimate Pi,j for each scorer, the Ni

samples with consensus pattern i were identified. Then, Nj, the number of times the Ni samples
had been assigned to pattern j, was determined. Finally, the conditional probability was esti-
mated as Pi,j = Nj / Ni. Confusion matrices were computed for each scorer separately, and also
as a group.

To assess the effects of segment length, confusion matrices were also computed after exclud-
ing scored segments shorter than a threshold (varied from 0 s to 20 s).

Statistical Analysis
Bootstrapping [47] with 100 resamples was used to estimate the standard deviation of the κ
values and the confusion matrix probabilities. Values of κ were interpreted according to the
intervals proposed in [45]: κ< 0 = poor, 0� κ� 0.2 = slight, 0.2< κ� 0.4 = fair, 0.4< κ�
0.6 = moderate, 0.6< κ� 0.8 = substantial, and 0.8< κ� 1 = almost perfect. Random selec-
tions were drawn from a uniform distribution where all instances had equal probability of
being selected.

Results

Training
Tables 3 and 4 show the accuracy and consistency of the scorers for each training session and
level. All scorers reached the required Level 1 performance (κ� 0.8) after the first session.
None of the scorers reached the required performance in the first Level 2 session; SC1 and SC3
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had low accuracy, and SC1 and SC2 had low consistency. Scorer performance improved with
training and all 3 achieved the required level of accuracy and consistency (κ� 0.8) in sessions
2 and 3 of Level 2, completing the training protocol requirements.

Accuracy and Consistency
Fig 13 documents the performance of the scorers as a function of the number of records scored.
Fig 13A shows that the overall scoring accuracy was substantial and nearly constant through-
out the scoring effort for all three scorers (SC1: κ = 0.66 ± 0.02, SC2: κ = 0.74 ± 0.02, SC3: κ =
0.67 ± 0.03). Consistency (Fig 13B) was high throughout for SC1 (κ = 0.79 ± 0.03) and SC2
(κ = 0.79 ± 0.02); SC3 (κ = 0.77 ± 0.05) started slightly lower, but quickly reached a level similar
to the other scorers.

Analysis of pattern-specific accuracy and consistency revealed some substantial differences
between scorers for 3 RIP patterns: PAU, MVT, and UNK. For PAU, Fig 14 shows that two
scorers had high, nearly constant levels of accuracy (SC1: κ = 0.76 ± 0.06, SC2: κ = 0.72 ± 0.06)
and consistency (SC1: κ = 0.73 ± 0.07, SC2: κ = 0.78 ± 0.06). In contrast, SC3, the scorer with
non-clinical background, had lower accuracy (κ = 0.34 ± 0.14) and consistency (κ = 0.44 ±
0.11). For MVT (S1 Fig), the three scorers had similar consistency, but a range of accuracies,
with SC2 having the highest (κ = 0.75 ± 0.03), followed by SC3 (κ = 0.65 ± 0.07), and SC1 with
the lowest (κ = 0.53 ± 0.02). For UNK (S2 Fig), the accuracy of SC2 (κ = 0.54 ± 0.07) and SC3
(κ = 0.46 ± 0.06) were moderate, while that of SC1 was poor (κ = 0.03 ± 0.05). As would be
expected the consistency of SC1 for UNK was much lower (κ = 0.29 ± 0.09) than those of SC3
(κ = 0.66 ± 0.11), and SC2 (κ = 0.58 ± 0.06).

The 3 scorers had similar accuracy and consistency for SYB, ASB, and SIH (S3–S5 Figs).

Table 3. Training accuracy.

Scorer Level 1 Level 2

Session 1 Session 1 Session 2 Session 3

SC1 0.94 0.72 0.82 0.81

SC2 0.94 0.81 0.86 0.87

SC3 0.94 0.79 0.82 0.81

Level 1 = Type I “simulated-pattern” data. Level 2 = Type 2 “true-pattern” data. Performance was measured using the Fleiss’ κ statistic [37]. The standard

deviation was < 0.01 in all cases.

doi:10.1371/journal.pone.0134182.t003

Table 4. Training consistency.

Scorer Level 1 Level 2

Session 1 Session 1 Session 2 Session 3

SC1 0.89 0.74 0.86 0.81

SC2 0.90 0.76 0.83 0.84

SC3 0.93 0.86 0.85 0.80

Level 1 = Type I “simulated-pattern” data. Level 2 = Type 2 “true-pattern” data. Performance was measured using the Fleiss’ κ statistic [37]. The standard

deviation was < 0.01 in all cases.

doi:10.1371/journal.pone.0134182.t004
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Scoring Rate
Fig 13C demonstrates some significant differences in scoring rate among the scores. All three
scorers began scoring at a rate of 1 data-hr/hr, but SC1 and SC3 gradually increased the scoring
rate by two- to three-fold throughout the study. In contrast, SC2 maintained a constant rate
throughout. Analysis of the pattern-specific rates showed that the increase in scoring rate was
primarily associated with SYB (S3 Fig), and MVT (S1 Fig), while scoring rates for ASB (S4 Fig),
SIH (S5 Fig), PAU (Fig 14), and UNK (S2 Fig) were fairly constant throughout.

Repeatability
Each scorer analyzed the pre-processed validation subset in two independent, randomized
instances. Intra-scorer repeatability was assessed by comparing the RIP patterns each scorer
assigned to the same data in the two instances. Table 5 shows that the overall intra-scorer
repeatability was very good; the scorer who participated in data acquisition SC1 had the highest
repeatability (κ = 0.84), followed by the sleep laboratory technician SC2 (κ = 0.77), and the
non-clinical scorer SC3 (κ = 0.72). The pattern with the highest intra-scorer repeatability was
SYB (0.84� κ� 0.89), and the pattern with the lowest intra-scorer repeatability was UNK
(0.49� κ� 0.56).

Fig 13. Overall scoring performance. (A) Accuracy (Fleiss’ κ); (B) consistency (Fleiss’ κ); and (C) rate (hours of data per hour of scoring) as a function of
number of data records analyzed. SC1 was a pediatric anesthesiologist; SC2 was an experienced sleep laboratory scorer; and SC3 was a data networks
analyst with no clinical experience. Standard deviation of each accuracy and consistency point was < 0.01.

doi:10.1371/journal.pone.0134182.g013
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Inter-scorer repeatability was computed for each of the 8 unique analysis combinations
(each combination comprised one analysis iteration from each of the 3 scorers, and each scorer
performed 2 iterations). Table 6 reports the result as mean ± standard deviation. The overall
inter-scorer repeatability was κ = 0.65. The RIP pattern with most repeatability was SYB (κ =
0.81), and the repeatability on PAU was substantial (κ = 0.65).

Confusion Analysis
Table 7 presents the proportion of samples assigned to each consensus RIP pattern in the vali-
dation dataset. There was a consensus for 90% of the samples; with the most common pattern

Fig 14. Evaluation of manual scoring of Pause. (A) Accuracy (Fleiss’ κ); (B) consistency (Fleiss’ κ); and (C) rate (hours of data per hour of scoring) as a
function of number of data records analyzed. Results are shown for the 42 data records analyzed (21 files scored twice).

doi:10.1371/journal.pone.0134182.g014

Table 5. Intra-scorer repeatability.

Scorer Overall SYB ASB SIH PAU MVT UNK

SC1 0.84 0.89 0.78 0.73 0.79 0.88 0.49

SC2 0.77 0.86 0.79 0.58 0.78 0.76 0.56

SC3 0.72 0.84 0.70 0.67 0.74 0.64 0.53

Repeatability was measured using the Fleiss’ κ statistic [37]. Standard deviation was < 0.01 in all cases. SYB = synchronous-breathing,

ASB = asynchronous-breathing, SIH = sigh, PAU = respiratory pause, MVT = movement artifact, UNK = unknown.

doi:10.1371/journal.pone.0134182.t005
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being SYB (65%), and the least frequent being SIH (1%). For completeness, we computed the
pattern proportions for the remaining 10% of samples with no consensus even though these
data were not used in the confusion analysis. We found that the majority (60%) of the non-
consensus samples were scored as either UNK or MVT, and the rest were: SYB 22%, ASB 8%,
SIH 3%, and PAU 7%. We later found that the proportion of samples without consensus pat-
tern could be reduced to 5% if all samples scored as MVT were to be re-assigned to UNK.

Fig 15 shows the confusion matrix for the full data set (3 scorers combined for all segment
lengths). It is evident that there was no systematic confusion of samples with consensus pattern
of SYB, ASB, PAU, or SIH. A significant confusion was evident between UNK and MVT (Fig
15F). The confusion matrices for the individual scorers showed similar results (see S6–S8 Figs).

Note that segment length had no effect on the confusion matrix for SC2 and SC3, but for
SC1, confusion of PAU varied with segment length. Fig 16 illustrates that SC1 confused PAU
segments longer than 15 s with UNK, and this confusion increased with segment length.

Discussion
This paper describes a novel set of tools for the manual analysis of infant respiratory inductive
plethysmography (RIP) data. The tool set includes 5 components:

i. A set of clear, concise definitions of RIP patterns, and scoring rules based on uncalibrated
RIP data. These definitions and rules make it possible to fully characterize an infant’s respi-
ratory behavior across extended periods of time, thus enabling the analysis of long data rec-
ords required for the study of Postoperative Apnea (POA).

ii. An interactive, computer application (RIPScore) that supports the application of the
scoring rules to infant data in an efficient manner. RIPScore incorporates the capability to
track the rate at which scorers analyze data; providing the objective measurement of the
time required to analyze a dataset.

Table 6. Inter-scorer repeatability of scorers SC1, SC2, and SC3.

Overall SYB ASB SIH PAU MVT UNK

0.65 ± 0.02 0.81 ± 0.01 0.69 ± 0.01 0.53 ± 0.01 0.65 ± 0.02 0.58 ± 0.04 0.28 ± 0.03

Repeatability was measured using the Fleiss’ κ statistic [37]. Results are presented as mean ± standard deviation. SYB = synchronous-breathing,

ASB = asynchronous-breathing, SIH = sigh, PAU = respiratory pause, MVT = movement artifact, UNK = unknown.

doi:10.1371/journal.pone.0134182.t006

Table 7. Proportion of consensus patterns for the confusion analysis.

Consensus Pattern Number of Samples Proportion

SYB 12,877,448 0.65

ASB 859,835 0.04

SIH 145,352 0.01

PAU 632,694 0.03

MVT 2,606,271 0.13

UNK 810,583 0.04

None 2,017,540 0.10

SYB = Synchronous-breathing, ASB = asynchronous-breathing, SIH = sigh, PAU = respiratory pause,

MVT = movement artifact, UNK = unknown.

doi:10.1371/journal.pone.0134182.t007
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Fig 15. Confusionmatrix.Conditional probability of each respiratory inductive plethysmography (RIP) pattern for samples with the consensus pattern of: (A)
synchronous-breathing (SYB), (B) asynchronous-breathing (ASB), (C) pause (PAU), (D) sigh (SIH), (E) movement artifact (MVT), and (F) unknown (UNK).
When there is no confusion, the consensus pattern has a probability of 1 and the others have probabilities of 0. During total confusion all patterns have equal
probabilities. Standard deviations of all probabilities were < 0.01.

doi:10.1371/journal.pone.0134182.g015

Fig 16. Confusion of SC1 on samples with consensus pattern of pause as a function of segment
length. SYB = synchronous-breathing, ASB = asynchronous-breathing, SIH = sigh, PAU = pause,
MVT = movement artifact, UNK = unknown. A probability of 1 for PAU indicates no confusion. Lower PAU
probabilities indicate increased confusion. Standard deviations of all probabilities were < 0.01.

doi:10.1371/journal.pone.0134182.g016
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iii. A library of “true-pattern” segments representing each of the 6 RIP patterns, used for train-
ing, assessment of scorer performance, and development of evaluation methods.

iv. A formal training protocol based on the interactive, completely automated RIPScore Train-
ing and Evaluation Modes. This protocol allows scorers from varied backgrounds to
become proficient with RIPScore and the scoring protocol, and reach a standardized per-
formance level similar to that of an expert. This training protocol obviates the requirement
of certified sleep laboratory technicians, helping to reduce analysis costs, while increasing
the feasibility of recruiting new scorers.

v. A method to monitor the ongoing performance of scorers over time. This quality control
measure allows the monitoring of scorers throughout the study to ensure they maintain a
standardized performance. An advantage of this method is the early identification of under-
performing scorers, which might allow for corrective action to assure the analysis quality.

The validation experiment demonstrates that analysis with these tools is accurate, efficient,
and has high intra- and inter- scorer repeatability. These characteristics make our tools appro-
priate for studying respiratory conditions where large datasets (e.g., POA), and multiple scorers
(e.g., longitudinal, multicenter trials) are a necessity.

Comparison to Existing Manual Scoring Tools
Commercially available scoring software is designed to analyze data based on the AASM scor-
ing rules [10]. Using this software, scorers analyze data records and detect clinically relevant
respiratory events such as central, obstructive, and mixed apnea. This analysis does not provide
a comprehensive description of respiratory behavior as a function of time, because it focuses
only on detecting and scoring isolated segments of data. As a result, the AASM analysis ignores
potentially informative data segments. For example short respiratory pauses are not consid-
ered, even though they are more frequent in infants with POA than in controls [20]. Addition-
ally, the AASM rules require scorers to scroll throughout long records and visually detect
candidate events. This strategy is prone to fatigue, leading to missed detections and increased
variability.

In contrast, analysis with RIPScore requires that signals are analyzed continuously, on a
sample-by-sample basis. An advantage of this continuous analysis is that the complete data
record is classified. As a result, the instantaneous respiratory pattern is fully characterized as a
function of time, enabling a comprehensive signals and systems analysis approach to the study
of disorders of respiration such as POA. Additionally, the focus of scorers is changed from
visual detection of events to classification of data segments. This design requires scorers to ana-
lyze all data segments and so it is not possible to miss events. Moreover, contrary to the AASM
rules, our tools impose no arbitrary segment length definitions that may exclude short but rele-
vant segments [20].

Training of Scorers
RIPScore provides an interactive Training Mode that familiarizes trainees with the interface,
provides practice in scoring with immediate feedback using simulated data, and evaluates their
performance. Three scorers with very varied backgrounds were trained in this way. All trainees
reached the desired performance after four 2-hour training/evaluation sessions. Thus, by the
end of training, all 3 scorers regardless of their clinical expertise, reached a standardized perfor-
mance similar to that of the experienced reference scorer (REF). This implies that for large
projects requiring multiple scorers, it should be possible to efficiently train a cadre of naive
scorers to have performance similar to that of an expert.
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Accuracy and Consistency
The scorers used our tools to carry out a comprehensive manual analysis of the pre-processed
validation dataset, comprising 21 infant data records that incorporated quality control seg-
ments with known “true-patterns”; a total of 125 hours of data were manually analyzed twice
per scorer. The ongoing accuracy and consistency of each scorer was assessed by analyzing the
RIP patterns assigned to the quality control “true-pattern” segments. All scorers maintained a
high, relatively constant overall accuracy throughout the analysis of the 42 data records. The
consistency of the two scorers with clinical expertise (SC1 and SC2) was nearly constant
throughout, while the consistency of the third, non-clinical scorer (SC3) quickly rose to a level
similar to that of the other two scorers after 10 data records. The high, nearly constant values
of overall accuracy and consistency are evidence that the training protocol was effective, since
scorers were able to achieve and maintain the desired performance level throughout.

It is noteworthy that for the PAU pattern, SC3 had lower accuracy and consistency for most
of the data records, suggesting that a minimum clinical expertise with infant respiratory pat-
terns may be necessary to maintain the desired performance. Fig 14A and 14B suggest that
even though the PAU-specific performance of SC3 was lower than expected, the initial 3 values
of accuracy and consistency were likely influenced by training since they matched the values of
SC1 and SC2. It was until after the third record that the performance of SC3 dropped. It is pos-
sible that an intervention at this point might have mitigated deterioration in PAU-specific
performance.

Scoring Rate
Wemeasured the rate at which scorers analyzed infant data throughout the study. Scoring was
efficient, occurring at a rate of at least 1 hr of data analyzed in 1 hr. Scorers with no previous
scoring experience gradually increased their rate, with no loss of either accuracy or consistency.
In contrast, the sleep laboratory technician (SC2) maintained a constant rate. We believe that
the design of the RIPScore Scoring Mode interface, which only required a single cursor selec-
tion and one key stroke to score a segment, facilitated this efficient analysis rate.

Repeatability of the Manual Analysis
The repeatability analysis showed that the two scorers with clinical background had very good
intra-scorer repeatability, similar to that of REF. The scorer with no clinical expertise had a
slightly lower intra-repeatability but it was still substantial.

The inter-scorer repeatability was very good in most categories. Indeed, the overall inter-
scorer repeatability was much higher (κ = 0.65) than that reported between expert scorers from
sleep laboratories using conventional scoring tools (κ = 0.31) [22]. For the particular pattern of
PAU, intra- (0.74� κ� 0.79) and inter-scorer (κ = 0.65) repeatability were substantial, which
is relevant for the study of apnea. UNK was the pattern with lowest repeatability. Intra- and
inter-scorer repeatability were also low for SIH, the only pattern requiring a breath-by-breath
manual analysis.

Confusion of Patterns
Analysis of the confusion among RIP patterns found that SYB, ASB, SIH, and PAU were not
often confused with other patterns. MVT and UNK were frequently confused with each other.
This was the main reason for the low repeatability of UNK. This was expected since UNK
grouped ambiguous patterns and segments of low signal quality. Even though this was a
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misclassification, both MVT and UNK correspond to corrupted data segments meant to be
excluded from further analyses.

Additionally, we evaluated the influence of segment length on confusion, and found that
segment length was a factor for only one scorer (SC1), who confused PAU segments longer
than 15 s with UNK. A possible explanation is that SC1 might have interpreted long periods
without respiratory movements as missing data resulting from technical problems, rather than
as long PAU segments.

Implementation and Availability
RIPScore was implemented in MATLAB (The MathWorks Inc., Natick, MA, USA), compiled
as a standalone application, and installed on the scorers’ personal computers for the validation
study. RIPScore and the pre-processing algorithm have been made available as open source,
free of charge software; the manual (S1 Document) and complete function repository (S1
Source Code) are in GitHub (www.github.com/McCRIBS). The standalone application is avail-
able from the authors upon request.

Future Work
A difference between the manual scoring tools presented in this work and the AASMmethod-
ology is that respiratory behavior is classified in terms of 6 mutually exclusive patterns, instead
of the occurrence respiratory events such as apnea. At present, no direct link has been estab-
lished between the 6 patterns and respiratory events. However, the patterns could be post-pro-
cessed to identify respiratory events. For instance, a PAU with duration longer than a
threshold (e.g., 15 s) would define a central apnea. Similarly, a combination of PAU with ASB
would define a mixed obstructive apnea. Future work is necessary to evaluate the utility of a
secondary set of rules based on pattern post-processing for the identification of clinically rele-
vant respiratory events.

A direct application of the tools presented in this paper is the study of POA, and its relation
to postoperative respiratory patterns. There is a variety of evidence suggesting that infants who
experience POA have abnormal postoperative respiratory patterns [2, 20, 48]. Based on this,
one could hypothesize that postoperative respiratory patterns may have information that is
predictive of POA. The manual scoring tools from this paper could be used to investigate this
hypothesis because they provide the means needed to comprehensively describe the respiratory
patterns. Thus, for example, it would be straightforward to extract features from the manual
scoring results related to information of the respiratory patterns such as the frequency of
pauses, the proportion of time spent in each pattern, the relative proportion of synchronous-
versus asynchronous-breathing, or the temporal sequence of patterns. Future work will investi-
gate these and other features extracted from the respiratory patterns, and their ability to predict
POA.

Significance
The tools for manual scoring introduced in this paper provide a comprehensive framework for
the analysis of infant RIP data. These tools offer a significant advance in the study of respira-
tory behavior by providing: a comprehensive analysis method for large data sets, a means for
the training and standardization of scorers, a method for the ongoing monitoring of scorer
consistency and accuracy, and open source access to software and data sets.

Comprehensive Analysis. The tools provide a clear, concise definition of RIP patterns,
and a software application (RIPScore) to locate these patterns along data records. The analyzed
data record represents a sample-by-sample characterization of respiratory behavior as a
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continuous time series of patterns. All data points are classified and thereby significant seg-
ments are not missed. This approach facilitates the study of respiratory behavior from a signals
and systems perspective by enabling the study of the temporal correlation between POA and
the varied respiratory patterns (e.g., the relation between pause frequency and POA). The
development of models that predict POA occurrence becomes possible, and preemptive inter-
ventions to enable preventive actions may follow.

Training & Standardization. The tools can be used to train any person to be a scorer,
regardless of background, to achieve a standardized performance level similar to that of an
expert. The ability to quickly train new scorers recruited from varied backgrounds increases
the availability of potential scorers, thus helping to reduce the analysis cost by obviating the
need for certified sleep laboratory technicians.

Monitoring of Scorer Performance. Another major contribution of this work is that the
manual scoring tools make possible multicenter and longitudinal studies requiring multiple
scorers. Conventional scoring tools have heretofore limited these types of study because of a
low intra- and inter- scorer repeatability [22]. Intra-scorer repeatability is important to ensure
that scorers maintain consistency throughout the period of data analysis. Inter-scorer repeat-
ability is necessary to maintain the consistency of results among multiple scorers. The quality
control method introduced in this work evaluates the ongoing scorer performance on a record-
by-record basis. This quality control tool can identify underperforming scorers at any time
throughout the duration of the study. This timely identification enables investigators to take
corrective actions (e.g., additional training, scorer replacement) to maintain the desired perfor-
mance. This ability will in turn help to reduce intra- and inter-scorer variability.

Open Source Access. Importantly, all the tools presented in this work are openly available
to researchers interested in the analysis of respiratory patterns using RIP, and the study of
POA. In addition to the RIP pattern definitions, scoring rules, representative examples, and
training protocol described in this manuscript; the software, including RIPScore and the pre-
processing method for quality control, are freely available (www.github.com/McCRIBS).
Finally, the library of “true-pattern” data segments, the complete dataset from infants at risk of
POA, the training sessions, and analysis results from the 4 scorers are available from the Dryad
Digital Repository (doi:10.5061/dryad.72dk5).

Conclusion
The tools presented in this work provide an excellent framework for study of infant respiratory
behavior because they: (i) classify all respiratory patterns as a time series, (ii) standardize scorer
performance using a training protocol which employs simulated data, (iii) monitor scoring
repeatability by providing an ongoing quality control supervision of scorers, and (iv) are openly
available and can be readily used in any study involving RIP.

Supporting Information
S1 Fig. Evaluation of manual scoring of Movement Artifact. (A) Accuracy (Fleiss’ κ); (B)
consistency (Fleiss’ κ); and (C) rate (hours of data per hour of scoring). Results are shown for
the 42 data records analyzed (21 files scored twice).
(TIF)

S2 Fig. Evaluation of manual scoring of Unknown. (A) Accuracy (Fleiss’ κ); (B) consistency
(Fleiss’ κ); and (C) rate (hours of data per hour of scoring). Results are shown for the 42 data
records analyzed (21 files scored twice).
(TIF)
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S3 Fig. Evaluation of manual scoring of Synchronous-Breathing. (A) Accuracy (Fleiss’ κ);
(B) consistency (Fleiss’ κ); and (C) rate (hours of data per hour of scoring). Results are shown
for the 42 data records analyzed (21 files scored twice).
(TIF)

S4 Fig. Evaluation of manual scoring of Asynchronous-Breathing. (A) Accuracy (Fleiss’ κ);
(B) consistency (Fleiss’ κ); and (C) rate (hours of data per hour of scoring). Results are shown
for the 42 data records analyzed (21 files scored twice).
(TIF)

S5 Fig. Evaluation of manual scoring of Sigh. (A) Accuracy (Fleiss’ κ); (B) consistency (Fleiss’
κ); and (C) rate (hours of data per hour of scoring). Results are shown for the 42 data records
analyzed (21 files scored twice).
(TIF)

S6 Fig. Individual confusion matrix of scorer SC1. Conditional probability of each respira-
tory inductive plethysmography (RIP) pattern for samples with the consensus pattern of: (A)
synchronous-breathing (SYB), (B) asynchronous-breathing (ASB), (C) pause (PAU), (D) sigh
(SIH), (E) movement artifact (MVT), and (F) unknown (UNK). When there is no confusion,
the consensus pattern has a probability of 1 and the others have probabilities of 0. During total
confusion all patterns have equal probabilities. Standard deviations of all probabilities
were< 0.01.
(TIF)

S7 Fig. Individual confusion matrix of scorer SC2. Conditional probability of each respira-
tory inductive plethysmography (RIP) pattern for samples with the consensus pattern of: (A)
synchronous-breathing (SYB), (B) asynchronous-breathing (ASB), (C) pause (PAU), (D) sigh
(SIH), (E) movement artifact (MVT), and (F) unknown (UNK). When there is no confusion,
the consensus pattern has a probability of 1 and the others have probabilities of 0. During total
confusion all patterns have equal probabilities. Standard deviations of all probabilities
were< 0.01.
(TIF)

S8 Fig. Individual confusion matrix of scorer SC3. Conditional probability of each respira-
tory inductive plethysmography (RIP) pattern for samples with the consensus pattern of: (A)
synchronous-breathing (SYB), (B) asynchronous-breathing (ASB), (C) pause (PAU), (D) sigh
(SIH), (E) movement artifact (MVT), and (F) unknown (UNK). When there is no confusion,
the consensus pattern has a probability of 1 and the others have probabilities of 0. During total
confusion all patterns have equal probabilities. Standard deviations of all probabilities
were< 0.01.
(TIF)

S1 Document. RIPScore user manual. A guide on how to install, run, and configure RIPScore.
The manual also describes the format of files read and produced by RIPScore.
(PDF)

S1 Source Code. RIPScore source code and test data.McGill CardioRespiratory Infant
Behavior Software (McCRIBS) source code including RIPScore and ancillary functions. The
package also includes two test data records.
(ZIP)
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