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Abstract

High-throughput DNA sequencing technologies, coupled with advanced bioinformatics tools, have 

enabled rapid advances in microbial ecology and our understanding of the human microbiome. 

QIIME (Quantitative Insights Into Microbial Ecology) is an open-source bioinformatics software 

package designed for microbial community analysis based on DNA sequence data, which provides 

a single analysis framework for analysis of raw sequence data through publication quality 

statistical analyses and interactive visualizations. In this paper, we demonstrate the use of the 

QIIME pipeline to analyze microbial communities obtained from several sites on the bodies of 

transgenic and wild-type mice, as assessed using 16S rRNA gene sequences generated on the 

Illumina MiSeq platform. We present our recommended pipeline for performing microbial 

community analysis, and provide guidelines for making critical choices in the process. We present 

examples of some of the types of analyses that are enabled by QIIME, and discuss how other 

tools, such as phyloseq and R, can be applied to expand upon these analyses.

2. Introduction

Advances in DNA sequencing technologies, together with the availability of culture-

independent sequencing methods and software for analyzing the massive quantities of data 

resulting from these technologies, have vastly improved our ability to characterize microbial 

communities in many diverse environments. The human microbiota, the collection of 
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microbes living in or on the human body, is of considerable interest: microbial cells 

outnumber human cells in our bodies by a ratio of up to 10 to 1 (Savage, 1977). These 

microbial communities contribute to healthy human physiology (De Filippo, Cavalieri, Di 

Paola, Ramazzotti, Poullet, Massart et al., 2010; Dethlefsen & Relman, 2011; Spencer, 

Hamp, Reid, Fischer, Zeisel, & Fodor, 2011) and development (Dominguez-Bello, Costello, 

Contreras, Magris, Hidalgo, Fierer et al., 2010; Koenig, Spor, Scalfone, Fricker, Stombaugh, 

Knight et al., 2011), and dysbiosis (or imbalance in these communities) is now known to be 

associated with disease, including obesity (Turnbaugh, Hamady, Yatsunenko, Cantarel, 

Duncan, Ley et al., 2009) and Crohn's disease (Eckburg & Relman, 2007). More recently, 

evidence from transplants into germ-free mice suggests that some of these associations may 

be causal, because certain phenotypes can be transmitted by transmitting the microbiota 

(Carvalho, Koren, Goodrich, Johansson, Nalbantoglu, Aitken et al., 2012; McLean, 

Bergonzelli, Collins, & Bercik, 2012; Turnbaugh et al., 2009), even including transmission 

of human phenotypes into mice (Diaz Heijtz, Wang, Anuar, Qian, Bjorkholm, Samuelsson et 

al., 2011; Koren, Goodrich, Cullender, Spor, Laitinen, Backhed et al., 2012; Smith, 

Yatsunenko, Manary, Trehan, Mkakosya, Cheng et al., 2013).

Illumina's MiSeq and HiSeq DNA sequencing instruments respectively sequence tens of 

millions, or billions, of DNA fragments in a single sequencing run (Kuczynski, Lauber, 

Walters, Parfrey, Clemente, Gevers et al., 2012). The rapidly increasing data volumes 

typical of recent studies drives a need for more efficient and scalable tools to study the 

human microbiome (Gonzalez & Knight, 2012a). QIIME (Quantitative Insights Into 

Microbial Ecology) (Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello et al., 

2010b) is an open-source pipeline designed to provide self-contained microbial community 

analyses, from interacting with raw sequence data through publication-quality statistical 

analyses and visualizations.

QIIME integrates commonly used third-party tools, and implements many diversity metrics, 

statistical methods, and visualization tools for analyzing microbial data. Consequently, most 

individual steps in the microbial community analysis can be performed in multiple ways. 

Here, we describe how samples are prepared for an Illumina MiSeq run, the QIIME pipeline, 

and our view of the current best practices for analyzing microbial communities with QIIME. 

Although there are other pipelines available, including mothur (Schloss, Westcott, Ryabin, 

Hall, Hartmann, Hollister et al, 2009), the RDP tools (Olsen, Larsen, & Woese, 1991; Olsen, 

Overbeek, Larsen, Marsh, McCaughey, Maciukenas et al., 1992), ARB (Ludwig, Strunk, 

Westram, Richter, Meier, Yadhukumar et al., 2004), VAMPS (Sogin, Welch, & Huse, 

2009), and other platforms, in this review we focus on analysis with the MiSeq platform and 

QIIME as this combination is increasingly popular as a method for analyzing microbial 

communities and a detailed comparison of other available pipelines and sequencing 

platforms is beyond the scope of the present work.

3. QIIME as integrated pipeline of third party tools

An early barrier to adoption of QIIME was that it was difficult to install, in part because of 

the large number of software dependencies (third party packages that need to be installed 

before QIIME is operational). The large number of dependencies was, however, a deliberate 
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choice made during QIIME development. To build a pipeline for sequence analysis that 

encompasses the many steps from sequence collection, curation, and statistical analysis, the 

user must consider many existing tools that have been developed to perform specific 

functions, and extensively benchmarked on their ability to perform these functions, such as 

the UCLUST program for clustering sequences into Operational Taxonomic Units (OTUs) 

(Edgar, 2010). A pipeline thus has two options: either re-implement the algorithm, or use the 

existing software (by creating a “wrapper” that allows its input and output to be incorporated 

into the pipeline). The QIIME developers choose to wrap all the algorithms rather than re-

implement them. This choice preserves the integrity of the programs that make up the 

pipeline, as there is no doubt that the tool being used is the one designed, created, and tested 

by the original authors, and, in most cases, peer-reviewed by the scientific community. The 

reuse of existing software also allows the QIIME pipeline to include and distribute newly 

developed and improved algorithms more rapidly than would be possible if each algorithm 

had to be re-implemented and re-tested to check that it matched the original. Thus QIIME 

users can be sure that they have the most up-to-date tools for their analysis, and can credit 

the authors of the component software packages appropriately.

One important, but sometimes poorly understood, aspect of the QIIME pipeline is that it 

wraps algorithms and tools produced by other researchers into a single pipeline for sequence 

analysis. It is therefore important to cite the individual tools that you use as well as QIIME 

itself. For example, an analysis using the default QIIME parameters (Caporaso et al., 

2010b)would use uclust (Edgar, 2010) to cluster the sequences against the GreenGenes 

database (DeSantis, Hugenholtz, Larsen, Rojas, Brodie, Keller et al., 2006), assign 

taxonomy using the RDP classifier (Wang, Garrity, Tiedje, & Cole, 2007), and build PCoA 

beta diversity plots using Uni Frac (Lozupone & Knight, 2005). It is important for 

researchers who are considering contributing to the QIIME pipeline to recognize that their 

contributions will be cited, so that they can continue to expand upon their work. For 

example, the pick_otus.py script alone offers a choice of nine different clustering 

algorithms, each developed by researchers who should be acknowledged if their particular 

algorithm is used.

For taxonomy databases and other reference databases, including GreenGenes, it is also 

important to cite the release version that you are using (DeSantis et al., 2006), not least 

because the results will change depending on which release you used, and others may not be 

able to reproduce your results without this information. For GreenGenes, the default 

taxonomy database in QIIME, the version is named after the release date, such as the 12_10 

release. The latest version of GreenGenes can always be downloaded from the qiime.org 

website. Using the same GreenGenes reference database version is critical for comparisons 

of taxonomy assignments and OTUs across different studies. For this reason, all the studies 

in the QIIME database are always processed against the same release version of 

GreenGenes.

An overview of some of the key tools used by the default QIIME pipeline follows:

• UCLUST (Edgar, 2010). Used for OTU picking.

• USEARCH (Edgar, 2010). Used for OTU picking and chimera checking.

Navas-Molina et al. Page 3

Methods Enzymol. Author manuscript; available in PMC 2015 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• RDP Classifier (Wang et al., 2007). Used for taxonomy assignment.

• GreenGenes Database (DeSantis et al., 2006). Used as a reference database for 

taxonomy assignment and reference-based OTU picking (see below).

• PyNAST (Caporaso, Bittinger, Bushman, DeSantis, Andersen, & Knight, 2010a). 

Used for multiple sequence alignment.

• UniFrac (Lozupone et al., 2005). Used as a phylogenetic metric for beta diversity 

analysis.

4. PCR and sequencing on Illumina MiSeq

Microbial community analysis typically begins with the extraction of DNA from primary 

samples (note that although most of this DNA comes from cells in the sample, some may 

consist of dead cells or extracellular DNA, so the representation of the active community 

from these sources is not perfect). Although methods for DNA extraction vary, several large 

initiatives such as the Earth Microbiome Project (Gilbert, Meyer, Antonopoulos, Balaji, 

Brown, Brown et al., 2010; Gilbert, Meyer, Jansson, Gordon, Pace, Tiedje et al., 2010) and 

the Human Microbiome Project (Human Microbiome Project, 2012a, 2012b; Turnbaugh, 

Ley, Hamady, Fraser-Liggett, Knight, & Gordon, 2007) have standardized on the MOBIO 

PowerSoil DNA extraction kit (www.mobio.com) to efficiently recover DNA from a wide 

range of sample types. After extraction, samples are PCR amplified under permissive 

conditions with primers containing the MiSeq sequencing adapters, a 12-nucleotide Golay 

barcode (first introduced in Fierer, Hamady, Lauber, and Knight (2008)) on the forward 

primer, followed by the bases matching the 16S rRNA gene; the reverse primer is not 

barcoded (Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer et al., 2012). The 

annealing temperature is set to 50°C, which in our hands minimizes PCR artifacts (both 

primer dimer and background ‘smear’) while encouraging the primers to anneal to the 

largest diversity of sequences possible. Similarly, we believe that including sequencing 

adaptors and barcodes in the PCR step has advantages over multiple enzymatic treatments of 

the 16S amplicon that are otherwise needed to introduce adaptors and barcodes after PCR. 

The first, and most important consideration is the reduction of sample handling, which 

lowers the chance of contamination, mislabeling and loss of small-volume samples during 

preparation. Combining the adapters and barcodes in the PCR step allows for exact well-to-

well mapping of samples to primers, providing a standardized way to track sample-barcode 

combinations through library preparation, an important consideration when sequencing 

hundreds to thousands of samples using 96- or 384-well sample preparation formats.

Because the MiSeq can generate a large number of sequences per run, many samples can be 

multiplexed on each single sequencing run. The choice of barcodes thus deserves some 

attention. For instance, homebrew ‘barcodes’ can be as simple as using an arbitrary 

sequence of known nucleotides placed at the front of the amplicon and fed into an 

informatics pipeline for detection. Although simple, this approach has limited ability to 

detect sequencing error (Caporaso et al., 2012), and increases the risk of misassignment of a 

sequence to the wrong sample. The use of error correcting barcodes, such as Hamming 

(Hamady, Walker, Harris, Gold, & Knight, 2008) or Golay codes (Caporaso et al., 2012), 

allows the user to detect and correct errors in the barcode, decreasing the chances that a 
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sequence is assigned to the wrong sample. Error-correcting barcodes also allow the user to 

retain more sequences, because 8-nucleotide Hamming codes can detect and correct 2 and 1 

bit errors, respectively (Hamady et al., 2008), and 12-nucleotide Golay codes can detect and 

correct 4 and 3 bit errors, respectively (Hamady & Knight, 2009). With the unique Golay 

codes described in Caporaso et al., (2012), up to 2167 samples could be multiplexed on a 

single MiSeq run at a depth of 4600 per sample, certainly sufficient to detect the effects of 

many biological phenomena of interest (Kuczynski, Costello, Nemergut, Zaneveld, Lauber, 

Knights et al., 2010a; Kuczynski, Liu, Lozupone, McDonald, Fierer, & Knight, 2010b). As 

the QIIME default settings detect Golay barcodes, we encourage the use of these codes 

when possible to maximize sequence retention and assignment accuracy.

Detailed instructions for loading the MiSeq for amplicon runs with custom barcodes can be 

found on the Earth Microbiome Project website (www.earthmicrobiome.org). Briefly, 

pooled libraries are analyzed by Bioanalyzer (Agilent Technologies) and diluted to 2 ηM 

quantitated by use of a Qubit Fluorometer (Life Technologies, High Sensitivity reagents). 

The phiX spike-in library (Illumina Inc.) is also diluted to 2 ηM prior to use. Denaturation of 

the pooled 16S rRNA gene amplicon libraries and the phiX control is performed according 

to manufacturer's instructions (Illumina Inc.), giving a denatured template concentration of 

20ρM. Denatured templates are further diluted to 5 ρM (using Illumina HT1 buffer) and 

subsequently combined to give an 85% 16S rRNA gene amplicon library and 15% phiX 

control pool (1000 μL total volume). Improvements in the Illumina analysis software may 

allow reduction of this phiX spike-in, allowing more of the sequences to be used for 16S 

rRNA gene amplicons.

MiSeq reagent cartridges are prepared according to the manufacturer's instructions (Illumina 

Inc.). The sample pool (1000 μL total volume) is loaded in to cartridge position 17. Custom 

16S rRNA gene Read 1, Index Read, and Read 2 sequencing primers are added directly to 

cartridge wells containing the standard Illumina Read 1, Index Read, and Read 2 sequencing 

primers (wells 12, 13 and 14 respectively, 5 μL each primer at 100 μM concentration 

(Caporaso et al., 2012)). Primers are added to wells using a long gel loading tip, and gently 

mixed using a plastic Pasteur pipette. Care must be taken to assure that reagents in the 

cartridge are localized to the bottom of the wells, and that no bubbles are present.

The spike-in of PhiX, at least at low levels, is still critical for obtaining usable amplicon data 

because the optics require diversity at each nucleotide position, which is not possible with 

absolutely conserved nucleotides within the 16S rRNA gene (or most other genes of 

interest). Many users have had difficulty mixing this protocol for custom amplicons with 

Illumina's own indexing protocol, which allows a maximum of 96 samples to be multiplexed 

per run at the time of writing. It is critical to use either this protocol exactly (allowing 

arbitrary numbers of custom barcodes) or to use Illumina's barcoding protocol, but not to 

mix and match steps and reagents.

5. QIIME workflow for conducting microbial community analysis

The Illumina MiSeq technology can generate up to 107 sequences in a single run (Kuczynski 

et al., 2012). QIIME takes the instrument output, and generates useful information about the 
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community represented in each sample. At a coarse-grained level, we divide this process 

into “upstream” and “downstream” stages (Figure 1). The upstream step includes all the 

processing of the raw data (sequencing output), and generating the key files (OTU table and 

phylogenetic tree) for microbial analysis. The downstream step uses the OTU table and 

phylogenetic tree generated in the upstream step to perform diversity analysis, statistics and 

interactive visualizations of the data. Additionally, QIIME increasingly interfaces with other 

packages such as IPython and R, allowing additional analyses to be conducted.

To illustrate some of the main features of QIIME, together with some of the analyses that 

can be performed outside QIIME, we use an example dataset consisting of samples from 

different body sites of 12 mice: the oral cavity, ileum, cecum, colon, fecal pellet, skin and 

whole mouse sample by homogenizing the mouse carcass. 7 mice were wild type genotype 

(WT from here so on), while the 5 remaining mice were transgenic (TG from here so on). 

The samples were collected by students during the IQ-Bio course taught by Manuel Lladser 

and Rob Knight during Spring 2013 at University of Colorado at Boulder (course identifiers: 

APPM5720-001-2013, CHEM4751-001-2013, CHEM5751-001-2013, CSCI4830-006-2013, 

CSCI7000-006-2013, MCDB6440-001-2013).

5.1. Upstream analysis steps

The QIIME analysis workflow starts with the sequencing output (fastq files), and a user-

generated mapping file. The mapping file contains information for understanding what is in 

each sample and is therefore critical for performing the rest of the analyses; it is in tab-

delimited text format. The main information in this file is a unique identifier for each 

sample, the barcode used for each sample, the primer sequence used, and a description for 

each sample, together with additional user-defined information that is necessary for 

understanding the results such as which species the sample was taken from, which site on 

the body is being studied, clinical variables relevant to the study, etc. The sample identifier, 

barcode and primer sequence information are required for the first step of the QIIME 

workflow. This preprocessing step combines sample demultiplexing, primer removal and 

quality-filtering. Additional information provided about the samples in the mapping file is 

helpful for later steps, especially for analyses that aggregate the samples by these fields (for 

example, comparing lean to obese subjects). We therefore recommend including as much 

additional data about the samples as possible (often called “sample metadata”).This 

auxiliary information is also very useful for identifying contaminated samples. For example, 

SourceTracker (Knights, Kuczynski, Charlson, Zaneveld, Mozer, Collman et al., 2011b) is a 

package included in QIIME that identifies the proportion of different community sources, 

including contamination, in each sample based on a database of samples from known 

communities.

5.1.1. De-multiplexing and quality filtering—As mentioned above, high-throughput 

sequencing allows multiple samples to be combined in a single sequencing run (Kuczynski 

et al., 2012). However, each sequence must then be linked back to the individual sample that 

it came from via a DNA barcode. The barcodes, which are short DNA sequences unique to 

each sample, are incorporated into each sequence from a given sample during PCR. QIIME 

uses the barcodes in the mapping file to demultiplex, i.e. to assign the sequences back to the 
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samples they are derived from, using error-correcting codes where available (as noted 

above). QIIME is also able to demultiplex variable-length barcodes such as those used in the 

HMP: see Variable-length barcodes in Other features below.

During demultiplexing, QIIME removes the barcodes and primer sequences because they 

are not needed in later steps. Thus, the result after demultiplexing is a sequence matching the 

amplified 16S rRNA gene.

The third part of preprocessing is quality-filtering. Quality-filtering improves diversity 

estimates with Illumina sequencing substantially (Bokulich, Subramanian, Faith, Gevers, 

Gordon, Knight et al., 2013). Illumina instruments, like most sequencing instruments, 

generate a quality score for each nucleotide (Phred), related to the probability that each 

nucleotide was read incorrectly. QIIME uses the Phred score and user-defined parameters to 

remove sequence reads that do not meet the desired quality. These user-defined parameters 

are: the percentage of consecutive high quality base calls (p), the maximum number of 

consecutive low quality base calls (r), the maximum number of ambiguous bases (typically 

coded as N) (n) and the minimum Phred quality score (q). For a detailed discussion of how 

these parameters affect diversity results, see Bokulich et al. (2013). This study recommends 

standard values for these parameters as r = 3, p = 75%, q = 3 and n = 0, which are the 

default values in the QIIME pipeline. However, the optimal values for these parameters can 

vary both for individual sequencing runs and for different downstream analyses: for 

example, analyses such as machine learning benefit from larger numbers of low-quality 

sequences, whereas accurate counts of OTUs from a mock community require fewer, 

higher-quality sequences. Table 1 contains an overview of the guidelines presented in 

Bokulich et al. (2013) for tuning these parameters to a given dataset.

The Illumina quality filtering approach differs in its fundamental principles from 454 

denoising (Quince, Lanzen, Curtis, Davenport, Hall, Head et al., 2009; Reeder & Knight, 

2010). 454 denoising is based on flowgram clustering (Quince et al., 2009; Quince, Lanzen, 

Davenport, & Turnbaugh, 2011) and is primarily targeted at reducing homopolymer runs, 

which are not a problem on the Illumina platform to the same extent. In contrast, the 

Illumina quality filtering is based on a per-base Phred quality score and does not target 

indels.

The QIIME quality filtering process works as follows. Starting at the beginning of the 

sequence, QIIME checks that the next r Phred values exceed the user-defined quality 

threshold q. If the test is positive, it continues slicing the window of r bases until the test 

fails, or the end of the sequence is reached. The sequence is then trimmed to the last base 

that met the quality threshold. The next test determines whether the length of the trimmed 

sequence exceeds p, expressed as the percentage of length of the raw sequence. If this check 

fails, the sequence is excluded. Otherwise, QIIME performs the last check on the sequence, 

which counts the number of ambiguous characters (N) in the trimmed sequence and checks 

that it is less than n. If the test fails, the sequence is rejected. QIIME combines the de-

multiplexing, primer removal and quality filtering processes in a single script, 

split_libraries_fastq.py:
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split_libraries_fastq.py -i $PWD/

IQ_Bio_16sV4_L001_sequences.fastq.gz -b $PWD/

IQ_Bio_16sV4_L001_sequences_barcodes.fastq.gz -m $PWD/

IQ_Bio_16sV4_L001_map.txt -o $PWD/slout --rev_comp_mapping_barcodes

In our example dataset, we used the --rev_comp_mapping_barcodes option in order to 

indicate that the barcodes present in the mapping file are reverse complements of Golay 12 

barcodes. We used the recommended default parameters for quality filtering on this dataset. 

However, to change the values for the r, p, n and q quality filtering parameters, we can use 

the -r, -p, -n and -q options to the script. This command will write a FASTA-formatted file 

in the slout folder, called seqs.fna, which contains the demultiplexed sequences that pass the 

quality filter. Each sequence contains the information about which sample it came from 

encoded in the name of the sequence.

Multiple lanes of Illumina fastq data can be processed together in a single call to the script, 

just by passing the sequence files, the barcode files and the mapping files in the same order 

to the -i, -b and -m options, respectively. For example, with two lanes, the command would 

look like:

split_libraries_fastq.py -i sequences1.fastq,sequences2.fastq -b 

sequences1_barcodes.fastq,sequences2_barcodes.fastq -m 

mapping1.txt,mapping2.txt -o slout

The user can check how many sequences have been demultiplexed and passed quality-

filtering by using the count_seqs.py command. This command also shows the mean and 

standard deviation of the sequence length:

count_seqs.py -i $PWD/slout/seqs.fna

12687021 :slout/seqs.fna (Sequence lengths (mean +/- std): 150.9989 

+/- 0.1715)

12687021 : Total

5.1.2. OTU picking—The next step is clustering the preprocessed sequences into 

Operational Taxonomic Units (OTUs), which in traditional taxonomy represent groups of 

organisms defined by intrinsic phenotypic similarity that constitute candidate taxa (Sneath & 

Sokal, 1973; Sokal & Sneath, 1963). For DNA sequence data, these clusters, and hence the 

OTUs, are formed based on sequence identity. In other words, sequences are clustered 

together if they are more similar than a user-defined identity threshold, presented as a 

percentage (s). This level of threshold is traditionally set at 97% of sequence similarity, 

conventionally assumed to represent bacterial species (Drancourt, Bollet, Carlioz, Martelin, 

Gayral, & Raoult, 2000); other levels approximately represent other taxa, although the fit 

between molecular data and traditional taxonomy varies for different taxa. QIIME supports 

three approaches for OTU picking (de novo, closed-reference and open-reference), and 

multiple algorithms for each of these approaches (Table 2). The de novo approach (Figure 

2a) groups sequences based on sequence identity. The closed-reference approach (Figure 2b) 
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matches sequences to an existing database of reference sequences. If a sequence fails to 

match the database, it is discarded. The open-reference approach (Figure 2c) also starts with 

an existing database and tries to match the sequences against them. However, if a sequence 

does not match the database, it is added to the database as a new reference sequence.

The OTU picking strategies shown in Figure 2 are built on top of algorithms for de novo 

clustering. Of the various algorithms available, the furthest-neighbor, average-neighbor or 

nearest neighbor in mothur (Schloss & Handelsman, 2005; Schloss et al., 2009) (also named 

complete linkage, average linkage, and single linkage respectively) are the most widely 

used. Furthest-neighbor requires that each sequence is closer than the distance threshold to 

every other sequence already in the OTU (Figure 3). Average-neighbor requires that the 

average pairwise distance of all sequences in the OTU is closer than the distance threshold. 

Nearest-neighbor requires that each sequence is closer than the distance threshold to any 

sequence already in the OTU. Because these three algorithms are variants on hierarchical 

clustering, they require loading the distance matrix (proportional to the square of the number 

of dereplicated sequences) into memory, and are therefore challenging to apply to large 

datasets (e.g., larger than 105 sequences). The OTUs yield by these three algorithms also 

change their memberships at different sequencing depths (i.e. the number of sequences 

chosen for clustering), which can be a problem for estimates of total OTU numbers (Roesch, 

Fulthorpe, Riva, Casella, Hadwin, Kent et al., 2007).

A solution to the distance matrix problem comes from uclust and usearch, which are greedy 

algorithms based on using a single centroid in each OTU (Edgar, 2010). The centroid could 

be either from a reference database (usearch) or identified de novo from the sequence dataset 

(both uclust and usearch) (Figure 3). Sequences are serially compared to centroids in a user-

defined order (usually decreasing abundance). If a sequence falls within the distance 

threshold of more than one centroid, the new sequence can either be grouped with the first 

centroid encountered, or the one with the closest distance. Both uclust and usearch are much 

more efficient than the hierarchical methods, and they do not need to load a large distance 

matrix into memory (although recent versions of mothur also avoid the constraint of loading 

the full distance matrix). usearch is the default de novo OTU picking method in QIIME. 

Note that it is essential to note both your OTU picking strategy, and, if de novo OTU picking 

is used, which algorithm you used to do it: it is not sufficient simply to state that you used a 

97% threshold.

Because the OTU picking approach selection is a critical point in microbial community 

analysis, the QIIME team has produced a detailed document that describes the OTU picking 

protocols, their advantages and limitations (https://github.com/qiime/qiime/blob/master/doc/

tutorials/otu_picking.rst). Table 3 compares the different OTU picking approaches and gives 

guidelines for choosing an appropriate OTU picking strategy.

The recommended OTU picking approach is open-reference OTU picking, because this 

approach provides the best trade-off between the time taken to complete the analysis and the 

ability to discover novel diversity.
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Once the sequences have been clustered into OTUs, a representative sequence is picked for 

each OTU. The entire cluster will thus be represented by a single sequence, speeding up 

subsequent steps (because redundant sequences need not be considered). QIIME allows the 

representative sequence to be selected using several techniques: choosing a sequence at 

random, choosing the longest sequence, the most abundant sequence or the first sequence. If 

using uclust or usearch (Edgar, 2010), the cluster seed will be used as the representative 

sequence. The default behavior in QIIME is to use the most abundant sequence in each OTU 

as the representative sequence, because these sequences are least likely to represent 

sequencing errors (for other applications, such as clustering with near-full-length Sanger 

sequences, it may be more desirable to pick the longest sequence instead). In case of closed-

reference OTU picking, sequences from the reference collection should be used as the 

representative sequences, which is the default behavior when the closed-reference approach 

is selected.

5.1.3. Identify chimeric sequences—During the PCR amplification process, some of 

the amplified sequences can be produced from multiple parent sequences, generating 

sequences known as chimeras. Although these sequences are technical artifacts rather than 

representing actual members of the community, chimeric sequences are important for alpha 

diversity estimates (although they are less important for cross-sample comparisons, because 

each chimera is relatively rare and the same chimera is unlikely to be generated 

systematically in different samples (Ley, Hamady, Lozupone, Turnbaugh, Ramey, Bircher et 

al., 2008). However, the same chimera can sometimes be generated in multiple PCR 

reactions: for example, Haas et al. (2011) reported that chimeric sequences formed from 

Streptococcus and Staphylococcus occurred multiple times independently, so presence of the 

same sequence in multiple PCRs does not mean that it is not chimeric.

QIIME currently supports three different methods for detecting chimeras: blast fragments, a 

taxonomy-assignment-based approach using BLAST (Altschul, Gish, Miller, Myers, & 

Lipman, 1990); ChimeraSlayer (Haas et al., 2011), which uses BLAST to identify potential 

chimera parents; and usearch 6.1 (Edgar, 2010), which can perform de novo chimera 

detection based on abundances as well as reference-based chimera detection. The 

recommended method for identifying chimeric sequences is uchime (Edgar, Haas, Clemente, 

Quince, & Knight, 2011), which is integrated in the usearch 6.1 (Edgar, 2010) pipeline. 

Uchime is the fastest method for detecting chimeric sequences and it is executed by default 

if the usearch method is selected for picking OTUs.

5.1.4. Taxonomy assignment—The next step in the QIIME workflow is to assign the 

taxonomy to each sequence of the representative set. This step connects the OTUs to named 

organism, which is useful for inferring likely functional roles for members of the 

community. When using a closed-reference approach for OTU picking, the taxonomy of the 

sequences can be pulled out from the reference set. In case of the open-reference and de 

novo approaches, because the clusters are not created from any reference database (as a 

reminder, in the open-reference approach, sequences that fail to cluster to the reference 

database form new clusters), the taxonomy should be assigned using a reference dataset. We 

recommend the GreenGenes database (DeSantis et al., 2006; McDonald, Price, Goodrich, 
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Nawrocki, DeSantis, Probst et al., 2012b) as the default reference data set for assigning 

taxonomy, although the RDP (Cole, Wang, Cardenas, Fish, Chai, Farris et al., 2009) and 

Silva (Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza et al., 2013) databases also have 

strengths and weaknesses relative to GreenGenes and should be considered for some 

analyses. Silva includes microbial eukaryotes and has invested substantial effort in cleaning 

up marine taxa; RDP has close links to formally recognized names in taxonomy, which can 

be especially useful for medical microbiology. QIIME can assign taxonomy against any of 

the given databases, or against a custom database, using several methods: BLAST (Altschul 

et al., 1990), RDP Classifier (Wang et al., 2007), rtax (Soergel, Dey, Knight, & Brenner, 

2012), mothur (Schloss et al., 2009) and tax2tree (McDonald et al., 2012b). The QIIME 

team recommends the RDP classifier method (Wang et al., 2007) with a confidence value of 

0.8. However, if the user has paired-end reads, the best method to use is the rtax (Soergel et 

al., 2012), and the user should provide the fasta files with both the first and second read 

from the paired-end sequencing. Note that the taxonomy assignment method and the 

reference database must both be described in order for an analysis to be reproducible, and 

that these methods can have a larger effect on taxonomy than the underlying biological 

sample, so it is important to be consistent (Liu, DeSantis, Andersen, & Knight, 2008).

5.1.5. Sequence alignment—The next step in the QIIME workflow is to align the 

sequences. The sequences must be aligned to infer a phylogenetic tree, which is used for 

diversity analyses and to understand the relationships among the sequences in the sample. 

Currently, QIIME supports the following methods for performing sequence alignment: 

PyNAST (Caporaso et al., 2010a), Infernal (Nawrocki, Kolbe, & Eddy, 2009), clustalw 

(Larkin, Blackshields, Brown, Chenna, McGettigan, McWilliam et al., 2007), muscle 

(Edgar, 2004) and mafft (Katoh, Misawa, Kuma, & Miyata, 2002). The recommended (and 

default) method is PyNAST (Caporaso et al., 2010a). This method aligns the sequences 

against a template sequence alignment, for which we recommend the GreenGenes core set 

(DeSantis et al., 2006).

When sequences do not align well using PyNAST, the Infernal package (Nawrocki et al., 

2009) should be used. Like PyNAST, it requires a template alignment, but unlike PyNAST, 

it uses stochastic context-free grammars (SCFGs) to align incorporating secondary structure. 

Although this method is slow compared to other methods, it does takes advantage of RNA 

secondary structure (provided in a Stockholm-format file) and can be useful for aligning 

more variable rRNAs. For marker genes other than rRNA genes, the best strategy for 

building phylogenetic trees is to align the protein sequences (if available) using MUSCLE.

5.1.6. Phylogeny construction—This step in the QIIME workflow infers a 

phylogenetic tree from the multiple sequence alignment generated by the previous step. The 

phylogenetic tree represents the relationships among sequences in terms of the amount of 

sequence evolution from a common ancestor. This phylogenetic tree is used in many 

downstream analyses, such as the UniFrac metric (Lozupone et al., 2005) for beta diversity.

The current methods supported for inferring the phylogenetic tree in QIIME are FastTree 

(Price, Dehal, & Arkin, 2009), clearcut (Evans, Sheneman, & Foster, 2006), clustalw 

(Larkin et al., 2007), raxml (Stamatakis, Ludwig, & Meier, 2005) and muscle (Edgar, 2004). 
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The default and recommended method in QIIME is the FastTree (Price et al., 2009) method 

because it shows the best trade-off between run time and reliability of the inferred tree.

5.1.7. Make OTU table—The last part of the upstream stage in QIIME is to construct the 

OTU table. The OTU table is a sample by observation matrix that also includes the 

taxonomic prediction for each OTU. For the OTU table representation, QIIME uses the 

Genomics Standards Consortium candidate standard Biological Observation Matrix 

(BIOM) format (McDonald, Clemente, Kuczynski, Rideout, Stombaugh, Wendel et al., 

2012a). The OTU table, the mapping file and the phylogenetic tree, are the main files for 

performing the downstream analysis.

QIIME can perform all the steps for generating the OTU table and the phylogenetic tree 

from the preprocessed data in a single command. There is a separate command for each 

OTU picking approach. In the following commands, we assume that the GreenGenes 

reference files (DeSantis et al., 2006) are located in the current directory. As a remainder, 

our seqs.fna has 12.687.021 sequences of length 150.9989 +/- 0.1715:

• For de novo (run time ∼80 hours on 1 processor (not parallelizable)):

pick_de_novo_otus.py -i $PWD/slout/seqs.fna -o $PWD/

denovo_otus

• For closed-reference (run time ∼2 hours on 20 processors):

pick_closed_reference_otus.py -i $PWD/slout/seqs.fna -o $PWD/

closed_ref_otus -r

$PWD/gg_12_10_otus/rep_set/97_otus.fasta -t

$PWD/gg_12_10_otus/taxonomy/97_otu_taxonomy.txt -a -O 20

• For open-reference (run time ∼27 hours on 20 processors):

pick_open_reference_otus.py -o $PWD/open_ref_otus -i $PWD/

slout/seqs.fna -r $PWD/gg_12_10_otus/rep_set/97_otus.fasta -a 

-O 20

Because the closed-reference and open-reference OTU picking approaches can be run in 

parallel, we use the -a and -O 20 options in order to run them using 20 processors.

5.2. Downstream analysis steps

Once we have generated the OTU table and the phylogenetic tree, we can start the 

downstream analysis. At this point, we strongly recommend performing a second level of 

quality-filtering, based on OTU abundance. The recommended procedure is to discard those 

OTUs with a number of sequences less than 0.005% of the total number of sequences (see 

Bokulich et al. (2013) for a detailed description of the effect of this parameter in further 

downstream analyses). QIIME executes the OTU abundance quality-filtering step through 

the script filter_otus_from_otu_table.py:

filter_otus_from_otu_table.py -i
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$PWD/open_ref_otus/otu_table_mc2_w_tax_no_pynast_failures.biom -o

$PWD/open_ref_otus/otu_table_filtered.biom --min_count_fraction 

0.00005

This step greatly reduces the problem of spurious OTUs, most of which are present at very 

low abundance.

QIIME 1.7.0 allows a first-pass view of common diversity analyses using a single 

command: core_diversity_analysis.py. One of the parameters required by this 

command is the sampling depth, the number of sequences that should be included in each 

sample for diversity analyses. This is required, because many of the commonly used 

diversity metrics are very sensitive to the number of sequences obtained per sample, such 

that samples that are similar in the number of sequences that were obtained appear similar to 

one another. This is bad because the number of sequences per sample is typically a 

methodological artifact, not reflective of biological reality. The sampling depth defines the 

size of the random subset of sequences that will be selected for each sample for all 

subsequent diversity analyses.

The optimal sampling depth is data-dependent. There is no universal way of choosing a 

rarefaction level, although heuristics can be applied. For example, if most samples have 

more than 10,000 sequences and the rest range from 500 to 50 sequences per sample, it 

would be recommended to use 10,000 as the rarefaction level. Although many studies show 

marked variation in sequence depth with only a few “bad” samples, it is not always easy to 

choose the rarefaction level. We strongly recommend rarefying over 1000 sequences/sample 

for Illumina MiSeq, because samples below this level often suffer from other quality issues 

as well.

The information needed to choose the rarefaction level can be obtained from the script 

print_biom_table_summary.py, which shows summary information on the OTU table 

such as the number of sequences, the number of OTUs, the number of samples and the 

number of counts per sample, among others:

print_biom_table_summary.py -i $PWD/open_ref_otus/

otu_table_filtered.biom

Num samples: 90

Num observations: 783

Total count: 10637688.0

Table density (fraction of non-zero values): 0.4289

Table md5 (unzipped): eb0f1d7fbb50bc31695dade31db1e198

Counts/sample summary:

 Min: 1.0

 Max: 493427.0
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 Median: 99111.0

 Mean: 118196.533333

 Std. dev.: 94277.5956531

 Sample Metadata Categories: None provided

 Observation Metadata Categories: taxonomy

Counts/sample detail:

 BLANK4.732555: 1.0

 BLANK5.732537: 1.0

 Joshua.Jose.WTAbd.732533: 1.0

 Nick.Krishna.TG.Fec.732513: 2.0

 TH.CVA.WT.Oral.732491: 2.0

 BLANK2.732552: 3.0

 BLANK3.732479: 5.0

 BLANK6.732470: 7.0

 Elizabeth.Chris.WT.Abd.732490: 10.0

 Uri.Jake.TGAbd.732468: 10.0

 TH.CVA.WT.Abd.732477: 13.0

 BLANK10.732524: 812.0

 Elizabeth.Chris.WT.Oral.732520: 7410.0

 Elizabeth.Chris.WT.Col.732481: 21746.0

Jordan.Lisette.TG.Ile.732463: 27149.0

…

 TH.CVA.WT.Fec.732553: 372327.0

 Wang.TG.Cec.732527: 396391.0

 TH.CVA.WT.Ile.732517: 493427.0

In the above output we can see the information contained in the OTU table resulting from 

applying the open-reference OTU picking. Some of the relevant information contained in 

this output is the total number of samples (90), the total number of OTUs (783), the number 

of reads (10637688) and the number of OTUs per sample. Applying the above heuristic, we 

could select a subsampling depth of 7410 sequences. However, because we have run three 

different OTU picking approaches and we want to compare them, we must search for the 

rarefaction level that best fits the three OTU tables. Below are the summarized information 

for the de novo OTU table and the closed reference OTU table, respectively:
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print_biom_table_summary.py -i $PWD/denovo_otus/

otu_table_filtered.biom

Num samples: 93

Num observations: 600

Total count: 11122386.0

Table density (fraction of non-zero values): 0.4344

Table md5 (unzipped): b002dd85c93fd9d0571ff23b05d21dde

Counts/sample summary:

 Min: 0.0

 Max: 497234.0

 Median: 108322.0

 Mean: 119595.548387

 Std. dev.: 93487.3335598

 Sample Metadata Categories: None provided

 Observation Metadata Categories: taxonomy

Counts/sample detail:

 BLANK7.732497: 0.0

 BLANK8.732522: 0.0

 Jordan.Lisette.TG.Abd.732467: 0.0

 BLANK4.732555: 1.0

 BLANK5.732537: 1.0

 Joshua.Jose.WTAbd.732533: 1.0

 BLANK2.732552: 3.0

 Nick.Krishna.TG.Fec.732513: 3.0

 TH.CVA.WT.Oral.732491: 3.0

 BLANK3.732479: 5.0

 BLANK6.732470: 9.0

 Elizabeth.Chris.WT.Abd.732490: 10.0

 Uri.Jake.TGAbd.732468: 10.0

 TH.CVA.WT.Abd.732477: 13.0

 BLANK10.732524: 825.0
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 Elizabeth.Chris.WT.Oral.732520: 7376.0

 Joey.Aaron.Kyle.WT.Abd.732541: 35655.0

…

 Wang.TG.Cec.732527: 394351.0

 TH.CVA.WT.Ile.732517: 497234.0

print_biom_table_summary.py -i $PWD/closed_ref_otus/

otu_table_filtered.biom

Num samples: 90

Num observations: 673

Total count: 9434459.0

Table density (fraction of non-zero values): 0.4250

Table md5 (unzipped): 257b528478a2700c72f979ce8d9a9a1c

Counts/sample summary:

 Min: 1.0

 Max: 347785.0

 Median: 90092.0

 Mean: 104827.322222

 Std. dev.: 78560.4683831

 Sample Metadata Categories: None provided

 Observation Metadata Categories: taxonomy

Counts/sample detail:

 BLANK4.732555: 1.0

 BLANK5.732537: 1.0

 Joshua.Jose.WTAbd.732533: 1.0

 BLANK3.732479: 2.0

 Nick.Krishna.TG.Fec.732513: 2.0

 TH.CVA.WT.Oral.732491: 2.0

 BLANK2.732552: 3.0

 Uri.Jake.TGAbd.732468: 5.0

 BLANK6.732470: 7.0

 Elizabeth.Chris.WT.Abd.732490: 10.0
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 TH.CVA.WT.Abd.732477: 12.0

 BLANK10.732524: 710.0

 Elizabeth.Chris.WT.Oral.732520: 7205.0

 Elizabeth.Chris.WT.Col.732481: 22652.0

…

 TH.CVA.WT.Fec.732553: 329988.0

 TH.CVA.WT.Ile.732517: 347785.0

From the above output, we see that a reasonable rarefaction level for the three tables is 7205 

counts per sample, derived from the closed reference OTU picking.

Once the subsampling depth is chosen, we can execute the 

core_diversity_analyses.py command over the three OTU tables. We provide the 

subsampling depth via the -e parameter, the OTU table via the -i parameter, the mapping file 

through the -m parameter and the metadata categories to use in categorical analyses through 

the -c parameter. The -o parameter is used to provide the output directory and the -a -O 64 

are used to run the command in parallel using 64 processes.

mkdir $PWD/diversity_analysis

core_diversity_analyses.py -i $PWD/open_ref_otus/

otu_table_filtered.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/

open_ref_otus/rep_set.tre -e 7205 -c GENOTYPE,BODY_SITE -o $PWD/

diversity_analysis/open_ref -a -O 64

core_diversity_analyses.py -i $PWD/denovo_otus/

otu_table_filtered.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/

denovo_otus/rep_set.tre -e 7205 -c GENOTYPE,BODY_SITE - o $PWD/

diversity_analysis/denovo -a -O 64

core_diversity_analyses.py -i $PWD/closed_ref_otus/

otu_table_filtered.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/

gg_12_10_otus/trees/97_otus.tree -e 7205 -c GENOTYPE,BODY_SITE -o 

$PWD/diversity_analysis/closed_ref -a -O 64

The core_diversity_analyses.py command filters the OTU table before executing the 

diversity analyses. The filter removes samples from the OTU table that do not have at least 

the user-defined subsampling depth (7205 in our case). This filtering removes low-coverage 

samples from the OTU table, because they are not informative enough to be included in the 

study. After these samples have been filtered, the script performs the rarefaction step at the 

given subsampling depth.

The output of this script is an HTML file that can be opened in a web browser (Figure 4). 

This HTML file gives access to the results of the different diversity analysis performed (taxa 
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summaries, α-diversity, β-diversity and category significance) which will be explained in 

further sections.

For the following downstream analysis we have used the OTU table and phylogenetic tree 

resulting from the open-reference OTU picking approach. In cases where we are performing 

comparisons between OTU picking approaches, we will specify which approaches we have 

used.

5.2.1. Taxa summaries—One way to visualize the OTUs in each sample is a taxa 

summary, which summarizes the relative abundance of the taxa present in a set of samples 

on multiple taxonomic levels (e.g. phylum, order, etc.) (see Figure 5). This provides a quick 

way to identify samples that may be drastically different from others (i.e. outliers), and 

visually identify expected patterns and differences between and among samples. For 

example, this tool can be used to identify patterns such as differences in the relative 

abundance of Firmicutes and Bacteroidetes in the gut microbiomes of lean versus obese 

mice, e.g.Ley, Backhed, Turnbaugh, Lozupone, Knight, and Gordon (2005). These patterns 

can then be statistically tested using other methods, either within QIIME or elsewhere. 

QIIME contains a workflow called summarize_taxa_through_plots.py that generates 

user-specified plot types, including bar, pie, and area graphs. These graphs provide a way to 

visually compare the composition of each sample, or of groups of samples. An OTU table 

with assigned taxonomies is the only required input file, and options allow the user 

summarize across categories (using the metadata file), at different taxonomic levels, or only 

using OTUs that are present at abundances higher or lower than user-defined thresholds. The 

web interface allows a scroll-over feature that identifies the taxonomy of the separate taxa. 

Additional output files include image files of the charts and legends, and tab-delimited files 

of the calculated abundances, which can then be further filtered and manipulated for 

downstream statistical analyses.

5.2.2 Diversity analysis—Microbial ecology studies the diversity of microorganisms by 

characterizing bacterial communities in different environments, and determining the factors 

that drive diversity in these communities (Atlas & Bartha, 1998). Whittaker (1960) and 

Whittaker (1972) define different types of measurements of diversity as alpha, beta and 

gamma diversities. Alpha diversity is defined as the diversity of organisms in one sample or 

environment. Beta-diversity is the difference in diversities across samples or environments. 

Finally, gamma-diversity (γ-diversity) measures the diversity at a broader scale, such as a 

province or region. Several different metrics of alpha- and beta-diversity are implemented in 

in QIIME pipeline. Diversity measurements and their applications in microbial have been 

discussed in detail elsewhere (Jost, 2007; Kuczynski et al., 2010b; Lozupone & Knight, 

2008), and here we focus on examples of their application.

5.2.3 Alpha diversity analysis—QIIME can generate plots showing the results of alpha 

diversity, allowing the user to choose the diversity metric and different rarefaction levels 

(Figure 6). These images are often used to estimate the true species richness of a 

community.
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QIIME implements dozens of the most widely used alpha diversity indices, including both 

phylogenetic indices (which require a phylogenetic tree) and non-phylogenetic indices. 

Users can obtain a list of the alpha diversity indices implemented in QIIME by passing the 

parameter –s to the alpha_diversity.py script. Phylogenetic metrics have been 

especially useful in our experience because they provide additional power by accounting for 

the degrees of phylogenetic divergence between sequences within each sample. Thus, for 

alpha diversity, we recommend Phylogenetic Distance (PD) (Faith, 1992) over OTU counts; 

however, the choice of metric will depend on the question. In particular, one might be 

interested in pure estimates of community richness (such as the observed number of OTUs, 

or the Chao1 estimator of the total number that would be observed with infinite sampling), 

in pure estimates of evenness, or of measures that combine richness and evenness such as 

the Shannon entropy (if there is no hypothesis in advance about which richness measure is 

appropriate, remember to correct for multiple comparisons if many are applied to the same 

dataset). Here is an example of how to compute rarefaction curves for three different alpha 

diversity metrics using a QIIME parameters file:

echo “alpha_diversity:metrics shannon, 

PD_whole_tree,observed_species” > alpha_params.txt 

alpha_rarefaction.py -i $PWD/open_ref_otus/otu_table_filtered.biom -

m $PWD/IQ_Bio_16sV4_L001_map.txt -o $PWD/diversity_analysis/

alpha_rare_open_ref_uneven -a -O 64 -n 20 --min_rare_depth 1000 -e 

340000 -p $PWD/alpha_params.txt -t $PWD/open_ref_otus/rep_set.tre

This step generates an interactive HTML document with figures showing the results for each 

alpha diversity metric and for each group of samples. Curves reach asymptotes when the 

sequencing effort (sequencing depth) does not contribute additional OTUs. In this sense, 

curves would differ in their shape as a function of the selected OTU picking method.

Comparisons should be adjusted to the same depth of sequencing. Rarefaction curves can be 

useful for assessing the sequencing effort sufficient for representing and comparing the 

microbial communities (Figure 6). However, although rarefaction curves were widely used 

during the era of Sanger sequencing, when most communities were undersampled, it is often 

more useful today to report the coverage and the estimated and observed numbers of OTUs 

at one rarefaction depth rather than to use a figure for rarefaction curves.

5.2.4. Beta diversity analysis—Beta diversity can also be calculated from the rarefied 

OTU tables, comparing the microbial communities based on their compositional structures. 

As with alpha diversity, QIIME can compute many phylogenetic and non-phylogenetic beta 

diversity metrics (shown by the command beta_diversity.py -s).Of these, we have 

found UniFrac to be most generally useful in revealing biologically meaningful patterns. 

Unifrac measures the amount of unique evolution within each community with respect to 

another by calculating the fraction of branch length of the phylogenetic tree that is unique to 

either one of a pair of communities (Lozupone et al., 2005). QIIME implements several 

variants of Unifrac, including weighted and unweighted Unifrac. The weighted Unifrac 

metric is weighted by the difference in probability mass of OTUs from each community for 

each branch, whereas unweighted Unifrac only consider the absence/presence of the OTUs 
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(Lozupone, Hamady, Kelley, & Knight, 2007). Weighted Unifrac is thus recommended for 

detecting community differences that arise from differences in relative abundance of taxa, 

rather than in which taxa are present. Like other metrics considering taxon abundance, 

weighted Unifrac is sensitive to the bias from DNA extraction efficiency, PCR 

amplification, etc.; this may explain why, in our hands at least, unweighted UniFrac has 

often provided results that correlate better with clinical or environmental variables than does 

weighted UniFrac. The choice of metrics is critical in beta diversity analysis as metrics 

differ substantially in their ability to detect clustering or gradient patterns among microbial 

communities on the same dataset (Arumugam, Raes, Pelletier, Le Paslier, Yamada, Mende 

et al., 2011; Ravel, Gajer, Fu, Mauck, Koenig, Sakamoto et al., 2012; Schloss & 

Handelsman, 2006). See Kuczynski et al. (2010b) for a detailed discussion of the 

performance of different nonphylogenetic metrics.

QIIME calculates the beta diversities between each pairs of input samples, forming a 

distance matrix. The distance matrix then can be visualized with methods such as Principal 

Coordinate Analysis (PCoA) (Mardia, Kent, & Bibby, 1979) and hierarchical clustering 

(Tryon, 1939), both of which have been widely used for data visualization for decades. 

PCoA transforms the original multidimensional matrix to a new set of orthogonal axes that 

explain the maximum amount of inertia in the dataset (Gower, 1966; Mardia et al., 1979) 

and the current implementation in QIIME scales to thousands of samples. We are currently 

evaluating approximate methods that will allow scaling to millions of samples (Gonzalez et 

al., 2012a). QIIME allows the PCoA plots to be visualized interactively in 3-dimensions, 

currently using the KiNG viewer (Chen, Davis, & Richardson, 2009). To assess the stability 

of the PCoA plot, jackknife resampling can be performed on the OTU table, repeating the 

PCoA procedure for each resampled table and plotting the aggregate results as confidence 

ellipsoids around the sample points (Figure 7). Jackknifing is recommended because many 

diversity metrics, including UniFrac, are sensitive to the number of sequences per sample 

(Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011).

Taxonomic information can be displayed on top of the PCoA using biplots (Figure 8) (this 

analysis requires the output file from previous taxon summary step). The coordinates of a 

given taxon are computed as the weighted average of the coordinates of all samples, where 

the weights are the relative abundances of the given taxon in the set of samples. This plot is 

particularly suited for identifying taxa that drive the differentiation between groups of 

microbial communities.

Another popular method for finding relationships among samples is hierarchical clustering, 

which groups samples together into a tree. Although hierarchical clustering can be effective 

in some cases, it should be used with caution because the eye can easily be drawn to 

incorrect relationships (such as samples that are adjacent in terms of the order of their labels 

but are topologically far apart in the tree). In general, we recommend using PCoA as a 

method of detecting grouping in the data, but demonstrate hierarchical clustering here as an 

example. Here we analyze the beta diversity distance matrix using UPGMA, which forces 

the samples into an ultrametric tree (i.e. a tree in which the distance from the roots to the tips 

is the same for every tip) (Figure 9). The resulting tree file is in Newick format, and can be 

visualized by programs including TopiaryExplorer (Pirrung, Kennedy, Caporaso, 
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Stombaugh, Wendel, & Knight, 2011), the R package ape (Paradis, Claude, & Strimmer, 

2004) and the package distory (Chakerian & Holmes, 2012). UPGMA can also be applied to 

the jackknifed subsamples to provide an estimate of the statistical confidence in the 

clustering, by showing the frequency of each nodes in the original full data set cluster that 

are supported by the jackknife replicates. We generally recommend against the use of 

hierarchical clustering as a method for identifying and visualizing sample groupings, so have 

not invested as much effort in enabling this technique in QIIME as has been invested in 

other visualizations. However, if you do plan to use hierarchical clustering, it is important to 

be aware that substantial work has been done on more effective visualization methods, e.g. 

in distory (Chakerian et al., 2012), and performing additional analyses outside QIIME may 

allow improvements over the default visualizations.

5.2.5. Statistical significance of differences in alpha and beta diversity—Which 

statistical tests should be applied depends on the particular hypotheses and predictions 

defined a priori in a given research study. QIIME implements several scripts that perform a 

broad range of statistical tests between samples or groups of samples using both alpha and 

beta diversity measurements. For alpha diversity, the compare_alpha_diversity.py 

script performs comparisons between groups of samples. The script uses the alpha diversity 

measurements of samples standardized to a given number of sequences per sample, and 

performs nonparametric two-sample t-tests (i.e. using Monte Carlo permutations to calculate 

the p-value) comparing each pair of groups of samples. Rarefaction is a critical step in these 

analyses, as noted above, because typically diversity estimates depend on the number of 

sequences per sample. At the maximum rarefaction depth, wild type and transgenic mice did 

not show differences in alpha diversity as measured by PD metric (wild type: (mean +/- sd) 

= 45.19 +/- 10.6; transgenic: 40.01 +/- 9.5; t = -2.17, p = 0.102). We also tested for 

differences in alpha diversity between body sites. We found differences between cecum and 

ileum (cecum (mean +/- s.d.) = 51.1 +/- 3.6; ileum: 36.72 +/- 8.2; t = 5.35, p = 0.028), 

cecum and mouth (mouth: 29.54 +/- 10.1; t = 6.62, p = 0.028) and feces and mouth (feces: 

48.4 +/- 4.0; t = 5.47, p = 0.028). None of the other pairs of comparisons between body sites 

showed significant differences in alpha diversity (colon: 46.0 +/- 9.2; multi-tissue: 46.26 +/- 

9.1; skin: 42.13+/- 7.4; all p-values > 0.056).

The appropriate statistical tests of beta diversity also depend on the research question being 

asked. These tests compare sets of distances between samples in the distance matrix. Careful 

attention must be paid both to Type I error (rejecting the null hypothesis when it is actually 

true), and to Type II error (accepting the null hypothesis when it is actually false, i.e. lack of 

statistical power). Type I error is more likely when variance is unequal between groups, and 

when many comparisons are performed on the same data (although multiple comparisons 

corrections correct for the increased Type I error, they often raise the Type II error rate 

instead). As always, results should be interpreted with caution and common sense. A highly 

statistically significant result stemming from data with a low correlation coefficient may 

indicate that a relationship has little biological meaning, and examining the scatterplot to see 

if the result is driven by a few outliers would be prudent. Further theoretical validation 

(especially of the multivariate statistical tests) is also needed, especially because the 
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distributions underlying microbial community data have in general not yet been well 

characterized.

Comparisons between distance matrices are performed in QIIME using the 

compare_distance_matrices.py script. This script can perform analyses including the 

Mantel test, the Partial Mantel test, and the Mantel Correlogram. The Mantel test is a non-

parametric test that compares two distance matrices, and calculates a correlation coefficient 

and a significant p-value using permutations that preserve the rows and columns. For the 

purpose of showing some examples (because the mouse data does not include a time series 

component), we will use the sequence dataset published by Caporaso et al. (2010b), where 

the authors studied variation in the bacterial community in the human gut over time series. 

We will compare the Unifrac distance matrix and a distance matrix as differences in days 

since the treatment started. Both distance matrices showed a significant correlation (Mantel 

test: p = 0.035), showing that bacterial communities were more similar as they were close in 

sampling. The Mantel test measures the overall correlation between distance matrices, but 

Mantel Correlograms measure this effect when taking into account the distances between 

samples marked by specific metadata variables. Essentially, the second distance matrix (in 

our case, days since the treatment started) is divided into classes. The classes into which the 

second distance matrix (days after experiment started) is determined by Sturge's rule, a 

method for determining the width of bars in a histogram based on the binomial formula. 

Then Mantel tests are run between these distance classes and the beta diversity distance 

matrix. We found that none of the distance classes were significantly related to the bacterial 

community (Figure 10: all comparisons p > 0.120, after Bonferroni correction for multiple 

comparisons).The Mantel test showed us that there is an overall correlation between 

bacterial community and “days after the experiment started” (samples collected closer in 

time had more similar bacterial communities), and Mantel Correlogram showed that there is 

no significant correlation between the bacterial community and any of the classes into which 

the “days after the experiment started” matrix was divided. In other words, in this case, 

discretization of the data into a few timepoint classes led to an undetectable pattern; in 

contrast, use of the whole time series yielded an interpretable result. However, in other 

datasets, the reverse is often true, especially if the variation is not monotonic (e.g. in the case 

of seasonal variation).

The partial Mantel test is similar to the Mantel test, except that the analysis is controlled by 

a third variable. When we compare the beta diversity distance matrix with days after the 

experiment started by controlling by sampling date, we find the same trend noted before 

(Partial Mantel test: p = 0.010). Samples collected close in time have similar bacterial 

communities and this effect is independent of the date of collection.

Several visual and statistical tests have been implemented in QIIME in order to compare 

between and within beta-diversity distances. Distance histograms are an easy way to 

compare both types of distances graphically ( make_distance_histograms.py). The 

output is an html file that shows as many histograms as categories. It is very useful to 

compare all-within “category” against all-between “category”, or the distribution of 

distances within each group (Figure 11). Probably a more useful tool to compare these beta-

diversity distances is by means of box-plots ( make_distance_boxplots.py, Figure 12). 
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The box-plot script generates a box-plot graph and performs a t-test. Box-plots showed that 

there were no differences between the distances within mouse type and between types. 

However, the statistical test shows highly significant differences (p < 0.001) when 

comparing within and between distances. Once again, we recommend caution and common 

sense when the p-values are interpreted. It is likely to get a significant p-value, although a 

close inspection of the box-plot reveals that standard error bars overlap. Basically this result 

is due to the large number of comparisons: a small Student t-statistic (obtained when 

differences between two data set are small) and these large degrees of freedom may be 

highly significant (i.e. the two data set are very different) even with conservative multiple 

test corrections (as Bonferroni).

Other multivariate analyses provide additional powerful tools for exploring significant 

relationships between the beta diversity distance matrix and factors or covariates. 

compare_categories.py offer different statistical tests, where ANOSIM and adonis are 

usually employed. ANOSIM is a non-parametric statistical test that compares ranked beta-

diversity distances between different groups and calculates a p-value and a correlation 

coefficient by permutation. Adonis partitions the variance in a similar way to the ANOVA 

family of tests, specifically testing variation within a category is smaller or greater than 

variation between categories. It calculates a pseudo F-value, a p-value and a correlation 

coefficient (R2). Significant p-values must be interpreted together with their R2 values to 

infer biological meanings from the results. It is worth to mentioning here that 

PERMANOVA and adonis are similar statistical methods, and usually provide equivalent 

results. However, PERMANOVA only allows categorical factors, whereas both categorical 

and continuous variables may be used in adonis. Both ANOSIM and adonis analyses 

indicate that bacterial communities in wild-type and transgenic mice significantly differ 

from one another (ANOSIM: r = 0.134, p < 0.001; adonis, r2 = 0.046, p < 0.001). However, 

the correlation coefficients are low, so the significant p-values need to be interpreted 

cautiously because this result may not be biologically relevant.

5.2.6. OTU networks—Network-based analysis can sometimes be very useful for 

displaying how OTUs are partitioned between samples, and how samples are related each 

other, although we have found that this analysis only works well for datasets in which the 

samples are not all equally connected. Networks are therefore a powerful way for visually 

displaying certain large and complex datasets to emphasize similarities and differences 

among samples. Network analyses are implemented in QIIME through the script 

make_otu_network.py. This script generates the OTU network files to be passed into 

Cytoscape (Shannon, Markiel, Ozier, Baliga, Wang, Ramage et al., 2003) and statistics for 

those networks (specifically, a bipartite graph in which nodes represent either OTUs or 

samples, and edges represent a connection between an OTU and a sample (Ley et al., 

2008)). Cytoscape is not wrapped in the QIIME pipeline and it is run as a separate program. 

The files used by Cytoscape 2.8.2 are: the real edge table (real_edge_table.txt) which 

contains the columns “from”, “to”, “eweight” and “consensus_lin”, among others dictated 

by the headers in the mapping file; and the real node file (real_node_table.txt) which 

contains a node for each OTU and each sample in the study. It uses the OTU file and the 

user metadata mapping file.
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The visual output of this analysis is a clustering of samples according to their shared OTUs 

(i.e. samples that share more OTUs cluster closer together, as do OTUs shared by more 

samples): samples and OTUs are represented as dots in the space (“nodes”) and connected 

by lines (“edges”). The degree to which samples cluster is based on the number of OTUs 

shared between samples, and this is weighted according to the number of sequences within 

an OTU.

In the network diagram, both types of nodes, OTU nodes and sample nodes, can be easily 

modified using Cytoscape's graphical user interface, with symbols such as filled circles for 

OTUs and filled squares for samples. If an OTU is found within a sample, both nodes are 

connected with a line (an edge). The nodes and edges can then be colored to emphasize 

certain aspects of the data.

This method is not simply used for descriptive visualizations: the connections within the 

network can also be analyzed statistically to provide support for the clustering patterns 

displayed in the network. A G-test for independence is used to test whether sample nodes 

within categories (such as within a genotype, in our example mouse study) are more 

connected within than a group than expected by chance. Each pair of samples is classified 

according to whether its members shared at least one OTU, and whether they share a 

category. Pairs are then tested for independence in these categories (this asks whether pairs 

that share a category also are equally likely to share an OTU). This statistical test can also 

provide support for an apparent lack of clustering when it appears that a parameter is not 

contributing to the clustering.

In our example dataset, mouse samples show some degree of clustering in the space 

depending on whether the genotype is wild-type or transgenic (Figure 13). These clusters in 

the network were significant different (G-test: p < 0.001). Surprisingly, bacterial 

communities of mice did not visually cluster by body site, although the statistical test shows 

highly significant differences in samples from different body sites. These results must be 

interpreted cautiously. The degrees of freedom in the statistical test depend on the number of 

comparisons so, highly significant results might be obtained even when differences between 

clusters are slight. In other cases, these differences are obvious and easy to interpret. In the 

first application of this analysis in microbial ecology, the gut bacteria of a variety of 

mammals was surveyed, and the network diagrams were colored according to the diets of 

the animals, which highlighted the clustering of hosts by diet category (herbivores, 

carnivores, omnivores). In a later meta-analysis of bacterial surveys across habitat types, the 

networks were colored in such a way that the phylogenetic classification of the OTUs was 

highlighted: this analysis revealed the dominance of shared Firmicutes in vertebrate gut 

samples versus a much higher diversity of phyla represented amongst OTUs shared among 

environmental samples (Ley et al., 2008).

This OTU-based approach to comparisons between samples provides a counterpoint to the 

tree-based PCoA graphs derived from the UniFrac analyses. In most studies, the two 

approaches reveal the same patterns. They can, however, reveal different aspects of the data. 

The network analysis can provide taxonomic connections among samples in a visual 

manner, whereas PCoA-UniFrac clustering can reveal sub-clusters that may be obscured in 
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the network. The principal coordinates can be pulled out individually and regressed against 

other metadata; the network analysis can provide a visual display of shared versus unique 

OTUs. Thus, together these tools can be used to draw attention to different aspects of a 

dataset.

5.2.7. OTU heatmaps—Another method to visualize the relationships between OTUs and 

samples is the heatmap, which is widely used for other applications in molecular biology 

(Wilkinson & Friendly, 2009). This method was initially developed by Loua (1873) to 

visualize population characteristics of 20 districts of Paris.

In our case, heatmaps can be used for exploratory analysis of microbiomes by mapping 

abundance values to a color scale in a condensed, pattern-rich format, in which each row 

corresponds to an OTU and each column corresponds to a sample. A good heatmap graphic 

can generate hypotheses about sample and/or OTU clustering in the data, which can then be 

followed up with additional more formal analyses. Two key structural aspects of a heatmap 

graphic greatly affect whether it will reveal interpretable patterns: (1) the ordering of the 

axes, and (2) the color scaling.

QIIME can create OTU heatmaps using two different scripts: make_otu_heatmap.py and 

make_otu_heatmap_html.py. The first script generates a heatmap in which OTUs are 

represented in rows and samples in columns. OTUs and samples can be sorted and clustered 

by the phylogenetic tree and by the UPGMA hierarchical clustering, respectively. However, 

the visualizations of both trees (phylogenetic and hierarchical) in the final heatmap are not 

currently implemented directly in QIIME, and these hierarchical displays must be prepared 

using external software such as R. QIIME also supports sample clustering by a metadata 

category if the user provides a mapping file. The samples will be clustered within each 

category level using Euclidean UPGMA. The script sort_otu_table.py allows sorting 

the OTU table by a category in the mapping file, allowing defining the order of the samples 

in the heatmap. Figure 14 shows the output of make_otu_heatmap.py. There we can see a 

drawback to heatmaps: when the number of samples or OTUs included in the graphic is too 

high, the density of the graphic can be overwhelming. Thus, we recommend that the OTU 

table be filtered to a smaller number of samples (or categories) and taxa to identify the most 

important patterns, as we will show later in this section.

The second script ( make_otu_heatmap_html.py) creates an interactive OTU heatmap 

from an OTU table (Figure 15). This script parses the OTU count table and filters the table 

by counts per OTU (user-specified). It then converts the table into a javascript array, which 

can be loaded into a web browser. The OTU heatmap displays raw OTU counts per sample, 

where the counts are colored based on the contribution of each OTU to the total OTU count 

present in the sample (blue: contributes low percentage of OTUs to sample; red: contributes 

high percentage of OTUs). This web application allows the user to filter the OTU table by 

number of counts per OTU. The user also has the ability to view the table based on 

taxonomy assignment. Additional features include: the ability to drag rows up and down by 

clicking and dragging on the row headers; and the ability to zoom in on parts of the heatmap 

by clicking on the counts within the heatmap.
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Improved OTU heatmap visualizations can be generated using the plot_heatmap() 

command in the phyloseq package for R (McMurdie & Holmes, 2013). This package takes a 

similar approach to NeatMap (Rajaram & Oono, 2010), in that it uses ordination results 

rather than hierarchical clustering to determine the index order of each axis. For 

plot_heatmap, the default color scaling maps a particular shade of blue to a log 

transformation of abundance that generally works well for microbiome data, although the 

user can select alternative transformations.

In this example, a key step was proper filtering of the data. We removed OTUs that appear 

in only a few samples. The possible contribution to the graphic of these infrequent OTUs is 

limited, more often contributing to “noise” that causes the heatmap to look dark, empty, and 

uninterpretable (see Supplemental File 1, Figure 14). We used a non-metric 

multidimensional scaling of the Bray-Curtis distance to determine the order of the OTUs and 

samples. From this representation, it is possible to distinguish high-level patterns and 

simultaneously note the samples and OTUs involved. For instance, all but a few of the 

mouth samples are in a cluster toward the middle of the heatmap. One of the key features of 

this group is an obvious relative overabundance of three Firmicutes OTUs, which are among 

the most abundant in this subset of the data. Similarly, another clear pattern is a distinction 

between a group of wild type samples from various body sites on the left of the heatmap that 

appear to have higher proportions of a number of different Firmicutes OTUs, as well as a 

few specific Bacteroidetes OTUs. This is distinct from the largest cluster of samples on the 

right-hand side of the heatmap, in which many of the most-abundant OTUs are a different 

subset of Bacteroidetes and Firmicutes OTUs. We also found it helpful to further pursue 

these high-level patterns by splitting the data into Firmicutes-only and Bacteroidetes-only 

subsets, and then plotting new heatmaps with finer-scale taxonomic labels. This required 

essentially the same commands and limited additional effort, well-tailored for exploratory 

interactive analysis, much of which we have documented in Supplemental File 1.

Although heatmaps have been deployed widely in molecular biology, especially in protein 

expression studies, some of the other displays we have discussed such as principal 

coordinates plots and taxonomy plots often provide more easily interpretable results. 

However, summarizing relations between taxa through ordination plots or network analyses 

have been shown to be powerful tools for highlighting similarities and differences among 

samples and taxa in our OTU table, and a carefully constructed heatmap (though not, in 

most cases, the default output) can be a useful guide to understanding and hypothesis 

generation.

5.2.8. OTU category significance—The experimental design of a microbial study will 

often involve comparing two or more groups for differences in the abundance of OTUs; for 

example, are there taxa that significantly differ between the control group and the 

experimental group? One way to assess this question is to compare the relative abundances 

of each microbial member between the two groups. This functionality is built into a script 

called otu_category_significance.py. We can test if there are significant differences 

in OTU abundance between mouse genotypes either wild type (WT) or transgenic (TG). We 

can assess differences between these groups using the following command:
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otu_category_significance.py -i $PWD/diversity_analysis/open_ref/

table_mc7205.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -o $PWD/

open_ref_otu_categ_sig_output -c GENOTYPE -s ANOVA

Here we run an ANOVA to assess the relative abundance of each taxon in the OTU table 

between our two genotype groups. The output will be written to a user-specified file called 

otu_cat_sig.txt. This document will list the OTU ID, the raw p-value, the Bonferonni 

corrected p-value, the False Discovery Rate (FDR) p-value, as well as the relative average 

abundance for each of the groups in the selected category (genotype in our case), and the 

OTU taxonomy string (if provided in the initial OTU table). While many of these taxa may 

be significantly different between groups according to the raw p-value, it is extremely 

important that only p-values that have been corrected for against multiple comparisons, 

using either Bonferroni or FDR, be considered as significant. Many times a user's OTU table 

will contain hundreds or thousands of OTUs, and thus a p-value is likely to reach 

significance based solely on the large number of statistical comparisons being computed (for 

a probability threshold of 0.05, 1 of 20 comparisons results significant just by chance). It is 

often very helpful to open the .txt files produced by otu_category_significance.py in 

a spreadsheet so that columns can be sorted according to p-values.

The otu_category_significance.py script also contains several other statistics for 

comparing groups. The g-test can be used to determine if the presence or absence of a given 

taxa is significantly different between groups, and can be specified by passing the option -s 

g_test in the command. The user can also run a paired t-test to determine whether there are 

taxa that significantly differ between two paired points. For example, imagine the 

experimental design sampled a group of mice before and after a dietary intervention. Using 

the paired-t statistic in otu_category_significance.py would then compare each 

mouse's after timepoint to the before timepoint, and test for differences that were consistent 

across mice, rather than grouping all the before and after timepoints together. For continuous 

variables, QIIME can calculate the Pearson correlations of OTU abundance with those 

variables. QIIME is also capable of longitudinal data analysis, which is suitable for the 

samples tracking the same subjects at multiple points in time, e.g., the oral microbiota of 6 

persons after meals in a day. Specifically, longitudinal Pearson correlation can be calculated, 

accounting for intra-subject correlation of measurements.

5.2.9. Machine learning—QIIME can also take advantage of several machine learning 

algorithms to solve two important issues in high-throughput metagenomic studies: 

correction of mislabeling, and quantifying sample contamination.

This mislabeling problem is an increasing issue as the number of processed and pooled 

sequences increases (Knights, Kuczynski, Koren, Ley, Field, Knight et al., 2011c). This 

mislabeling can be addressed using supervised classifiers, a machine learning technique that 

is able to fix incorrect metadata. QIIME uses the random forest (Breiman, 2001) supervised 

classifier implemented in R (Liaw, 2002) to recover the mislabeled samples by training the 

classifier with the relative abundance taxa (Knights, Costello, & Knight, 2011a). Knights et 

al. (2011c) shows that this approach can even recover up to 30-40% mislabeled samples 

when the biological patterns are especially clear.
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This same technique can be also applied to find taxa that play a key role in differentiating 

groups of samples, as is done in OTU category significance. However, the difference 

between OTU category significance and the machine learning technique is the type of model 

the construct. While the OTU category significance creates an explanatory model (i.e. it 

gives a model that best fits the current dataset), the machine learning technique creates a 

predictive model (Knights et al., 2011a).That is, it creates a model that is able to generalize 

future data, minimizing the expected prediction error.

Since the supervised learning trains a classifier, it is important to provide useful predictors 

(OTUs in our case). Thus, it is highly recommended to filter the input OTU table to remove 

those OTUs that are present in few samples (e.g. < 10 samples). As in previous analyses, a 

rarified OTU table should be used, so that artificial diversity induced due to different 

sampling effort is removed. In our example dataset, we can use the subsampled OTU table 

generated for previous analyses and remove the low-abundance OTUs:

filter_otus_from_otu_table.py -i $PWD/diversity_analysis/open_ref/

table_mc7205.biom -o $PWD/diversity_analysis/open_ref/

otu_table_filtered10.biom -s 10

Running the following command, will run the supervised learning algorithm using the 

GENOTYPE category and 10-fold cross-validation, providing mean and standard deviation 

of errors:

supervised_learning.py -i $PWD/diversity_analysis/open_ref/

otu_table_filtered10.biom -m $PWD/IQ_Bio_16sV4_L001_map.txt -c 

GENOTYPE -o $PWD/open_ref_supervised_learning_output -e cv10

This script will store several files on the output folder. The most important file is 

summary.txt:

cat $PWD/open_ref_supervised_learning_output/summary.txt

Model Random Forest

Error type 10-fold cross validation

Estimated error (mean +/- s.d.) 0.23373 +/- 0.15058

Baseline error (for random guessing) 0.42308

Ratio baseline error to observed error 1.81011

Number of trees 500

The important information in this file is the Ratio baseline error to observed error, which 

shows the ratio between the expected error of the random forest classifier and the expected 

error of a classifier that always guesses the most abundant class (Baseline error). Our 

recommendation is that a ratio of at least 2 shows a good classification. In our example data 

set, this value is 1.81011, which is close to 2 but not enough to be considered a good 

classification.
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The contamination quantification problem is addressed in QIIME using SourceTracker 

(Knights et al., 2011b). Given a list of known source environments and a sink (or set of 

sinks) environment(s), SourceTracker uses a Bayesian approach jointly with Gibbs sampling 

to predict the quantity of taxa that each source, or an unknown source, contributes to the 

taxa that makes up the sink environment. For a more detailed description of the algorithm, 

see Knights et al. (2011b).

The first step to use SourceTracker in QIIME is to modify the mapping file of our example 

dataset and add two columns: SourceSink and Env. The SourceSink column tells 

SourceTracker which sample is a source and which sample is a sink, while the Env column 

provides the environment. In our example, we have defined samples from mouth, ileum, 

cecum, colon, fecal pellet and skin as sources and the whole mouse homogenization as a 

sink. In the Env column we have defined the environments as the body site (mouth, ileum, 

cecum, colon, feces, skin and homogenization).

As a machine learning algorithm, SourceTracker needs useful OTUs (predictors) as inputs 

for training the algorithm. Here, we will use the same OTU table as used for the 

supervised_learning.py script. However, SourceTracker does not yet accept BIOM 

tables, so we have to transform them into to a tab-delimited OTU table (note that this table 

can also be opened in Excel or other popular tools):

convert_biom.py -i $PWD/diversity_analysis/open_ref/

otu_table_filtered10.biom -o $PWD/diversity_analysis/open_ref/

otu_table_filtered10.txt -b

Then, we can call SourceTracker using the following command (the 

$SOURCETRACKER_PATH variable should be defined if you have successfully install 

SourceTracker):

R --slave --vanilla --args -i $PWD/diversity_analysis/open_ref/

otu_table_filtered10.txt -m $PWD/IQ_Bio_16sV4_L001_map_ST.txt -o 

$PWD/open_ref_sourcetracker_output < $SOURCETRACKER_PATH/

sourcetracker_for_qiime.r

The output from the SourceTracker algorithm is a set of pdf files that shows the mixture of 

the sources that makes up the sink (see Figure 17).

5.2.10. Procrustes analysis—When we want to compare samples in PCoA space that 

were processed in different ways, such as: different ribosomal RNA subunits, primer sets, or 

algorithmic choices for processing, we can use Procrustes analysis (Gower, 1966; Muegge, 

Kuczynski, Knights, Clemente, Gonzalez, Fontana et al., 2011; Vinten, Artz, Thomas, Potts, 

Avery, Langan et al., 2011). Procrustes analysis is a statistical shape algorithm that allows 

us to compare different distributions by rescaling and applying a rotation matrix; this is, if 

the group of samples we are have the same shape but in different size or orientation the 

algorithm will resize and rotate them to make the shapes fit. As an example, we present the 

results of comparing the different OTU picking algorithms, see Section 5.2.2, where we can 

see that even as the number of OTU clusters change the distribution described is similar with 
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a confidence of MC p-value: 0.00 and M2: 0.097 for closed-reference vs. de novo, and MC 

p-value: 0.00 and M2: 0.035 for closed-reference vs. open reference. Both cases used the 

first three axes (i.e. the axes displayed in the plot), and 100 repetitions, Figure 18. To 

generate these plots we ran these commands:

transform_coordinate_matrices.py -i $PWD/diversity_analysis/

closed_ref/bdiv_even7205/unweighted_unifrac_pc.txt,$PWD/

diversity_analysis/denovo/bdiv_even7205/unweighted_unifrac_pc.txt -r 

100 -o $PWD/procrustes/closed_ref-denovo

compare_3d_plots.py -i $PWD/procrustes/closed_ref-denovo/

pc1_transformed.txt,$PWD/procrustes/closed_ref-denovo/

pc2_transformed.txt -o $PWD/procrustes/closed_ref-denovo/plot -m 

$PWD/IQ_Bio_16sV4_L001_map.txt

transform_coordinate_matrices.py -i $PWD/diversity_analysis/

closed_ref/bdiv_even7205/unweighted_unifrac_pc.txt,$PWD/

diversity_analysis/open_ref/bdiv_even7205/unweighted_unifrac_pc.txt 

-r 100 -o $PWD/procrustes/closed_ref-open_ref

compare_3d_plots.py -i $PWD/procrustes/closed_ref-open_ref/

pc1_transformed.txt,$PWD/procrustes/closed_ref-open_ref/

pc2_transformed.txt -o $PWD/procrustes/closed_ref-open_ref/plot -m 

$PWD/IQ_Bio_16sV4_L001_map.txt

5.2.11. SitePainter—Spatial data poses unique challenges, and the types of statistical 

analyses described above often obscure spatial patterns (Gevers, Knight, Petrosino, Huang, 

McGuire, Birren et al., 2012; Hewitt, Mannino, Gonzalez, Chase, Caporaso, Knight et al., 

2013). SitePainter (Gonzalez, Stombaugh, Lauber, Fierer, & Knight, 2012b) is a web-based 

tool that creates images representing the geographical (spatial) distribution of our samples, 

and then color them based on taxonomy summaries (defining which taxa occur where), and 

PCoA axes (defining how similar the patches are along the principal axes).

To create a new image we suggest using Adobe Illustrator, Inkscape or SitePainter. This list 

is in descending order of usability. In any of these tools, we need to create a SVG (Scalable 

Vector Graphics) image that has closed paths, ellipsoids and rectangles for any path that we 

want to color; and open paths, lines or text for those that we want SitePainter to ignore. The 

latter are useful for static images and give a nice background for the image. Note that SVG 

images are text files, so they can be opened in any graphics program in the list above, or in 

any text editor. The difference between an open and closed paths is that the element in has a 

letter z at the end of the definition of the lines of the path, so, for example, <path d=“M 10 

10 L 30 10 L 20 30 z”> is a closed path but <path d=“M 10 10 L 30 10 L 20 30”> is an open 

one.

There are two main QIIME-generated inputs that should be loaded into SitePainter: taxa 

summaries and Multidimensional Scaling (MDS) technique results, including NMDS and 
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PCoA. To exemplify the creation and usage of images in SitePainter, we will filter the OTU 

table and the beta diversity file to only have one mouse. Filtering and summarizing the OTU 

table:

filter_samples_from_otu_table.py -i $PWD/diversity_analysis/

open_ref/bdiv_even7205/table_mc7205_even7205.biom -m $PWD/

IQ_Bio_16sV4_L001_map.txt -o $PWD/forSitePainter/otu_table_Gail.biom 

-s ‘GROUP:Gail’

summarize_taxa.py -i $PWD/forSitePainter/otu_table_Gail.biom -o 

$PWD/forSitePainter/taxa_sum -t

Filtering the beta diversity file and then recalculating PCoA is necessary every time we add 

or remove samples of our analyses, because PCoA results depend on the samples included in 

the analysis. Thus it is not sufficient to simply remove samples from PCoA results 

calculated on a larger set of samples:

filter_distance_matrix.py -i $PWD/diversity_analysis/open_ref/

bdiv_even7205/unweighted_unifrac_dm.txt -m IQ_Bio_16sV4_L001_map.txt 

-o $PWD/forSitePainter/unweighted_unifrac_dm.txt -s ‘GROUP:Gail’

principal_coordinates.py -i $PWD/forSitePainter/

unweighted_unifrac_dm.txt -o $PWD/forSitePainter/

unweighted_unifrac_pc.txt

Then we create an image in Adobe Illustrator that represents the mice and its gastrointestinal 

tract, Figure 19-A. Once this figure is created and saved in SVG format (this example uses 

version 1.1 of SVG), we open the image in any text editor and replace any letter ‘z’ with 

nothing; this will destroy all the closed paths and will facilitate manipulation in SitePainter.

Now, we can open this image in SitePainter by clicking on the pencil/flower image on the 

right corner, choosing “Open Image”, and select our file. Then we add the places that we 

want to color using the rectangle or ellipsoid tool, Figure 19-B. Now we need to make our 

samples in the image match the names of the sample names from our files; for this we need 

to click on “Elem. -> Click to update” on the right menu, this will show us the current 

sample names in the image; then, we double click on each one and change the name to make 

it match the sample name in the mapping file. Note that SitePainter does not accept sample 

names with dots (.), so if the sample name has this character, we need to replace it with an 

underscore (_). We do not need to change the QIIME files, as this will happen automatically 

in SitePainter. When we hover over each name, the sample will change color, facilitating the 

identification of the image we are selecting. If different sites have the same name, they will 

be colored with the same value from the QIIME output files.

The final step is to load the resulting QIIME files. To do this, we use the Metadata loader on 

the top left of the menu. This opens the file. We then move the right menu to the “Meta.” 

tab. Here we can select which column we want to use for coloring, and then click “Color 
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elements”, to select more, Figure 19-C-F. For detailed instructions about changing colors 

and other details visit: http://sitepainter.sourceforge.net/tutorials/index.html

6. Other features

6.1. Testing linear gradients, including time series analysis

Recent microbiome surveys have started integrating gradients (commonly over time) in their 

study design. We will discuss a first and general approach for those cases, using the Moving 

Pictures of the Human Microbiome Dataset (Caporaso, Lauber, Costello, Berg-Lyons, 

Gonzalez, Stombaugh et al., 2011), where two subjects were sampled daily for up to 396 

days in three different body sites (sebum, saliva and feces). Note that the mouse dataset that 

we use as a primary example lacks a natural temporal ordering in the study design, so we 

can not use it as an example for this analysis.

PCoA plots provide a snapshot about the relative communities of many samples condensed 

in a single figure. However, coloring the points in PCoA space according to a color gradient 

can be very difficult to understand. A first approach in this case is to connect the samples 

belonging to the same subject/treatment subsequently sorted using the values in the gradient, 

i.e. one timepoint after the other (see Figure 20 b). An interactive plot like this can be 

generated using the following command:

make_3d_plots.py -i $PWD/moving_pictures/unweighted_unifrac_pc.txt -

m $PWD/moving_pictures/merged_columns_mapping_file.txt -o $PWD/

moving_pictures/vectors --

add_vectors=BODY_SITEHOST_SUBJECT_ID,DAYS_SINCE_EPOCH

An important thing to note here is that because we want to track each of the three body-sites 

(SampleTypes) for the two subjects (Subject), we need a column in our mapping file that 

allows us to make that distinction. Hence we need to concatenate those two columns in our 

metadata mapping file using an external spreadsheet editor or another tool. Also note that 

the gradient used is a category named DAYS_SINCE_EPOCH (i.e. the number of days 

since January 1, 1970). The idea here is to have a common reference for the collection date 

of each of the samples.

Although a visualization like the one created in the previous example is often sufficient, 

replacing one of the axes in the PCoA plot with the data explaining the gradient provides a 

different insight into the analyzed data (See Figure 21).

make_3d_plots.py -i $PWD/moving_pictures/unweighted_unifrac_pc.txt -

m $PWD/moving_pictures/merged_columns_mapping_file.txt -o $PWD/

moving_pictures/vectors --

add_vectors=BODY_SITEHOST_SUBJECT_ID,DAYS_SINCE_EPOCH -a 

DAYS_SINCE_EPOCH

These visual representations can often identify meaningful patterns. To statistically support 

these assertions, one-way analysis of variance (ANOVA) can be used over the values 
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grouped by a category of interest. In a case where user wants to test for independence 

between the variation of one group of trajectories and another, this command could be used:

make_3d_plots.py –i unweighted_unifrac_pc.txt –m mapping_file.txt –o 

vectors –add_vectors=SampleTypeAndSubject,days_since_epoch –a 

days_since_epoch --vectors_algorithm avg --vectors_path 

anova_stats.txt

6.2. Processing 454 data

We have described the recommended workflow for conducting microbial community 

analysis on an Illumina MiSeq dataset. However, QIIME can also perform microbial 

community analysis on the 454 platform. The main advantage of 454 over Illumina is that 

454 generates longer sequences, which can allow a better taxonomy assignment. However, 

the 454 technology produces fewer reads per dollar, or per sequencing run (Kuczynski et al., 

2012).

The 454 processing workflow differs from the Illumina workflow in the sequence 

preprocessing. In this case, the output file from the sequencing facility is a fasta file 

containing the reads, and a quality score file which contains the score for each base in each 

sequence included in the FASTA file. In this case, the command used for the 454 

preprocessing is split_libraries.py:

split_libraries.py -m Fasting_map.txt -f Fasting_Example.fna -q 

Fasting_Example.qual -o slout

Similarly to the Illumina processing, this script also performs a quality filtering. In this case, 

the quality filtering is based on cut-offs for sequence length, end-trimming or minimum 

quality score. However, to successfully remove the read artifacts, a denoising process has to 

be performed (Reeder et al., 2010) to reduce the impact of homopolymer runs (runs of the 

same base). The 454 denoising process is a slow, computationally intensive problem that 

does not scale to large datasets, as it is based on flowgram clustering (Quince et al., 2011).

6.2.1. Variable length barcodes—Variable-length barcodes are used for two reasons: to 

make the number of flows (rather than the number of bases) constant (Frank, 2009), or to 

stagger the reads to reduce bad signal from low complexity at a given position in the set of 

amplicons being sequenced. This approach is not recommended today because such samples 

are not easily demultiplexed, and there is checksum, like Hamming or Golay, that allows 

error-correction and improved sample assignment (Hamady et al., 2008). However, the 

Human Microbiome Project (HMP) used variable length barcodes to identify their samples 

within sequencing runs. Thus, QIIME allows demultiplexing such files by using the 

parameter -b in split_libraries.py, as follows:

split_libraries.py -m map_file_with_variable_length_barcodes.txt -f 

your_fna.fna -q your_qual.qual -o 

split_library_output_variable_length/ -b variable_length,
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6.3. 18S rRNA gene sequencing

QIIME can be also used to perform analysis on 18S rRNA gene sequence data (in 

eukaryotes), as well as other markers such as ITS. The main difference between performing 

analyses with 18S rRNA gene data instead of 16S rRNA gene data (or ITS data) is the 

reference database used for OTU picking, the taxonomic assignments and the template-

based alignment building, since it must contain eukaryotic sequences.

The recommended database to use as a reference for 18S rRNA sequences is the Silva 

database (Quast et al., 2013). At the time of writing, the most recent QIIME-compatible 

Silva database is the 108 release. Since this database contains the three domains of life, it 

can be used as a reference for 18S rRNA data sets.

When conducting studies mixing 18S rRNA data and 16S rRNA data, you should take into 

account that picking OTUs against the Silva database will assign taxa to all three domains of 

life. In this case, it is recommended to split the OTU table by domain, generating an OTU 

for each domain (Archaea, Bacteria and Eukarya). At this point, each of these tables can be 

used in downstream analysis in the same way as performed for 16S rRNA data.

6.4. Shotgun metagenomics

Shotgun metagenomics is also supported in QIIME, although it is still experimental and it 

should be used at the user's own risk. Currently, the QIIME team recommends the blat 

method (Kent, 2002) for searching nucleic acid sequence reads in a reference database, 

although usearch (Edgar, 2010) is also supported. The main reason for preferring blat 

against usearch is that protein reference database often require 64-bit applications, and blat 

is free of charge, while the 64 bit version of usearch is not.

There are many reference databases (IMG, KEGG, M5nr, among others), and they all 

supported by QIIME, since the user only needs to supply a single fasta file containing the 

sequence records. The command that QIIME provides for mapping reads against the 

reference database is map_reads_to_reference.py, and it can be performed in parallel 

using the parallel_map_reads_to_reference.py script.

6.5. Support for QIIME in R

First published in 1996, “R” is an integrated software application and programming 

language designed for interactive data analysis (R Core Team). It is available for Linux, 

Mac OS, and Windows free of charge under an open-source license (GPL2). Since its 

inception, R has found a niche as a tool for interactive statistical analysis through functional 

programming. Primary investigation and inference are performed by writing a series of 

repeatable commands as “scripts” that can be recorded and published. This paradigm lends 

itself well to reproducible research, and is enhanced substantially by R's integration with 

tools for literate programming such as Sweave (Leisch, 2002), knitr (Xie, 2013), and R 

markdown (Allaire, Horner, Marti, & Porte, 2013), as well as data graphics. There are 

thousands of free and open-source extensions to R (“packages”) available from the main R 

repository, CRAN, further organized by volunteer experts into 31 task “views” (which are in 

fact workflow inventories). Among these are dedicated package lists relevant to microbiome 
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data, including phylogenetics, clustering, environmetrics, machine learning, multivariate and 

spatial statistics, as well as a separate reviewed and curated repository dedicated to 

biological statistics called Bioconductor (over 600 packages).

At present, support for QIIME in R is predominantly achieved through a package called 

“phyloseq” (McMurdie et al., 2013) dedicated to the reproducible analysis of microbiome 

census data in R. phyloseq defines an object-oriented data class for the consistent 

representation of related (heterogenous) microbiome census data that is independent of the 

sequencing- or OTU-clustering method (storing OTU abundance, taxonomy classification, 

phylogenetic relationships, representative biological sequences and sample covariates). The 

package supports QIIME by including functions for importing data from biom-format files 

derived from more recent versions of QIIME (import_biom) as well as legacy OTU-

taxonomy delimited files (import_qiime and related user accessible subfunctions). Later 

editions of phyloseq (>1.5.15) also include an API for importing data directly from the 

microbio.me/qiime data repository. In all cases, these API functions return an instance of the 

“phyloseq” class that contains the available heterogenous components in “native” R classes. 

phyloseq includes a number of tools for connecting with other microbiome analysis 

functions available in other R packages, as well as its own functions for flexible graphics 

production built using ggplot2 (Wickham, 2009), demonstrated in supplemental files 

(Supplemental File 1) and online tutorials. For researchers interested in developing or using 

methods not directly supported by phyloseq, nor its data infrastructure, the biom-format 

specific core functions in phyloseq have been migrated to an official API in the biom-format 

project as an installable R package called “biom”, now released on CRAN. This also 

includes some biom-format specific functionality that is beyond the scope of phyloseq, 

though support for QIIME is still likely best achieved using phyloseq.

As with some of the earlier examples of QIIME commands with corresponding output and 

figures, in this section we have included some key R commands potentially useful during 

interactive analysis in the R environment. For simplicity, show only results related to the 

open-reference OTU data, stored in an object in our examples named open, and imported 

into R using the phyloseq command import_biom.

open = import_biom(“path-to-file.biom”, …)

Additional input data files can also be provided to import_biom, or merged with open after 

its instantiation. For clarity, subsets and transformations of the data in open are stored in 

objects having names that begin with “ open”. As with the remainder of the examples 

highlighted in this section, the complete code sufficient for reproducing all results and 

figures are included in the R Markdown originated document, Supplemental File 1, which 

includes several additional examples not shown here, and is available with supporting files 

on GitHub (https://github.com/joey711/navasetal).

Although not always very illuminating, a comparison of OTU-richness between samples or 

groups of samples can easily be achieved with the plot_richness command. For the most 

precise estimates of richness for most samples, this should be performed before random 

subsampling or other transformations of the abundance data. Here open contains data that 
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has already been randomly subsampled. In figure 22 we can see that the wild type samples 

are generally more diverse (higher richness) and somewhat more variable than the 

transgenic samples for essentially all body sites, though the differences between the two 

mice genotypes are small.

plot_richness(open, x= “BODY_SITE”, color = “GENOTYPE”) + 

geom_boxplot()

This plot command also illustrates the use of a function in ggplot2, geom_boxplot, that 

instructs the ggplot2 graphics engine to add an additional graphical element – in this case a 

boxplot for each of the natural groups in the graphic. These available additional graphical 

instructions (called “layers” in the grammar of graphics nomenclature) are embedded with 

the returned plot object for subsequent rendering, inspection, or further modification, 

allowing for powerfully customized representations of the data.

Here is an example leveraging the abundance bar plot function from phyloseq, plot_barr, 

in order to compare the relative abundances of key phyla between the wild type and 

transgenic mice across body sites. The first step was actually some additional data 

transformations (not shown, see Supplemental File 1) in order to subset the data to only 

major expected phyla ( subset_taxa), merge OTUs from the same phyla as one entry 

( merge_taxa), and merge samples from the same body site and mouse genotype 

( merge_samples).

p2 = plot_bar(openphyab, “bodysite”, fill = “phyla”, title = title)

p2 + facet_gird(∼GENOTYPE)

From this first bar plot it is clear that all body sites from the average wild type mouse have 

Firmicutes as their phylum of largest cumulative proportion, except for the “feces”, where it 

is anyway a close call between Firmicutes and Bacteroidetes. By contrast, some of the 

average transgenic mice samples have a much higher proportion of Proteobacteria or 

Bacteroidetes than the corresponding wild type samples. One drawback to this type of 

stacked bar representation is that it is difficult to compare any of the sub-bars except for 

those at the bottom. If needed, this can be alleviated by changing the facet_grid call such 

that a separate panel is made for each phyla in the dataset, as follows.

p2 + facet_grid(phyla ∼ GENOTYPE) + ylim(0, 100)

With essentially the same effort to produce, the 14 panels of this second bar plot graphic 

allow an easy and quantitative comparison of the relative abundances of each phylum across 

body sites and genotype.

Microbiome datasets can be highly multivariate in nature, and dimensional reduction 

(ordination) methods can be a useful form of exploratory analysis to better understand some 

of the largest patterns in the data. Many ordination methods are wrapped in phyloseq by the 

ordinate function, and many more are offered in available R packages. Here we show an 

example performing multidimensional scaling (MDS) on the precomputed unweighted 
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UniFrac distance matrix for the open-reference dataset. The ordination result 

( openUUFMDS) is first passed to plot_scree in order to explore the “scree plot” 

representing the relative proportions of variability represented by each successive axis. Both 

the ordination result and the original data are then passed to plot_ordination with 

sufficient parameters to shade the sample points by genotype, and create separate panels for 

each body site.

openUUFMDS = ordinate(open, “MDS, distance = UniFrac[[“unweighted”]]

[[“open””]]) plot_scree(openUUFMDS, “Unweighted Unifrac MDS”) 

plot_ordination(open, openUUFMDS, color = “GENOTYPE”) + 

geom_point(size = 5) + facet_wrap(∼BODY_SITE)

It appears that a subset of the wild-type samples from all but the mouth and abdomen-skin 

body sites cluster toward the left of the plot. This appears to be the major pattern along the 

axis that also comprises the greatest proportion of variability in the dataset. At this stage of 

analysis it seems worthwhile to try to identify which OTU abundances are most different 

between these groups, and then perform some formal validation/testing of these differences.

7. Recommendations

Here, we highlight some of the main aspects to take into account when performing microbial 

community analysis:

• Use the open-reference OTU picking approach if your data allows it. It will reduce 

the running time and will recover all the diversity in your samples.

• Perform an OTU quality filtering based on abundance, by removing singletons, for 

instance. See Bokulich et al. (2013) for further discussion on how to tune this 

quality filtering and its effects on downstream analysis. Quality filtering is critical 

for obtaining reasonable numbers of OTUs from a sample.

• Consider whether you need to remove specific taxa from your study, such 

chloroplast or host DNA sequences when analyzing microbial datasets.

• Remove samples from your study that have low coverage (i.e. low OTU counts). 

They are likely uninformative and usually indicate low-quality reads.

• Rarefy your OTU table in order to mitigate the differences on the sequencing 

effort, so the downstream diversity analyses won’t be biased by the artificial 

diversity generated due to the difference in sequencing depth.

8. Conclusions

QIIME is a powerful tool for the analysis of bacterial community allowing researchers to 

recapitulate the necessary steps in the processing of sequences from the raw data to the 

visualizations and interpretation of the results. Two advantages make QIIME very useful: 

fidelity to the algorithms used, and consistency in the analysis. Fidelity is obtained because 

QIIME wraps existing software, preserving the integrity of the original programs and 

algorithms designed, created, and tested by the original authors. Consistency is obtained 

because QIIME can be applied to sequences from different platforms, and once the upstream 
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process is done; the analysis (downstream) process is the same independent of the 

sequencing platform used. These characteristics, together with the fact that QIIME is open-

source software with continuous support to users via QIIME forum, have promoted the rapid 

increase in the QIIME user community since its publication (Caporaso et al., 2010b).

Downstream and upstream processes are implemented in QIIME in a way that offers several 

options to perform the analyses. In this review, we discuss and demonstrate the principles 

for each step, what the scripts do and how to choose between options. Independent of the 

use of QIIME, this review also provides an overview of many of the typical steps in a 

microbial community analysis based on analysis of 16S rRNA sequences produced by high-

throughput sequencing. Some of these tools are well developed with a long history in 

general ecology, whereas others are still in rapid development; we encourage microbial 

ecologists and bioinformaticians to work together to create, develop and implement new 

strategies and tools that allow further exploration of this fascinating field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
QIIME workflow overview. The Upstream process (brown boxes) includes all the steps that 

generate the OTU table and the phylogenetic tree. This step starts by preprocessing the 

sequence reads and ends by building the OTU table and the phylogenetic tree. The 

Downstream process (blue boxes) includes steps involved in analysis and interpretation of 

the results, starting with the OTU table and the phylogenetic tree and ending with alpha and 

beta diversity analyses, visualizations and statistics.
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Figure 2. 
Cartoon representation of the OTU picking approaches. (a) de novo, (b) closed-reference 

and (c) open reference OTU picking respectively. In the de novo method, sequences are 

compared to each other and then clusters are formed. In the closed-reference method, 

sequences are compared directly to a reference dataset (e.g. GreenGenes). Sequences that 

match a reference sequence are clustered; the remaining sequences are discarded. In both 

OTU picking methods, once clusters are formed, a representative sequence is selected and 

then taxonomy is assigned to that sequence (and applied to the rest of the sequences that 

make up the OTU). Open-reference combines the closed-reference and open-reference 

methods. The first step is identical to closed-reference, sequences discarded in the first step 

are clustered into OTUs by the de novo method, and both OTU tables are merged into a 

single final OTU table. De novo and open-reference cluster all the sequences, but closed-

reference allows better comparisons between studies, especially those using different 

primers, because all OTUs occur in a common reference space.
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Fig 3. 
Cartoon demonstrating different clustering algorithms. Circles representing sequences linked 

with lines are within the distance threshold. The two numbered sequences are the first and 

second sequences in order in the file. The reference algorithms only consider the distance 

between reference (R) and sequences.
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Figure 4. 
HTML result from core_diversity_analyses.py. This HTML file summarizes and 

gives access to the results of the diversity analyses conducted on the given OTU table.

Navas-Molina et al. Page 47

Methods Enzymol. Author manuscript; available in PMC 2015 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Taxa summary of the example dataset. Samples have been grouped and averaged by body 

site, and taxonomic composition is shown on the phylum level. Each column in the plot 

represents a body site, and each color in the column represents the percentage of the total 

sample contributed by each taxon group at phylum level. The taxa summaries plot help us to 

see which taxon groups are more prevalent in a sample. For example, the fecal samples are 

dominated by Bacteroidetes, while mouth and skin samples are dominated by 

Proteobacteria. We can also see that Fusobacteria is only present at appreciable levels in the 

skin samples.
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Figure 6. 
Alpha diversity curves at different rarefaction depths using different OTU picking methods. 

Each line represents the results of the alpha diversity phylogenetic diversity whole tree 

metric (PD Whole Tree in QIIME). A, C and E represent alpha diversity of each sample at a 

different sequence depth in each of the OTU picking protocols (closed-, open-reference and 

de novo). In closed-reference, the diversity plateaus (reaches an asymptote) because only 

OTUs in the reference database already can be considered, greatly reducing the OTU 

number over what is possible if the sequences are clustered de novo. Comparing these 

curves is difficult because the sequencing depth differs among samples. B, D and F show 

differences in alpha diversity between the two mouse genotypes, wild type (WT - orange) 

and transgenic (TG - blue), using the different OTU picking approaches. Both curves show 

the same rarefaction levels, allowing easier comparisons between categories. The curves 

again level off, showing that the sequencing effort is sufficient to detect most of the OTUs 

(this saturation can be confirmed using Good's coverage, or conditional uncovered 

probability, or other formal coverage statistics). The error bars show the standard error of 

the mean diversity at each rarefaction level across the multiple iterations.
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Figure 7. 
PCoA plots of unweighted Unifrac beta diversity. Panels A-C shows jackknifed replicate 

results for the example data set using de novo OTU picking, closed-reference OTU picking 

and open-reference OTU picking, illustrating different results from the three OTU picking 

approaches (Table 3). Each dot represents a sample, either from a WT mouse (orange) or TG 

mouse (blue). The two groups are not clearly separated, probably because the data set is 

contaminated (recall that this is a class project and different participants varied in their 

dissection skills). The size of the ellipsoids show the variation for each sample calculated 

from jackknife analysis. These plots are generated by the command 

jackknifed_beta_diversity.py -i $PWD/denovo_otus/

otu_table_filtered.biom -t $PWD/denovo_otus/rep_set.tre -m $PWD/

IQ_Bio_16sV4_L001_map.txt -o $PWD/diversity_analysis/jk_denovo -e 

7205 -a -O 64 (the input parameters should be adapted for using the OTU tables from 

different OTU picking approaches). Panel D shows the beta diversity PCoA plot of a data 

set from the “keyboard” data set (Fierer, Lauber, Zhou, McDonald, Costello, & Knight, 

2010) which links individuals to their computer keyboard through microbial community 

similarity. Each dot represents a microbial community sampled from either fingertips or 

keyboard keys from three individuals, annotated by the three colors shown in the plot. In 

contrast to panels A-C, Panel D shows the microbial communities well-separated by 

individual in the PCoA plot.
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Figure 8. 
Biplot of the example data set. This is the unweighted Unifrac beta diversity plot, similar to 

Figure 7, with labels for the most 5 abundant phylum-level taxa added. The size of the 

sphere for each taxon is proportional to the mean relative abundance of that taxon across all 

samples. This plot is created by the command make_3d_plots.py -i $PWD/

diversity_analysis/open_ref/bdiv_even7205/unweighted_unifrac_pc.txt 

-m $PWD/IQ_Bio_16sV4_L001_map.txt -t $PWD/diversity_analysis/

open_ref/taxa_plots/table_mc7205_sorted_L3.txt --n_taxa_keep 5 -o 

$PWD/diversity_analysis/3d_biplot
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Figure 9. 
Bootstrapped UPGMA clustering on the example data set. The tree is shown with the 

internal nodes colored by bootstrap support (red: 75-100%, yellow: 50-75%, green: 25-50% 

and blue: < 25%). Although this visualization is popular in the literature, we generally 

recommend alternatives such as PCoA.
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Figure 10. 
Mantel Correlogram showing the Mantel correlation statistics between unweighted Unifrac 

distance matrix and each class in the days after experiment started distance matrix. Classes 

in the second distance matrix are determined by Sturge's rule. White dots show non-

significant relationship since black dots show significant ones.
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Figure 11. 
(A) Histogram showing distribution of distances between (light brown) and within (dark 

brown) mice gut microbiota taking into account both wild type and transgenic mouse 

groups. (B) Distribution of within distances in gut bacterial community of wild type mice 

(light orange) and transgenic ones (blue).
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Figure 12. 
Box-plots of the unweighted UniFrac distances for bacterial gut microbiota in both mouse 

type (WT: wild type; TG: transgenic). “Within” distances represent distances within any of 

the two groups since “between” distances show distances between both groups. “TG vs. TG” 

and “WT vs. WT” represent within distances in transgenic and wild type groups 

respectively. Although averages are different, standard error overlaps in all cases.
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Figure 13. 
OTU-Network bacterial community analysis applied in wild type and transgenic mice. (A) 

Network colored by genotype (wild type: blue; transgenic: red). Control sample (yellow dot) 

is external in the network and several OTU are not shared with mice. Although we can see 

some degree of clustering, discrimination by genotypes is difficult to assess. (B) Network 

colored by body site (mouth: yellow; skin: in red; ileum: in blue; colon: in pink; cecum: in 

orange; feces: in brown; and multi-tissue samples: in green). A control sample is colored in 

grey. There is no clear sample clustering by body site, suggesting that there is not a core set 

of OTUs that differentiates one site from another.
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FIGURE 14. 
Heatmap of OTUs present in the different samples from transgenic and wild type mice. The 

intensity of black shows the abundance of certain OTU in each sample. Both samples and 

OTUs are sorted by UPGMA tree and the OTU phylogenetic tree, respectively.
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Figure 15. 
Interactive heatmap of OTUs present in the different samples from transgenic and wild type 

mice. This visualization is a result of an HTML file that can be opened in any web browser. 

The advantage of this heatmap is that it is easy to manipulate the abundance level for 

coloring, or transpose samples and OTUs between columns and rows.

Navas-Molina et al. Page 58

Methods Enzymol. Author manuscript; available in PMC 2015 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 16. 
Example heatmap of the high-level patterns in the open-reference dataset. The graphic was 

produced by the plot_heatmap() function in phyloseq implemented in R after sub-setting 

the data to the most-prevalent 100 OTUs (Supplemental File 1). The order of sample and 

OTU elements was determined by the radial position of samples/OTUs in the first two aces 

of a Non-metric multidimensional scaling (NMDS) of the Bray-Curtis distance. Other 

choices for distance and ordination method can be also useful. The horizontal axis represents 

samples, with the genotype and body site labeled, while the vertical axis represents OTUs, 

labeled by phyla. Both axes are further color-coded to emphasize the different categories of 

labels. The blue-shade color scale indicates the abundance of each OTU in each sample, 

from black (zero, not observed) to very light blue (highly abundant, >1000 reads). The call 

used to create this figure was the following, omitting some details to improve the axis labels 

for publication: “plot heatmap (openfpp, “NMDS”, “bray”, 

taxa.label=“Phylum”, sample.label=“bsgt”, title=”plot heatmap using 

NMDS/Bray-Curtis for both axes ordering”)
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Figure 17. 
SourceTracker output showing a bar plot for each sink (mouse) present in the dataset. Each 

bar is a potential source (body site) and the height of each bar represents the percentage of 

taxa the source contributes to the taxa in the sink. The advantage of this visualization over 

the other two (area and pie chart) is that it shows error bars that allow to see the variance of 

the prediction.
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Figure 18. 
Procrustes analysis of different picking algorithms, where we can see that different OTU 

clustering methods yield similar PCoA distributions. PCoA plots are colored by 

BODY_HABITAT. A) Comparing samples with clusters picked using the de novo picking 

protocol against the closed-reference. B) Comparing samples with clusters picked using the 

open-reference picking protocol against the closed-reference.
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Figure 19. 
Image representing the mouse and its gastrointestinal tract. A) Raw image without samples. 

B) Image in SitePainter with samples. C-D) PCoA axis 1 and 2, in red high values, in blue 

low values, similar colors represent similar communities. E-F) Taxonomic distributions of 

(E) Betaproteobacteria and (F) Gammaproteobacteria, in red high abundance, in blue low 

abundance.
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Figure 20. 
Beta diversity plots for the moving pictures dataset using unweighted UniFrac as the 

dissimilarity metric (Caporaso et al., 2011). (a) PCoA plot colored by the body site and 

subject. (b) PCoA plot colored by the body site and subject with connecting lines between 

samples. Note in (b) that these lines allow us to track the individual body sites with a 

different approach.
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Figure 21. 
Three dimensional plots in which two of the axes are PC1 and PC2 and the other is the day 

when that sample was collected in reference to the epoch time. Although this is not 

explicitly a beta diversity plot, this representation allows differentiation of the individual 

trajectories over time.
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Figure 22. 
Categorically summarized OTU richness estimates using the plot_richness function. 

Samples are grouped on the horizontal axis according to body site, and color shading 

indicates the mouse genotype. The vertical axis indicates the richness estimates in number of 

distinct OTUs, and a separate boxplot is overlaid on the points for each combination of 

genotype and body site. The “S.obs”, “S.chao1”, and “S.ACE” panels show the “rarefied” 

observed richness, Chao-1 richness, and ACE richness estimates, respectively.
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Figure 23. 
Stacked bar plot of the abundance values in the open-reference dataset. The bars are shaded 

according to phyla, with each rectangle representing the relative abundance of a phylum in a 

particular sample group. The OTU rectangle in each stack is ordered according to 

abundance. The horizontal and vertical axes indicate the body site of the samples and the 

average fractional abundance of the OTU within the sample group, respectively. The 

separate panels “TG” and “WT” indicate the mouse genotype, achieved automatically by the 

facet_grid(∼GENOTYPE) layer in the command.
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Figure 24. 
Alteration of the stacked bar plot shown in Figure 23 with an additional facet dimension. In 

this case, an additional argument has been added to the faceting formula so that the data is 

separated by a row of panels for each phyla, as well as a column of panels for each mouse 

genotype. The color shading and other attributes generally remain the same, with the 

average cross-category changes for each phylum more discernible.
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Figure 25. 
MDS ordination results on the unweighted UniFrac distances of the open reference dataset. 

The samples are separated into different panels according to body site, and shaded red or 

blue if they were from transgenic or wild type mice, respectively. The horizontal and 

vertical axis of each panel represents the first and second axis of the ordination, respectively, 

with the relative fraction of variability indicated in brackets. (Inset) A scree plot showing the 

distribution of eigenvalues associated with each ordination axis.
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