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Abstract

Robust, efficient, and low-cost networks are advantageous in both biological and engi-
neered systems. During neural network development in the brain, synapses are massively
over-produced and then pruned-back over time. This strategy is not commonly used when
designing engineered networks, since adding connections that will soon be removed is con-
sidered wasteful. Here, we show that for large distributed routing networks, network function
is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the
global rate of pruning, a developmental parameter not previously studied by experimental-
ists, plays a critical role in optimizing network structure. We first used high-throughput
image analysis techniques to quantify the rate of pruning in the mammalian neocortex
across a broad developmental time window and found that the rate is decreasing over time.
Based on these results, we analyzed a model of computational routing networks and show
using both theoretical analysis and simulations that decreasing rates lead to more robust
and efficient networks compared to other rates. We also present an application of this strat-
egy to improve the distributed design of airline networks. Thus, inspiration from neural net-
work formation suggests effective ways to design distributed networks across several
domains.

Author Summary

During development of neural circuits in the brain, synapses are massively over-produced
and then pruned-back over time. This is a fundamental process that occurs in many brain
regions and organisms, yet, despite decades of study of this process, the rate of synapse
elimination, and how such rates affect the function and structure of networks, has not
been studied. We performed large-scale brain imaging experiments to quantify synapse
elimination rates in the developing mouse cortex and found that the rate is decreasing
over time (i.e. aggressive elimination occurs early, followed by a longer phase of slow
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elimination). We show that such rates optimize the efficiency and robustness of distrib-
uted routing networks under several models. We also present an application of this strat-
egy to improve the design of airline networks.

Introduction

Neural networks in the brain are formed during development using a pruning process that
includes expansive growth of synapses followed by activity-dependent elimination. In humans,
synaptic density peaks around age 2 and subsequently declines by 50-60% in adulthood [1-4].
It has been hypothesized that synaptic pruning is important for experience-dependent selection
of the most appropriate subset of connections [1, 5], and it occurs in many brain regions and
species [6-9]. This strategy substantially reduces the amount of genetic information required
to code for the trillions of connections made in the human brain [10]. Instead of instructing
precise connections, more general rules can be applied, which are then fine-tuned by activity-
dependent selection. Although the molecular and cellular mechanisms driving activity-depen-
dent pruning have been extensively investigated [1, 3, 4], global aspects of this highly-distrib-
uted process, including the rate at which synapses are pruned, the impact of these rates on
network function, and the contrast of pruning-versus growth-based strategies commonly used
in engineering to construct networks, has not been studied.

While the specific computations performed within neural and engineered networks may be
very different, at a broad level, both types of networks share many goals and constraints [11].
First, networks must propagate signals efficiently while also being robust to malfunctions (e.g.
spike propagation failures in neural networks [12-14]; computer or link failures in communi-
cation networks [15]). Second, both types of networks must adapt connections based on pat-
terns of input activity [16]. Third, these factors must be optimized under the constraint of
distributed processing (without a centralized coordinator) [17, 18], and using low-cost solu-
tions that conserve important metabolic or physical resources (e.g. number of synapses or wir-
ing length in biological networks; energy consumption or battery-life in engineered networks)
[19-21]. For example, on the Internet or power grid, requests can be highly dynamic and vari-
able over many time-scales and can lead to network congestion and failures if networks are
unable to adapt to such conditions [22, 23]. In wireless or mobile networks, broadcast ranges
(which determine network topology) need to be inferred in real-time based on the physical dis-
tribution of devices in order to optimize energy efficiency [24]. Although optimizing network
design is critical for such engineered systems across a wide range of applications, existing algo-
rithms used for this problem are not, to our knowledge, based on experience-based pruning, in
part because adding connections that will soon be eliminated is considered wasteful.

Here, we develop a computational approach informed by experimental data to show that
pruning-inspired algorithms can enhance the design of distributed routing networks. First, we
experimentally examined developmental pruning rates in the mouse somatosensory cortex, a
well-characterized anatomical structure in the mouse brain [25]. Using electron microscopy
imaging across 41 animals and 16 developmental time-points, coupled with unbiased and
high-throughput image analysis [26], we counted over 20,000 synapses and determined that
pruning rates are decreasing over time (i.e. early, rapid synapse elimination is followed by a
period of slower, gradual elimination). Next, to translate these observations to the computa-
tional domain, we developed a simulated environment for comparing algorithms for distrib-
uted network construction. We find that over-connection followed by pruning leads to
significant improvements in efficiency (routing distance in the network) and robustness
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(number of alternative routes between two nodes) compared to commonly-used methods that
add connections to initially-sparse networks. To determine if these results hold more generally,
we analyzed the theoretical basis of network construction by pruning and found that decreas-
ing rates led to networks with near-optimal connectivity compared to other rates (increasing,
constant, etc.), which we also confirmed using simulations. Finally, we adapted a pruning-
based strategy to improve the design of airline networks using real traffic pattern data.

The novelty of our approach is two-fold. First, while synaptic pruning has been studied for
decades, previous analyses have determined that synaptic density peaks during early develop-
ment and is reduced by late adolescence and adulthood [6-9]. However, fine-scale measure-
ments to statistically establish the rate of synapse elimination have not been made. Second,
while substantial prior work linking neural and computational networks has focused on the
computation performed by neural networks [27, 28], our work focuses on the construction of
networks and provides a quantitative platform to compare different network construction pro-
cesses based on their cost, efficiency, and robustness. Our goals here are to model pruning
from an abstract, graph-theoretic perspective; we do not intend to capture all the requirements
of information processing in the brain, and instead focus on using pruning-inspired algorithms
for improving routing in distributed networks. Overall, our results suggest that computational
thinking can simultaneously lead to novel, testable biological hypotheses and new distributed
computing algorithms for designing better networks.

Results
Neural networks employ decreasing rates of synapse elimination

Many generative models have been proposed to understand how networks evolve and develop
over time (e.g. preferential attachment [29], small-world models [30], duplication-divergence
[31, 32]), yet most of these models assume that the number of nodes and edges strictly grows
over time. Synaptic pruning, however, diverges from this strategy. To better understand how
pruning is implemented and whether it can be used to construct networks for broad routing
problems, we sought to measure this process experimentally. Although pruning is a well-estab-
lished neurodevelopmental phenomenon, previous experimental studies have primarily
focused on identifying the time period over which pruning begins and ends but have largely
ignored the dynamics in between these end-points [6, 9, 33], lacking crucial pruning rate infor-
mation that may be useful for using pruning-based strategies for building distributed networks.

To determine the rate of synapse loss in developing neural networks, we focused on a well-
characterized region of the neocortex, layer 4 of somatosensory cortex representing the D1
whisker (Fig 1A), where both thalamic inputs and recurrent circuitry are established in the first
two postnatal weeks [34-36]. Because this region of primary sensory cortex does not receive
significant input from other cortical layers [37], measurements of synaptic pruning reflect the
maturation of an extant network, uncontaminated by the addition of synapses over the analysis
window. In addition, the somatotopic anatomy of the whisker (barrel) cortex insured that com-
parisons across different animals and time-points could be made for the identical small cortical
region (Fig 1B).

Changes in synaptic density over time were obtained from sampling 41 animals over 16
developmental time-points ranging from postnatal day 14 (P14) to P40 (Table 1). Over 20,000
synapses in nearly 10,000 images were identified using a synapse-enhancing reaction that spe-
cifically highlights synaptic contacts for electron microscopy [38, 39], coupled with unbiased
machine learning algorithms (Fig 1C; Materials and Methods) [26]. Consistent with prior esti-
mates that sampled only the peak and the end-point [9, 33], peak synaptic density occurred at
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Fig 1. Experimental pipeline, image processing, and decreasing pruning rates. (A) Schematic of the somatotopic mapping of whiskers to neocortical
columns in the mouse somatosensory cortex. (B) Tangential sections from flattened brains preserve the structure of the barrel-field, enabling easy
identification and isolation of the D1 barrel in tissue from different ages. (C) A support vector machine (SVM) classifier is trained using manually labeled
examples of synapses and non-synapses in electron microscopy images. (D) Example images of synapses at three different time points corresponding to
peak synapse density (P19), and later drop-off (P24 and P32). Scale bar represents 500nm. (E) Developmental pruning rate (raw data, left; binned data,
right). Red lines show spline interpolations of the data points. Insets show that the majority of synapses are pruned during the first half of the developmental
pruning period.

doi:10.1371/journal.pcbi.1004347.9001
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Table 1. Overview of experiments and synapses detected.

Post-natal day (P) # Animals # Images # Synapses (Avg/Image) Precision Recall

14 2 269 500 (1.86) 89.00 50.00
17 3 400 964 (2.41) 92.40 50.00
19 3 739 2437 (3.30) 88.37 49.50
21 3 736 1984 (2.70) 96.57 49.70
22 2 397 1121 (2.83) 80.80 50.00
23 4 767 1913 (2.50) 92.75 49.88
24 1 136 418 (3.07) 96.50 49.50
26 3 523 1176 (2.25) 91.93 49.83
28 2 915 1779 (1.95) 95.70 49.45
30 3 642 1186 (1.85) 95.40 49.83
32 4 1480 2192 (1.48) 96.00 49.70
33 1 256 642 (2.51) 98.00 50.00
34 2 508 1235 (2.43) 88.80 49.50
36 3 763 1611 (2.11) 90.83 49.73
38 3 734 1397 (1.91) 92.63 49.80
40 2 489 803 (1.64) 94.10 49.65
16 41 9754 21355 92.38 49.76

doi:10.1371/journal.pcbi. 10043471001

P19 and density declined steeply to mature levels three weeks later (Fig 1D and 1E). Synapse
density at P40 was similar to adult mice sampled at P65 (54 Fig).

Pruning rates were decreasing over time, i.e. rapid elimination was followed by a slower
period of pruning. To determine the significance of this observation and to test whether only a
single sample or time-point was driving the rate, we used a leave-one-out cross-validation
strategy (Materials and Methods). First, the pruning period was divided into either 2 or 5
equally-spaced intervals over time from P19 to P40. Second, for each fold in the cross-valida-
tion, either one sample was left-out or one time-point was left-out. Third, a spline interpolation
curve was fit and was used to compute the percentage of synapses pruned across successive
intervals. When dividing the period into 2 intervals (P19-P29, n = 18 animals and P29-P39,

n =18 animals), there was a significant decrease in the percentage of synapses pruned within
the first interval compared to the second interval (average percentage of synapses pruned from
P19 to P29: 39.99%; (standard deviation over cross-validation folds: 2.93); average percentage
of synapses pruned from P29 to P39: 10.87% (standard deviation: 4.56); P < 0.01, unpaired
2-sample t-test; Fig 1E). When dividing into 5 intervals, we also found a significant decrease in
percentage of synapses pruned within the first interval versus the second (27% versus 15%;

P < 0.01 unpaired 2-sample t-test) and similar decreases across the next two intervals (Fig 2).
The slight rise in pruning in the last interval (7%) may be due to the addition of layer-4-inner-
vating afferents from other brain areas [40] (indeed, we see a small rise in synapse density at
P33, followed by additional pruning; S6 Fig). Nonetheless, the majority of the pruning still
occurs during the first two intervals compared to the last three (P < 0.01), which is quantita-
tively indicative of a decreasing rate.

To further assess the reproducibility of these results, synapse density was adjusted for 3D
analysis, which also confirmed a decreasing rate of synapse elimination (S5 Fig). These data
indicate that neural networks are modified by aggressive pruning of connections, followed by a
later, slow phase of synaptic elimination.
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Fig 2. Finer analysis of decreasing synaptic pruning rates. The pruning period was divided into 5 intervals and the percentage of synapses pruned
across successive intervals is depicted by the red bars. Statistics were computed using a leave-out-one strategy on either individual samples from the raw
data (A) or on entire time-points using the binned data (B), where samples from a 2-day window were merged into the same time-point. Error bars indicate
standard deviation over the cross-validation folds. All successive points are significantly different (P < 0.01, two-sample t-test).

doi:10.1371/journal.pcbi.1004347.9002

Pruning outperforms growing algorithms for constructing distributed
networks

Theoretical and practical approaches to engineered network construction typically begin by
constructing a basic, backbone network (e.g. a spanning-tree) and then adding connections
over time as needed [17]. Such a process is considered cost efficient since it does not introduce
new edges unless they are determined to improve routing efficiency or robustness. To quantita-
tively compare the differences between pruning and growing algorithms, we formulated the
following optimization problem: Given n nodes and an online stream of source-target pairs of
nodes drawn from an a priori unknown distribution D (Fig 3A), design an efficient and robust
network with respect to D (Materials and Methods). Efficiency is measured in terms of the
average shortest-path routing distance between source-target pairs, and robustness is measured
in terms of number of alternative source-target paths (Materials and Methods).

The distribution D represents an input-output signaling structure that the network needs to
learn during the training (developmental) phase of network construction. This situation occurs
in many computational scenarios. For example, wireless and sensor networks often rely on
information from the environment, which may be structured but unknown beforehand (e.g.
when monitoring river contamination or volcanic activity, some sensors may first detect
changes in the environment based on their physical location and then pass this information to
other downstream nodes for processing) [24]. Similarly, in peer-to-peer systems on the Inter-
net, some machines preferentially route information to other machines [41], and traffic pat-
terns may be unknown beforehand and only discovered in real-time. In the brain, such a
distribution may mimic the directional flow of information across two regions or populations
of neurons.

After training, the goal is to output an unweighted, directed graph with a fixed number of
edges B, representing a limit on available physical or metabolic resources. To evaluate the final
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Fig 3. Computational network model and comparison between pruning and growing. (A) Example distribution (2-patch) for source-target pairs. (B) The
pruning algorithm starts with an exuberant number of connections. Edges commonly used to route source-target messages are retained, whereas low-use
edges are iteratively pruned. (C) The growing algorithm begins with a spanning-tree and adds local shortcut edges along common source-target routes. (D)
The no-learning algorithm chooses random edges and does not attempt to learn connections based on the training data. (E+F) Learned networks were
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paths between a test source and target). Error bars indicate standard deviation over 3 simulation runs.

doi:10.1371/journal.pcbi.1004347.9003
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network (test phase), additional pairs are drawn from the same distribution D, and efficiency
and robustness of the source-target routes is computed using the test pairs.

Importantly, decisions about edge maintenance, growth, or loss were local and distributed
(no central coordinator). The pruning algorithm begins with a dense network and tracks how
many times each edge is used along a source-target path. In other words, each edge locally
keeps track of how many times it has been used along a source-to-target path. Edges used
many times are by definition important (according to D); edges with low usage values are then
iteratively eliminated modeling a “use it or lose it” strategy [42, 43] (Fig 3B). Initially, we
assumed elimination occurs at a constant rate, i.e. a constant percentage of existing edges are
removed in each interval (Materials and Methods). The growing algorithm first constructs a
spanning-tree on n nodes and iteratively adds local edges to shortcut common routes [44] (Fig
3C). These algorithms were compared to a fixed global network (no-learning) that selects B
random directed edges (Fig 3D).

Simulations and analysis of final network structure revealed a marked difference in network
efficiency (lower values are better) and robustness (higher values are better) between the prun-
ing, growing, and no-learning algorithms. In sparsely connected networks (average of 2 con-
nections per node), pruning led to a 4.5-fold improvement in efficiency compared to growing
and 1.8-fold improvement compared to no-learning (Fig 3E; S8 Fig). In more densely con-
nected networks (average of 10-20 connections per node), pruning still exhibited a significant
improvement in efficiency (S7 Fig). The no-learning algorithm does not tailor connectivity to
D and thus wastes 25% of edges connecting targets back to sources, which does not enhance
efficiency under the 2-patch distribution (Fig 3A). Remarkably, pruning-based networks
enhanced fault tolerance by more than 20-fold compared to growing-based networks, which
were particularly fragile due to strong reliance on the backbone spanning tree (Fig 3F).

Simulations confirm advantages of decreasing pruning rates

The pruning algorithm employed in the previous simulations used a constant rate of connec-
tion loss. Given our experimental results of decreasing pruning rates in neural networks, we
asked whether such rates could indeed lead to more efficient and robust networks in our simu-
lated environment. To address this question, the effects of three pruning rates (increasing,
decreasing, and constant) on network function were compared (Materials and Methods).
Increasing rates start by eliminating few connections and then removing connections more
aggressively in later intervals. This is an intuitively appealing strategy since the network can
delay edge elimination decisions until more training data is collected. Decreasing rates initially
prune aggressively and then taper off over time, which forces earlier decision-making but pro-
vides more time for network stabilization.

Simulations show that the biologically-motivated decreasing rates indeed improve upon the
constant rate used previously and created the most efficient and robust networks (Fig 4A-4C).
In particular, for the sparsest networks, decreasing rates were 30% more efficient than increas-
ing rates (20% more efficient than constant rates) and exhibited similar gains in fault tolerance.
This was particularly surprising because efficiency and robustness are often optimized using
competing topological structures: e.g. while alternative paths enable fault tolerance, they do not
necessarily enhance efficiency. Further, fewer source-target pairs were unroutable (discon-
nected from each other) using decreasing rates than any other rate (Fig 4B), which means that
these networks were overall better adapted to the activity patterns defined by the distribution
D. Performance of pruning algorithms was also qualitatively similar when starting with sparser
initial topologies, as opposed to cliques (S9 Fig).
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pairs), and (C) robustness (higher is better) using the 2-patch distribution. For the growing algorithm, there are no unroutable pairs due to the initial spanning
tree construction, which ensures connectivity between every pair to begin with.

doi:10.1371/journal.pcbi.1004347.9004

Interestingly, decreasing rates also consume the least energy compared to the other rates in
terms of total number of edges maintained during the developmental period (S10 Fig), which
further supports their practical usage.

An alternative biologically-inspired model for building networks

Neurons likely cannot route signals via shortest paths in networks. To explore a more biologi-
cally plausible, yet still abstract, process for network construction, we developed a network-
flow-based model that performs a breadth-first search from the source node, which requires no
global shortest path computation (Materials and Methods).

Using this model, we see the identical ordering of performance amongst the three rates,
with decreasing rates leading to the most efficient and robust networks, followed by constant
and then increasing (Fig 5). While our original goal was not to model the full complexity of
neural circuits (e.g. using leaky integrate-and-fire units, multiple cell types, etc.), this analysis
shows the generality of our biological findings and relevance of pruning rates on network
construction.

Comparing algorithms using additional source-target distributions

The previous results compared each network construction algorithm using the 2-patch distri-
bution (Fig 3A). This distribution is unidirectional with equal probability of sampling any
node within the source and target sets, respectively. Next, we compared each network design
algorithm using four additional input distributions. For the 2s-patch distribution (Fig 6A),
with probability x, a random source and target pair is drawn, but with probability 1-x, a ran-
dom pair is drawn from amongst a smaller more active set of sources and targets. This distribu-
tion models recent evidence suggesting highly active subnetworks in the cortex with potentially
specialized sources and targets [45, 46]. We set x = 0.5 and the size of the selective sets to be
10% each. For the 2-patch-unbalanced distribution (Fig 6B), there are three times as many tar-
gets as sources, inspired by the fact that different layers have different numbers of neurons
[47]. For the 4-patch distribution (Fig 6C), there are two disjoint sets of sources and targets,
each putatively representing input-output activity from adjacent columns or layers. For the
4-patch Hubel-Wiesel distribution (Fig 6D), the second set of sources are shut-off and never

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004347 July 28,2015 9/283
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doi:10.1371/journal.pcbi.1004347.9005

drawn from and their corresponding targets are recruited by the first set of sources, mimicking
monocular deprivation [16].

Overall, decreasing rates produced the most efficient and robust networks across all distri-
butions. which further supports the generality of our model and experimental observations.

Analysis of network motifs

To test if our model can replicate statistics of non-random circuits, we detected network motifs
within the final network generated using decreasing-rate pruning. We counted all possible
3-node motifs and compared these counts to those expected in a random network [48]. Inter-
estingly, when using the 2-patch distribution, where sources and targets are drawn uniformly
from the two sets, we found no over-represented motifs. However, when we considered the 2s-
patch distribution (where a subset of sources and targets are selectively more active than the
others, as one might expect in real cortical circuits [45, 46, 49, 50]), we found feed-forward
motifs to be statistically over-represented when compared to random networks (P < 0.01, Z-
score = 2.82). This motif has been widely observed in many biological and computational net-
works and is known for its role in signal propagation and noise control [48].
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doi:10.1371/journal.pcbi.1004347.9006
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Theoretical basis of optimal pruning rates

Given a small, initial sampling of the training source-target pairs, it is relatively easy to deter-
mine many connections that will likely not be important. Decreasing rates eliminate these con-
nections quickly, and then provide longer time for the network to fine-tune itself and
accommodate indirect pathways while eliminating fewer connections. On the other hand,
increasing rates can gather more information early, but then are forced to drastically alter net-
work topology towards the final pruning intervals, which can sever pathways and fragment the
network. Interestingly, if the network construction process were guided by a centralized coordi-
nator, then pruning only in the last interval would clearly be a superior strategy because the
longer the coordinator waits, the more data is available to determine which edges are most
important to inform the centralized design process. However, the distributed nature of the
optimization problem forces a different strategy. Indeed, we found more network fragmenta-
tion (unroutable pairs) between sources and targets using increasing rates versus decreasing
(Fig 4B).

To capture these intuitive notions more formally, we theoretically analyzed the effect of
pruning rates on network efficiency. Analysis was simplified in the following way: (1) we only
considered efficiency (routing distance) as the optimization target [51]; (2) we assumed the
2-patch routing distribution used for simulation (Fig 3A); and (3) we approximated the topol-
ogy of the final network using three-parameter Erdés-Rényi random graphs. In these graphs,
directed edges between sources S — S or targets 7 — 7 exist independently with probability p,
edges from S — 7T exist with probability g, and edges 7— S existed with probability z (S1 Text,
S11A Fig; z = 0 in optimal sparse networks).

We derived a recurrence to predict the final p/q ratio given a pruning rate and analytically
related the final p/q ratio to efficiency, the expected path length between source-target pairs (S1
Text, S11B and S11C Fig). Decreasing rates led to networks with near-optimal p/q ratios, result-
ing in the best efficiency compared to other rates. Increasing rates yield larger values of g
(direct source-target edges) because these edges initially represent the shortest routing path for
source-target pairs observed during training when the network is very dense. However, these
exact pairs are unlikely to be seen again during testing, which leads to over-fitted networks.

From both simulations and theoretical analysis, we found that the regime where decreasing
rates are better than increasing rates lies mostly in sparse networks; i.e. where there are O(kn)
edges, where k is a small constant. For example, with n = 1000 nodes, we find k in the range of
2-6 to show the most significant differences between rates. This level of sparsity is in line with
many real-world geometric networks [52].

Real-world application to improve airline routing using pruning
algorithms

To demonstrate the utility of decreasing-rate pruning on real-world data, we used it to con-
struct airline routing networks using real traffic data denoting the frequency of passenger travel
between US cities. Here, nodes are cities and directed edges imply a direct flight from one city
to another (Fig 7A). Due to budgetary constraints, only a subset of routes can be offered based
on traffic demands from passengers. We collected data from the Department of Transportation
detailing how many passengers flew between the top 1000 source and target city pairs in the
United States (e.g. San Francisco to Los Angeles) during the 3rd quarter of 2013 [53]. These
frequencies were converted into a distribution (D) denoting the probability of travel between
two cities. For this data, a source can also be a target and vice-versa. There were 122 nodes (cit-
ies) in the graph. Training and evaluation was done as before.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004347 July 28,2015 12/283



@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Pruning Optimizes Construction of Efficient and Robust Networks

A Air traffic distribution B Efficiency C Robustness
20
== qrowing .
o= nolearing Zoom in 15 : ﬁroc\)ev::rr‘rg\;mg
° mmsum increasing i TS mgum increasing
O 15| |=e= constant =] g constant
% g decreasing © == decreasing
- n Q
32 @ g 1.0
s° 2>
22 2%
oL ] =3=
E 8 300 350 400 450 500 _8 g
= X 's 05
5 B
0.0
250 300 350 400 450 500 250 300 350 400 450 500
Cost (# of edges) Cost (# of edges)

Fig 7. Improving airline efficiency and robustness using pruning algorithms. (A) Actual data of travel frequency amongst 122 popular cities from the 3rd
quarter of 2013 was used to define a source-target distribution. (B-C) Efficiency (travel time in terms of number of hops) and robustness (number of
alternative routes with the same number of hops) comparison using different algorithms. Decreasing-rate pruning produced more efficient networks with
similar robustness.
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Decreasing-rate pruning once again outperformed constant and increasing rates, enhancing
efficiency by 5-10% with similar robustness when using the same number of edges (Fig 7B and
7C). In other words, these networks can reduce travel time for passengers—especially when
travel to some cities is shut down by emergencies—and can reduce overall load of air traffic
control systems. While in practice airline routing networks can be designed in a centralized
and offline manner, we used this example to show in principle how our technique could work,
using real data.

Discussion

Motivated by new experimental data, we showed that decreasing pruning rates lead to more
efficient and robust routing networks compared to other pruning rate strategies and growth-
based methods, when learning is distributed and online. While pruning is initially resource-
intensive, early hyper-connectivity facilitates rapid convergence to the most important subset
of connections. Our experimental and theoretical results may appear counter-intuitive since
decreasing rates eliminate more connections early and thus cannot utilize information received
later, compared to increasing rates. However, similar to many large-scale engineered systems,
the brain is built distributedly, with many concurrent processes that do not have access to a sin-
gle global planner [54]. Increasing rates prune aggressively at the end, and such last-minute
drastic changes in topology leave the network fragmented. Decreasing rates provide the best of
both worlds in this regard. They retain extensively used connections and provide more time for
the network to fine-tune pathways by making only relatively minor topological modifications
in later pruning intervals. Moreover, decreasing rates require the least overall energy to imple-
ment because most edges are pruned early in development. This confers an additional practical
advantage to their usage. Our results applied to networks designed using both a shortest-path
model and a flow-based model.

Simultaneously enhancing both efficiency and robustness, a result achieved by decreasing
rates, is not a trivial task. A network in which each node is only connected to a single super-
hub can be used to route every source-target pair using at most 2 hops; however, if the primary
hub fails, the graph will be entirely disconnected, leading to a fragile network. On the other
hand, random networks will have many paths between two nodes, but these paths are not
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efficient for specific source-target distributions. The fact that decreasing rates outperformed
the other rates for both measures attests to its overall power. Given the importance of dynamic
construction of distributed networks, for example in wireless computing [55], decreasing-rate
pruning may be a viable alternative to current network design methods. These results may be
further improved by optimizing the actual rate of decrease in which we prune edges. Further, a
more rigorous analysis of the regimes where decreasing rates outperform other rates, including
their affect on network robustness, is left for future work.

Prior work studying synapse elimination have primarily focused on the molecular mecha-
nisms controlling this process, including the genes, proteins, and signaling pathways involved
[1, 2], and the role of microglia [4]. Quantitative measurements of synaptic density over devel-
opment have been made in several species, including human (frontal cortex [6], prefrontal cor-
tex [56], visual cortex [57], striate cortex [58]) and mouse (DLGN [59, 60], neuro-muscular
junction [61], barrel cortex [9, 33]), amongst others [7, 8]. However, unlike our study that
focused on determining pruning rates, the primary goal of these studies was to demonstrate
that pruning exists in these areas and to identify the time-period over which it occurs. In some
of these studies, decreasing pruning rates can be inferred [56, 58], which further strengthens
our findings. However, given their focus as mentioned above, no attempt is made in these prior
studies to determine the statistical significance of the observed decreasing rate, and these rates
were not linked to network-level information processing (routing), which is our primary con-
tribution. Prior computational modeling of synaptic pruning has used Hopfield networks as an
optimization model [5]; while this work also does not analyze pruning rates, our results may
shed light on the robustness of memory recall and storage under such a model. Finally, Goyal
et al. [62] used expression levels of known synaptic markers to study synapse elimination in
human; such expression patterns can potentially also be used to model co-occurring rates of
synapse growth and energy consumption (e.g. ATP) during development. There may also be
additional pruning parameters important to extract and analyze, such as pruning differences
amongst different cell types, the addition of afferents from other brain areas at delayed time-
points, and the involvement of glia in synaptic pruning.

Our experimental analysis of pruning rates in the neocortex shows that rates are decreasing
over time. This finding has important biological implications for how networks mature during
development or reorganize during learning. Given similar levels of activity over the network
construction period, these results suggest that the threshold for activation of signaling path-
ways that initiate synaptic weakening or loss should increase over time. Previous experimental
data provides some support to this view, indicating that nascent connections are particularly
vulnerable to synaptic depression [63] or elimination [64]. Decreasing pruning rates are also
consistent with the developmental time-course of myelination, which shows sharp sigmoidal
growth soon after pruning begins [65, 66]. By pruning aggressively early, myelin is not unduly
wasted on axons that may ultimately be lost. Clinically, many neurological disorders show
abnormal pruning levels during critical development periods—either too many synapses (Frag-
ile X syndrome [67-69]) or too few synapses (Rett syndrome [70-72])—and these phenotypes
may also affect network function. While our experimental analysis allowed us to coarsely quan-
tify pruning rates, further challenges remain in longitudinal analysis of synaptic changes within
a single animal and automatic synapse detection from large volumes of tissue. Both advances
can enable temporally-finer analyses, which can be used to establish more precise pruning
rates. Further, any continuous pruning rate that eventually stabilizes will have a time bin over
which the rate decreases; our data showed that this decrease persists over multiple days, though
finer analyses may be warranted to uncover more precise elimination rates.

Our main goal in this paper was to explore whether a pruning process that mimics how neu-
ral networks are formed can be used to construct efficient and robust computational
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communication networks. To this end, our model abstracted away many other information
processing goals of neural networks, including synchronization and transformation of input
signals. In addition, we do not model many properties of neural circuits, including connection
weights, coincident activation of multiple neurons, spike-timing dependent plasticity, and the
presence of inhibitory transmission. Our intention in this study was to highlight the potential
importance of pruning rates on global circuit function and to show how this unusual strategy
can be applied in various computing applications. Further study will be required to experimen-
tally perturb pruning rates in vivo to understand how they affect neural function and behavior.

Our approach of abstracting broad-scale, algorithmic principles from neural networks is likely
to provide further insights into the construction of engineered networks and further exemplifies
how bi-directional studies can benefit both biology and computer science [11, 73-75].

Materials and Methods
Ethics statement

All experiments were carried out in accordance with NIH Guidelines for animal care and use,
and were approved by Carnegie Mellon’s institutional animal care and use committee (IACUC
protocol AS13-37).

Electron microscopy imaging and image processing

To experimentally quantify the rate of pruning, we focused on layer 4 of the somatosensory
cortex. We extracted, fixed, and sectioned 50um-thick tissue from wildtype C57bl6 (Harlan)
mice at different ages. A mitochondrial stain (cytochrome oxidase) was used to visualize the
barrelfield, and the D1 barrel was extracted using a dissecting light microscope.

To enable unbiased and high-throughput classification of synapses, we leveraged a staining
technique that uses ethanolic phosphotungstic acid (EPTA) to pronounce electron opacity at
synaptic sites by targeting proteins in contact zones [38, 39]. This technique typically leaves
non-synaptic structures (e.g. plasma membranes, neurotubules, and vesicles) less stained,
though considerable variation can exist across samples due to differences in histological chem-
istry, microscope lighting, etc. Tissue was prepared for electron microscopy (EM) imaging
using the same procedure previously described [26]. Both excitatory and inhibitory synapses
are stained by this technique [26, 38, 39].

We previously developed a machine learning method that uses support vector machines
(SVM) to detect synapses in EPTA-EM images using texture- and shape-based features [26].
The SVM model was trained on data collected in this paper from all 16 developmental time-
points. This compromised 3,708 positive examples (synapses) and 39,163 negative examples
(non-synapses) across all ages studied. Overall, the classifier was highly accurate and achieved
a precision of 90.4% with a recall of 50.0% under 10-fold cross-validation. To ensure that syn-
apse densities were comparable across samples (animals), especially those with variable stain-
ing quality, we manually classified synapses in roughly 20 images per sample, applied the
classifier (which was built on training data from all the other samples) to these images, and
then selected the classification threshold that resulted in 50% recall with 80+% precision (S1
Text, S1 Fig). Recall is defined as: TP / (TP + FN), i.e. the percentage of true synapses correctly
predicted by the classifier. Precision is defined as: TP / (TP + FP), i.e. the percentage of pre-
dicted synapses that are truly synapses. This means that within each sample, we detected
roughly half the synapses, and if the classifier identified a synapse, it was indeed a synapse at
least 80% of the time. If precision was < 80% at 50% recall, the sample was removed from the
analysis. Table 1 shows average precision and recall values for samples in each time-point.
Although we carefully provided our classifier example synapses with a wide variety of
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structures, shapes, and sizes, there may still be some bias towards classifying certain types of
synapses over others. Full details of the imaging method and synapse classification pipeline,
including their novelty compared to analysis of conventional electron microscopy images, was
previously discussed [26].

A potential method to improve accuracy is to classify synapses in 3D volumes rather than
2D images. Due to challenges related to imaging, alignment, segmentation, and reconstruction
across serial sections, such 3D analysis is currently difficult to fully automate [76, 77], which
makes it difficult to reason statistically about fine-scale pruning rates. To help control for vari-
ability in synapse density in the tissue itself, four regions were sampled from within the barrel
(S2 Fig) and counts were averaged. While this approach of sampling multiple regions within
the same 2D plane may miss synapses, the same procedure was applied to each animal in each
time point, and hence the relative number of synapses per unit area can still be fairly compared
to infer a temporal pruning rate.

To perform the statistical analysis of the pruning rates, we binned the data into 12 bins: P14
only, P17 only, P19 only, P21 and P22, P23 and P24, P26 only, P28 only, P30 only, P32 and
P33, P34 and P36, P38 only, P40 only. By removing one sample or time-point at a time from
the dataset and re-computing the pruning rate using the remaining dataset (known as leave-
one-out cross-validation), we statistically determined whether a single sample or time-point
was responsible for the observed pruning rate.

A theoretical framework for distributed network design

We developed a computational model for designing and evaluating distributed routing net-
works. The problem is as follows:

Problem: Given a set V of n nodes and an online stream of source-target pairs { (s, t,) }>_,,
where s;, t; € V are drawn from some distribution D, return a graph G with at most B edges that
is “efficient” and “robust” with respect to D.

The source-target pairs are drawn from an a priori unknown distribution D. This distribution
captures some structure in activity (input-output signals) that the network needs to learn during
the “training” phase in which the network is constructed. For example, half the nodes can be
sources and the other half are targets (the 2-patch distribution; Fig 3A), though the identity of
which node belongs to which class is not known a-priori. The sources and targets are individual
nodes in the network. The source-target pairs are drawn online, which means they are provided
one at a time to the network and thus cannot be processed in bulk, mimicking real-time informa-
tion processing constraints in many types of networks. The pairs are drawn randomly and hence
the same pair may appear multiple times in the training or testing sets.

After p source-target pairs are seen, the goal is to output an unweighted, directed network G
with some fixed number of edges (defined as the budget B). This budget represents the total
allowable cost that the system can maintain (i.e. the number of physical or wireless
connections).

Measuring the quality of a network: Efficiency and robustness

The quality of the final network G is evaluated according to its efficiency and robustness when
processing an additional p pairs drawn from the same distribution D (the “testing” phase).
During testing, the network is fixed and no changes are made to its connectivity. The test and
train pairs may overlap (both are drawn from the same distribution), though they are both
likely to also have non-overlapping pairs. This emulates the fact that activity patterns observed
during development mimic those expected later but are not exactly the same. Hence, the chal-
lenge is to design a network that generalizes the training data and does not over-fit.
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Efficiency is defined as the average shortest-path routing distance over all test pairs [78]:
efficiency(G) =13 ,d(u,v), where p is the number of source-target pairs observed in the
P u,v

test phase, and d(u, v) is the shortest-path distance between source u and target v in the final
network. If there does not exist a path between a pair, then we set its penalty distance to a large
constant.

Robustness is a measure of how tolerant the network is to the deletion of nodes. We adopt a
standard measure for robustness based on vertex connectivity [79]: for each source-target pair,
we compute the number of alternative paths that have up to one additional hop compared to
the true shortest path. This is computed implicitly by removing nodes along the shortest path,
and then finding the length of the next shortest path, etc. This definition of robustness ensures
that if a primary route is attacked or damaged, an alternative route not only exists but is one
that is not much worse than the shortest path.

These definitions are broad, well-established from a graph-theoretic perspective, and appli-
cable to many computing scenarios, but they are not meant to capture all the requirements of
information processing in the brain.

Pruning-based algorithms for distributed network design

To test the impact of pruning and pruning rates we use the following algorithm which is partic-
ularly suitable for routing applications. The algorithm begins with a fully connected graph (a
clique) on n nodes. For each source-target pair, the source routes its message to the target via
the shortest path in the graph (computed using a distributed routing table [80, 81]). Initially,
all shortest paths will be direct source-to-target paths. Each edge keeps track of the number of
times it has been used to satisfy a request(i.e. if an edge u — v lies on the shortest path from
source s; to target t;, then edge u — v updates its usage value by 1). All edges initially have a
usage of 0.

The above method is appropriate for simulating computational networks. In contrast, neu-
rons likely cannot route signals via shortest paths in networks. We thus tested another simula-
tion model which is more biologically plausible, yet still abstract. Rather than routing, this
simulation uses a flow-based model that performs a breadth-first search from the source node
(counting all paths between the pairs). Such search does not require any global shortest path
computation. In this model, the usage of edges along every successful path that reaches the tar-
get is upweighted by 1. This model assumes there is feedback to the circuit that “rewards” every
edge active along a source-to-target response [82]. To further mimic synapse failure (signal
loss) widely present in neural circuits [83], we assumed a constant signal loss probability of
0.65. This means that with probability 0.65, an edge will fail and will not propagate the signal
onwards. Similar values of the signal loss probability led to similar results. This flow process
repeats for each source and target during training. Edges are pruned iteratively according to
different pruning rates (see below).

For the simulations, the pruning period is divided into 10 discrete intervals, each occurring
after 10% of the source-target pairs have been processed. After each interval i, some r;-percent-
age of edges are removed (where r; depends on the pruning rate, see below). In each interval
the pruned edges are those with the lowest-usage (ties are broken randomly).

Pruning rate strategies

We divided the pruning period into 10 discrete intervals, and after each interval, some r; per-
centage of existing connections were pruned. We considered four pruning rate strategies:
increasing, decreasing, constant, and ending (S3 Fig).
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1. Constant rate: r; =, = ... = r1o. Elimination rates are kept constant (i.e. the same percent-
age of existing connections are removed in each interval).

2. Increasing rate: r; < r, < ... < ry. Elimination begins very slowly and becomes aggressive
later.

3. Decreasing rate: r; > r, > ... > rjo. Elimination begins aggressively and then decelerates
over time.

B

4. Endingrate:r; =7r,=...=r9=0andry = AT Elimination only occurs in the final

interval and immediately reduces the network from a clique to exactly B edges.

See S1 Text for complete details on how these rates are applied. The Ending rate produced
highly overfit networks with only direct edges connecting a subset of source-target pairs seen
during training. This yielded the worst efficiency and robustness over all rates.

Additional network design algorithms: growing and no-learning

We also tested a growth-based algorithm for solving the network design problem that adds
connections over time starting from a backbone spanning tree (which are commonly used in
engineered systems [17]). See S1 Text for details.

The no-learning algorithm simply selects B random directed edges to form the final network
and ignores the training data.

Supporting Information

S1 Text. Supplementary methods and results.
(PDF)

S1 Fig. Controlling for image quality in EPTA-EM images. A) First, positive (synapses) and
negative (non-synapses) examples were manually labeled in 20 images in the new sample s. B)
Second, the classifier (trained on images from all other samples, excluding s) was applied to the
labeled data for s and the threshold 7 that yielded a recall of 50% with precision > 80% was
selected. C) Third, the classifier was applied to all images in s using 7 as the classifier threshold.
(TIFF)

S2 Fig. Electron microscopy imaging within a barrel. To control for variability in synapse
density in different areas in the barrel, 4 regions of the barrel were imaged. Tissue was placed
on a mesh copper grid. White circles depict electron beam residue after images were taken.
Approximately 240 images per animal (60 images x 4 regions) were taken covering a total of
6,000um” of tissue per animal.

(TIFF)

S3 Fig. Four pruning rate strategies. Constant rates (red) prune an equal percentage of exist-
ing connections in each pruning interval. Decreasing rates (blue) prune aggressively early-on
and then slower later. Increasing rates (black) are the opposite of decreasing rates. Ending rates
only prune edges in the final iteration. A) Number of edges remaining after each pruning inter-
val. B) Percentage of edges pruned in each pruning interval. Here, n = 1000.

(TIFF)

$4 Fig. Synapse density in adult mice (P65).
(TIFF)

S5 Fig. Pruning rate with 3D-count adjustment. Adjusted pruning rate per volume of tissue
plotted using A) the raw data (where each point corresponds to a single animal) and B) the
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binned data (where each point averages over animals from a 2-day window).
(TIFF)

$6 Fig. Pruning with multiple periods of synaptogenesis and pruning.
(TIFF)

S7 Fig. Comparing pruning and growing for denser networks.
(TIFF)

S8 Fig. Comparing the efficiency and robustness of two growing algorithm variants.
(TIFF)

S9 Fig. Comparing efficiency and robustness of pruning algorithms that start with variable
initial connectivity. A) Initial density is 60% (i.e. each edge exists independently with proba-
bility 0.6. B) Initial density is 80%.

(TIFF)

$10 Fig. Cumulative energy consumed by each pruning algorithm. Energy consumption at
interval i is the cumulative number of edges present in the network in interval i and all prior
intervals. Here, n = 1000 and it is assumed that the network initially starts as a clique.

(TIFF)

S11 Fig. Theoretical results for network optimization. (A) Example edge-distribution using
decreasing pruning rates and the 2-patch distribution. (B) Prediction of final network p/q ratio
given a pruning rate. Bold bars indicate simulated ratios, and hashed bars indicate analytical
predictions. (C) Prediction of source-target efficiency given a p/q ratio.

(TIFF)
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