
Systems/Circuits

Loss of Consciousness Is Associated with Stabilization of
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What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and
debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to
reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the
perspective of dynamical systems theory. We argue that the brain, as a dynamical system, is self-regulated at the boundary between stable
and unstable regimes, allowing it in particular to maintain high susceptibility to stimuli. To test this hypothesis, we performed stability
analysis of high-density electrocorticography recordings covering an entire cerebral hemisphere in monkeys during reversible loss of
consciousness. We show that, during loss of consciousness, the number of eigenmodes at the edge of instability decreases smoothly,
independently of the type of anesthetic and specific features of brain activity. The eigenmodes drift back toward the unstable line during
recovery of consciousness. Furthermore, we show that stability is an emergent phenomenon dependent on the correlations among
activity in different cortical regions rather than signals taken in isolation. These findings support the conclusion that dynamics at the edge
of instability are essential for maintaining consciousness and provide a novel and principled measure that distinguishes between the
conscious and the unconscious brain.
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Introduction
Consciousness is the most prominent feature of the mind, yet its
neurophysiological underpinnings remain clouded by a web of
disconnected, circumstantial observations. One source of con-
ceptual obfuscation is that, according to a growing consensus
(Thompson and Varela, 2001), consciousness is an emergent

phenomenon that arises out of the interactions between compo-
nents of the nervous system but is not reducible to them
(O’Connor and Wong, 2012). What, then, are the emergent fea-
tures of brain activity that are associated with consciousness?

We begin with a simple intuition—the sine qua non of con-
sciousness is responsiveness. Responsiveness to sensory stimuli is the
cornerstone of assessment of consciousness in the settings of brain
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Significance Statement

What distinguishes brain activity during consciousness from that observed during unconsciousness? Answering this question has
proven difficult because neither consciousness nor lack thereof have universal signatures in terms of most specific features of
brain activity. For instance, different anesthetics induce different patterns of brain activity. We demonstrate that loss of con-
sciousness is universally and reliably associated with stabilization of cortical dynamics regardless of the specific activity charac-
teristics. To give an analogy, our analysis suggests that loss of consciousness is akin to depressing the damper pedal on the piano,
which makes the sounds dissipate quicker regardless of the specific melody being played. This approach may prove useful in
detecting consciousness on the basis of brain activity under anesthesia and other settings.
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injury, neurologic disorders, and anesthesia. However, responsive-
ness need not relate specifically to sensory perturbations. It seems
likely that, to exhibit consciousness, activity arising in one brain
network must be able to perturb activity in a different network. This
property of responsiveness is related closely to the concept of stability
in dynamical systems theory. Stability governs whether the trajectory
of the system in phase space is going to change drastically after a
small perturbation or remain essentially unchanged. If the brain dy-
namics were too stable, then any perturbation would quickly
dampen and brain activity would remain essentially unchanged.
Conversely, if the dynamics were unstable, then even infinitesimal
amounts of noise would grossly disrupt ongoing activity. Therefore,
we propose that “dynamical criticality”—the behavior exhibited by
systems in the vicinity of a bifurcation between dynamically stable
and unstable behaviors (Magnasco et al., 2009)—is essential for
consciousness.

General anesthetics present an ideal set of tools to test this
hypothesis. Anesthetics act on a variety of receptors (Franks,
2008) distributed among many brain regions (Concas et al., 1990;
Devor and Zalkind, 2001; Chen et al., 2005; Jia et al., 2005).
Although some, such as propofol, induce the canonical large-
amplitude low-frequency oscillations in the EEG, resembling
slow-wave sleep (Brown et al., 2010), others, such as ketamine,
produce “awake-like” EEG characterized by oscillations in the
�40 Hz � range (Maksimow et al., 2006). In fact, despite routine
use of EEG-based monitors, some patients awaken during sur-
gery, have postoperative recall (Avidan et al., 2011), and develop
posttraumatic stress disorder. Thus, it is currently impossible to
reliably distinguish conscious from unconscious brain even in the
relatively controlled setting of anesthesia.

To determine whether dynamical criticality is associated with
consciousness, we performed stability analysis of high-density
electrocorticography (ECoG) in nonhuman primates during re-
versible transitions into unconsciousness induced with different
anesthetic regimens. An array of ECoG electrodes each recording
the field potentials of �10 5 neurons (Miller et al., 2009; Ritaccio
et al., 2010) was constructed to cover an entire cerebral hemi-
sphere. This allowed us to address simultaneously the macro-
scopic stability of cortical dynamics and the dependence of
stability on the interactions among activities in different cortical
regions.

Thus, our overarching hypothesis that dynamical criticality is
essential for the responsiveness characteristic of consciousness
suggests more specifically that loss of consciousness would be
accompanied by a loss of criticality, an implication first prelimi-
narily tested by Alonso et al. (2014). Here we show that dynamical
criticality is disrupted universally during loss of consciousness
regardless of the anesthetic regimen or specific microscopic fea-
tures of neuronal activity. Furthermore, stabilization is an emer-
gent macroscopic phenomenon dependent on the correlations in
activity among different cortical regions rather than on any spe-
cific feature of each individual local field potential.

Materials and Methods
Subjects and data acquisition. Data from four
male monkeys were collected at the Laboratory
for Adaptive Intelligence, Brain Science Insti-
tute, RIKEN. The datasets are shared in the
public server Neurotycho (http://neurotycho.
org/). The ECoG array consists of 128 elec-
trodes covering the visual, auditory, somato-
sensory, and motor areas and the parietal and
frontal association cortices (Fig. 1). The ECoG
potentials were digitized at 1 kHz. Additional
details of the procedure have been described

previously (Nagasaka et al., 2011; Yanagawa et al., 2013). ECoG record-
ings were obtained during the induction of anesthesia starting from the
awake state. In this study, we analyze a total of 16 experiments each
consisting of reversible induction of anesthesia starting from the awake
state. The drug doses used to induce anesthesia are shown in
Table 1.

A total of 12 anesthetic inductions were performed using one of the
ketamine–medetomidine doses. Four anesthetic inductions were per-
formed with propofol. Ketamine–medetomidine inductions were per-
formed by injecting the drugs intramuscularly, whereas propofol was
administered intravenously. Each monkey received more than one anes-
thetic induction that was separated by at least 1 d.

Data processing. Before the stability analysis (see below), the power
spectra of the ECoG channels were examined to identify the potential for
contamination with electrical line noise. One channel in monkey M2 was
found to have significant noise contamination and was removed from
subsequent analysis. All other channels for all other monkeys were in-
cluded in the autoregressive models (see below). All channels were fil-
tered using a noncausal filter to remove harmonics of the 50 Hz electrical
line noise and bandpass filtered between 5 and 500 Hz. Both notch and
bandpass filters were implemented using the idealfilter function in
MATLAB (MathWorks) to avoid phase shifts.

Stability analysis. ECoG is a multivariate time series whose dynamical
properties can be inferred using autoregressive models fitted indepen-
dently to short time segments as described previously (Solovey et al.,
2012). Note that, for our purposes here, we are not interested in recon-
structing the dynamics per se. Our focus here is linear stability analysis.
This is accomplished by performing a locally linear approximation of the
system dynamics in short temporal windows using autoregressive mod-
eling. For every non-overlapping 500 ms window centered at time T, a
first-order autoregressive model,

x��t� � A�T� � x��T � �� � �� �t�, (1)

was fit independently to the ECoG potentials using a least-squares ap-
proach after casting the autoregressive model in the form of an ordinary
regression (Neumaier and Schneider, 2001). In Equation 1, x�(t) is a 128-
dimensional (number of electrodes in the ECoG array) vector of random
variables representing ECoG potentials at time t, A( T) is the 128 � 128
evolution matrix fit to the 500 ms temporal window centered at time T,
� � 1 ms (the sampling period), and ��(t)is the 128-dimensional error
vector at time t (T � 250 ms 	 t � T 	 250 ms).

An assumption implicit in this analysis is that the data are both linear
and stationary over the time window for which the model is estimated.
Autoregressive models have been used previously to fit different neuro-
nal signals including ECoG (Leuthardt et al., 2004). The usual approach
is to fit a single autoregressive model to the entire time series (usually
several seconds or minutes long). In this case, it is common to use an
order p autoregressive model x� � �i�1

p Ai � x��t � i � �� � ��, in which
the p is left as a free parameter. An alternative approach is to fit a complex,
biologically inspired nonlinear model to the entire dataset (Boly et al.,
2012). However, this approach requires many free parameters and mod-
els of the mechanisms responsible for the generation of the signal.

Our approach is purely phenomenological in that it does not make any
assumptions about the underlying neural mechanisms and does not re-
quire that the signal remain globally stationary. Rather than fitting a
single linear model to the entire dataset, we divide the dataset into short

Figure 1. Diagram of the array configuration used in each one of the four monkeys.
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non-overlapping time segments and estimate the evolution matrix inde-
pendently for each time segment. This relies on a much weaker assump-
tion that, although the signal is globally nonstationary, it may still, to a
good approximation, be locally stationary over a short time segment.

One significant advantage of autoregressive models is that the stability of
the system can be understood in terms of the eigenvalues of the evolution
matrix A (Neumaier and Schneider, 2001). For a 128-electrode array, using
an order 1 autoregressive matrix (128 � 128), we obtain 128 eigenvalues of
the system in a short temporal window. Complex eigenvalues define a fre-
quency of oscillation along the corresponding eigenvector. More impor-
tantly, for our analysis, the stability of the dynamics (i.e., exponential growth
or decay along a corresponding eigenvector) is given by the absolute value of
the eigenvalue 
. This can be understood if we consider the formal solution
to Equation 1, x�(n � �) � Anx�(0), where � is the time step (1 ms in our case).
Writing the eigenvalue decomposition A � U
U*, where U is orthonormal,

 is thediagonaleigenvaluematrix, and*represents the transposeconjugate,
we obtain x�(n � �) � U
nU*x�(0). The norm of the solution can be ex-
pressed as � x��n � �� � � �k�1

D c
k
n� x��0� �, where D � 128 and

ck � �
k�, (2)

which we will call the criticality index. If ck � 1, the mode is stable: a small
perturbation along the eigenvector will decay and return the system to its
original trajectory. Conversely, if ck � 1, the mode is unstable: any per-
turbation along the eigenvector will grow exponentially. ck � 1 corre-
sponds to a critical value at the transition between the stable and unstable
modes. In other words, rather than reconstructing system dynamics, in
this work, autoregressive models are used to perform linear stability
analysis of the ECoG potentials.

Methodology controls: order of the autoregressive models. Assuming that
Equation 1 is a good local approximation, the evolution matrix A(T ) is
representative of ECoG dynamics in the corresponding short window
around T. Thus, complexity emerges from the time evolution of the
model parameters, which allows us to follow abrupt changes in neuronal
dynamics that accompany induction of anesthesia.

Therefore, it is critical that the model actually captures the dynamics of
the ECoG signals within the short windows. Because autoregressive mod-
els are stochastic, the goodness of fit can be estimated by the fraction of
the total covariance of the dataset that is captured by the model. For 128
channels sampled at 1 kHz, the highest-order model that can be fit to a
window of 500 ms is p � 3. We evaluated the goodness of fit for orders 1,
2, and 3 by computing the ratio ��C���/��Cx��, where C� and Cx are the
covariance matrices for the error (Eq. 1) and the ECoG time series, where
��. . . �� stands for the matrix norm defined as the largest singular value of
the matrix. Using data from monkey M1, we obtained mean ratio values
of 0.011, 0.0088, and 0.0011 for orders 1, 2, and 3, respectively. Using data
from monkey M2, the mean over the rest and anesthesia conditions were
0.0082, 0.0044, and 0.00066; however, during the recovery condition, the
model performed considerably worse, with means of 0.069, 0.063, and
0.004. As expected, although order 3 yields a better fit (at the expense of
three times the number of regressors), order 1 models capture �99% of
the covariance of the ECoG time series and are therefore a good approx-
imation of the ECoG dynamics. Thus, we use order 1 models for the rest
of the analysis of both real and surrogate datasets (see below). Alonso et
al. (2014) has shown that the choice of the order of the model does not

strongly affect the results. This was confirmed with this dataset as well
(data not shown).

Methodology controls: robustness of the conclusions with respect to filter-
ing and window size used to estimate the autoregressive models. Although
the choice of the window for model fitting (500 ms in this case) is some-
what arbitrary, there are some constraints on this choice. If the time
segment is too long, the system is likely to deviate significantly from the
assumed stationary and linear regimes. Conversely, if the window is
made too short, then less data are available to fit the model with confi-
dence. This latter constraint depends on the sampling rate of the data
(1000 Hz in this case). Given a 128-electrode grid, the shortest time
segment that can be used to fit a first-order 128 � 128 autoregressive
matrix is 128 ms. This corresponds to having a single data point for each
coefficient. Thus, 500 ms is a reasonable compromise between the two
constraints. Note that, in our previous work with human ECoG, the data
were sampled at 10 kHz using a 64-channel ECoG array. This allowed us
to use 200 ms windows to estimate the models (Alonso et al., 2014).

The choice of the window size limits the bandwidth of frequencies that
can be fit by the model. Furthermore, filtering is a nontrivial operation
that can, in principle, affect the results. Thus, we varied the size of the
window (350 –750 ms) and studied the effect of the high-pass filter on the
stability analysis using the following procedure.

For each choice of window size and filter, we estimated autoregressive
models and computed the distribution of the criticality indices. To study
how this distribution evolves in time as the monkey is induced into
unconsciousness and subsequently recovers, we computed the z statistic
using the nonparametric Mann–Whitney U test between the distribution
in the initial window and each subsequent window. Thus, every experi-
ment is represented by a sequence of z statistics. To quantify the degree of
consistency between different windows and filter conditions, we com-
puted the correlation between the sequences of z statistic. Table 2 shows
the correlation coefficients averaged across all 16 experiments. Thus,
although we used high-pass-filtered data and window size of 500 ms in
this work, within limits, the choice of the window length or high-pass
filtering has only minimal effect on the stability analysis.

Spectral analysis. Power spectra were estimated using Thomson’s mul-
titaper method (Thomson, 1982) implemented in Chronux (http://
chronux.org/; Mitra and Bokil, 2008) with time bandwidth product of 5
(nine tapers). Spectra for each channel were estimated in sliding windows
(window duration, 3 s; window step, 1 s). The spectrum in each window
was normalized by total power such that all power estimates are ex-
pressed as fraction of total power in the corresponding window. Fre-
quency bands were defined as follows: �, 0 – 4 Hz; �, 4 –7 Hz; 
, 7–14 Hz;
�, 15- 30 Hz; �, 30 –100 Hz; high �, 100 –250 Hz. Fraction of power
contained in each frequency band was computed by summing the power
across all frequency elements in each band.

For the purposes of the “mean spectrum” (see Fig. 6 A, B), the spec-
trum for each channel was estimated using 10 s windows using a window
step of 1 s. Then spectra from different channels within each experiment
were averaged. Spectra were then expressed as deviation from the mean
awake spectrum computed by averaging spectral windows from 4 min
culminating in drug injection.

Connectivity. We did not require the autoregressive matrices to be
sparse, and, thus, each electrode is connected to all others. For the pur-
pose of simplifying the content of the matrices, we binarized each one
according to the following procedure: we estimated the mean and SD of

Table 1. Detailed information of the experimental protocols: three different doses
of ketamine–medetomidine mixture (only a single dose of ketamine–
medetomidine was used in any given monkey) and a single dose of propofol
(propofol was only used in monkeys M1 and M2 (Yanagawa et al., 2013, their
Table S1)

Anesthetic agent (mg/kg)

Monkey name Species Electrodes (n) Ketamine Medetomidine Propofol

M1 Macaca fuscata 128 4.7 0.019 5.2
M2 M. fuscata 128 5.6 0.011 5.5
M3 M. fuscata 128 4.7 0.019
M4 M. mulata 128 8.8 0.053

Table 2. Exploration of the effect of high-pass filtering and windows size used to
estimate the autoregressive models

Comparison
Pearson’s
correlation coefficient

Rank correlation
coefficient

Filtered versus unfiltered (500 ms window) 0.999 0.971
500 ms window (filtered) versus 350 ms

window (unfiltered)
0.935 0.847

500 ms window (filtered) versus 750 ms
window (unfiltered)

0.981 0.874

Neither filtering nor changes in the window size between 350 and 750 ms fundamentally affect the conclusions.
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the distribution of values, A� � �Aij�, �A � �Aij
2� � A� 2 (where A is the

autoregressive matrix in Eq. 1), respectively, so that only elements 2 SDs
above the mean were considered. Formally, the summary matrix B is
defined as:

Bij � � 1 if Aij � Ā � 2�a

0 otherwise

For each experiment, we took 200 s of data and binarized each autore-
gressive matrix using the above procedure.

Then we constructed a summary matrix S out of these binarized ma-
trices as follows: Sij(i 
 j) � 1 if Bij � 1 for any of the matrices within the
200 s time window. This was performed for control conditions before
induction of anesthesia over a 200 s window. Because the kinetics of
ketamine–medetomidine and propofol effects were different (see Figs.
2– 4), for the ketamine–medetomidine experiments, we started the 200 s
“anesthesia” period at 500 s after drug injection, and for the propofol
experiment, the “anesthesia” period started at 150 s.

The diagonal and off-diagonal elements of the matrix capture two
different aspects of neuronal dynamics. Diagonal elements reflect the
dependence of activity in each electrode on its own past history, the
off-diagonal elements represent the effect of signal at one electrode on
future signal in a different electrode. Off-diagonal elements i,j are shown
as arrows originating at j and pointing toward i. The arrow color changes
from blue to red (origin ¡ target).

Note that S reflects only the off-diagonal elements. For diagonal ele-
ments, we created a summary vector Di��t�1

T Bii. This was estimated for
the window before, Di

b, and after, Di
a, anesthesia. We show Ďi � Di

b � Di
a

normalized for the purposes of visualization to lie between 0 (red) and 1
(blue). That is, if the diagonal element was higher while awake, it appears
as blue; otherwise, it appears as red.

Results
Induction of anesthesia results in stabilization of
cortical dynamics
Our main finding is that cortical dynamics become stabilized
during induction of anesthesia, with both ketamine–medetomi-
dine and propofol (Figs. 2A,D for representative examples,
B,C,E,F for group data; 3, 4). In the awake state before drug
injection (t � 0; Figs. 2 and timing of drug administration is
indicated by vertical lines in 3, 4), the criticality indices given by
Equation 2 (see Materials and Methods) crowd in the immediate

vicinity of the critical value (criticality index � 1). During the
induction of the anesthetic state, the number of critical modes
decreases: the number of modes with an associated criticality
index larger than 0.98 decreased from �17.5 to � 13.4% and
from �15 to �4.5% within 4 min after the injection of ketamine–
medetomidine and propofol, respectively (Fig. 2C,F). Although
0.98 is a somewhat arbitrary threshold, as can be seen in Figure 2,
A and B (as well as in Figs. 3, 4) induction of the anesthetized state
is accompanied by the decrease in the density of the criticality
indices near 1, and, thus, the observed stabilization does not de-
pend strongly on the threshold. Thus, consistent with our hy-
pothesis, dynamical criticality normally present in the awake
brain (Solovey et al., 2012) is abolished after the administration
of anesthetics.

Although both anesthetic regimens result in statistically sig-
nificant stabilization of cortical activity, the onset of effect of
propofol is faster than that for the ketamine–medetomidine
mixture and is less persistent. Note that ketamine and medetom-
idine were administered intramuscularly, while propofol was
given intravenously (Yanagawa et al., 2013). Pharmacokinetic
models (Schnider et al., 1999) suggest that the peak in the “effect
site” concentration occurs at 1.7 min after intravenous bolus of
propofol. Consistent with this, we observed robust stabilization
of cortical activity at �2 min. The pharmacokinetics of ketamine
and medetomidine are more complex, but the peak in the plasma
ketamine concentration after intramuscular injection in children
occurs at �15 min (Grant et al., 1983). Consistent with this, we
observed sustained decrease in the number of critical modes 15
min after administration of ketamine and medetomidine.

Stability is an emergent phenomenon dependent on
correlations in cortical activity
Induction of anesthesia is associated with complex changes in the
power spectrum (John et al., 2001), phase relationships among
different oscillations (Mukamel et al., 2011), and changes in co-
herence (Cimenser et al., 2011) and correlations (Ku et al., 2011).
To address specifically the role of correlations among cortical
sites to the global stability, we constructed time-shuffled surro-

Figure 2. Stabilization of cortical activity after injection of an anesthetic drug. A–C, Ketamine–medetomidine; D–F, propofol. Evolution of the distribution of the criticality indices as a function
of time since anesthetic injection for monkey M2 under ketamine–medetomidine (A, top) and under propofol (D, top). For each time window, the probability distribution of the criticality indices (see
Materials and Methods) is shown by color (red shows low probability, yellow shows high probability). Note that, in the awake state, criticality indices crowd the critical line (�1) between stable
(�1) and unstable (�1) regions. With drug injection, the fraction of criticality indices above 0.98 drops abruptly (A, D, bottom). Results obtained for monkey M2 are representative of recordings
in all monkeys (see Figs. 3, 4). C and F show the average drop in the number of the most critical modes 4 min after ketamine–medetomidine and propofol, respectively. The differences in the
distribution of criticality indices after drug injection are statistically significant in all monkeys (B, E): p value of a Kolmogorov–Smirnov test comparing criticality indices at t � 0 and at subsequent
times. **p � 0.01.
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Figure 4. Stabilization of cortical activity after injection of propofol for monkeys M1 and M2 in different sessions. Two-dimensional histograms of the estimated criticality indices and the fraction
of modes with stability indices above 0.98 (bottom plots). Drug injection indicated by vertical lines. Soon after drug injection, the fraction of the most unstable modes drops abruptly.

Figure 3. Stabilization of cortical activity after injection of ketamine–medetomidine for all monkeys in different sessions. Two-dimensional histograms of the estimated criticality indices and the
fraction of modes with stability indices above 0.98 (bottom plots). Drug injection occurred at time indicated by vertical lines. Soon after drug injection, the fraction of the most unstable modes drops
abruptly. Different histograms correspond to different experiments separated by at least 1 d.
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Figure 5. Distributions of the criticality index in time-shuffled surrogates are internally inconsistent. A, To construct time-shifted surrogates for each channel in the 128-electrode grid, we chose
a time shift from a Gaussian distribution (�� 0, �� 50 ms). A single shift was chosen for each channel and applied to the entire recording spanning the awake state, induction of the anesthetized
state, and recovery. Example of a single channel of data (black) and the time-shifted surrogate (red) are shown. Note that the time shift preserves all features of the signal, including frequency and
phase information. B, Time shifting the signals in the surrogate (red) produces a very mild perturbation of the real data (black). Sixteen of 128 channels are shown, yet in every experiment on every
monkey, we find time windows that have significant differences in the distribution of the criticality indices ( p � 0.05, Mann–Whitney U test). C, Procedure used to compare the internal consistency
of the data and the surrogate during the awake state. First, reference distribution of criticality indices was constructed from the first 5 min of recording (600 500 ms windows). Then p value was
computed using Mann–Whitney U test between the reference distribution and each of the subsequent windows during the awake state (before drug injection). This procedure was applied to the
real and time-shifted surrogate datasets (each was compared to its own reference distribution). If, while the monkey is awake, the distribution of criticality indices (Figure legend continues.)
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gates produced by independent random constant shift of the time
stamps for each electrode, with values drawn from a Gaussian
distribution with � � 0 and � � 50 ms (Fig. 5A). Note that this is
a very subtle perturbation to the signal (Fig. 5B); it selectively
disrupts higher-order correlation but preserves all features of
each individual channel taken in isolation, and all of the pairwise
correlations between signals are maintained but arbitrarily time
shifted by a small amount. However, in every experiment on
every monkey, we observed statistically significant differences in
the distributions of the eigenvalues obtained in corresponding
time windows for the real and surrogate datasets (p � 0.05,
Mann–Whitney U test).

Dynamical criticality is a highly unlikely state of the system
and is not generically expected. Thus, the presence of dynamical
criticality implies some self-tuning. It has been proposed (for
review, see Chialvo, 2010) that many aspects of neuronal activity
are found at a critical point of a second-order phase transition.
These critical points are characterized by power law distributions
of events such as sizes of avalanches in models of sand piles (Bak
et al., 1987) and activity avalanches in cultured neurons (Beggs
and Plenz, 2003), as well as other biological systems (for review,
see Mora and Bialek, 2011). One appealing aspect of this theory is
that it has been shown that some systems can spontaneously ex-
hibit such critical behavior without the need for fine tuning of
parameters (Bak et al., 1987).

However, the analysis of statistical properties of neuronal ac-
tivity, such as avalanche size distribution, glosses over the dynam-
ical properties, such as stability. It is possible that the same kind of
tuning process that produces power law distributions of states
also yields marginally stable dynamics (Magnasco et al., 2009),
but currently the relationship between dynamical and statistical
aspects of criticality is not well understood (Mora and Bialek,
2011).

Although statistically significant differences between the sta-
bility of real and time-shuffled surrogates essentially rule out the
possibility that stability depends on any set of features of each
signal in isolation, this analysis does not directly address self-
tuning, which we address by comparing the internal consistency
of the real and time-shuffled surrogates.

It is not easily knowable when, exactly, the monkey loses con-
sciousness after the administration of the anesthetic agent, but
the monkey is known to be awake before drug administration.
If the awake brain was self-tuned to exhibit dynamical criticality,
the distribution of the criticality indices obtained for different
time windows during the awake state ought to be stationary, and
hence the distribution of eigenvalues for any two distinct win-
dows should remain consistent. In other words, the eigenvalues
obtained in any given epoch while the monkey is awake should be
drawn from a single probability distribution that remains stable
in time, and therefore we should not be able to reject the null
hypothesis “the monkey is awake” based on the distribution of
the criticality indices. To test this prediction, we computed a

reference distribution of the criticality indices over the first 5 min
for real and time-shifted surrogate datasets (using 500 ms win-
dows to estimate each autoregressive matrix independently) and
compared this distribution with those obtained subsequently
during wakefulness using Mann–Whitney U test. This procedure
is illustrated in Figure 5C. Figure 5D shows cumulative distribu-
tions of p values for real (blue) and time-shifted (red) datasets.
The abscissa shows the p value for rejecting the null hypothesis
that the monkey is awake, and the ordinate shows the probability
of rejecting the null hypothesis at a given level of statistical signif-
icance. The results indicate that the eigenvalues for the real data
appear to be drawn from one single (consistent) distribution
(probability of falsely rejecting the null hypothesis is low). In
contrast, the eigenvalues for the surrogate data fluctuate in dis-
tribution; in other words, the surrogate data appear to have been
drawn from a distribution that fluctuates haphazardly in time.
Thus, given the surrogate dataset, the null hypothesis “monkey is
awake” can be readily falsely rejected with high statistical confi-
dence. This result is consistent with the notion that the brain is
self-tuned to exhibit dynamical criticality and that this self-
tuning involves global correlations. That is, dynamical criticality
is an emergent phenomenon.

Note that we chose 50 ms as the width of the Gaussian distri-
bution from which the time shifts were drawn. This preferentially
disrupts eigenmodes with higher frequencies. Our objective here
was to produce the most subtle perturbation to the data that can
nonetheless disrupt the results of the stability analysis. Broaden-
ing the distribution of time shifts is expected to further alter the
data and exacerbate the differences between real and time-shifted
datasets.

Power spectrum is uninformative of the action of anesthesia
It is well known that induction of anesthesia is associated with
changes in the spectral signatures of cortical signals (Brown et al.,
2011). Note, however, that in contrast to the uniform increase in
stability observed with both ketamine–medetomidine and with
propofol, changes in spectral content induced by these drugs are
distinct (Fig. 6A). Changes observed with propofol are, on aver-
age, much larger than with ketamine–medetomidine. In addition
to the increase in the slow oscillations �5 Hz, complex cha-
nges in other frequency ranges variably accompany induction of
anesthesia.

Although it is true that, on average, spectral signatures of cor-
tical signals change with induction of anesthesia, these average
quantities conceal both the temporal and spatial heterogeneity of
changes in the power spectrum (Fig. 6C–F). For instance, al-
though, on average, we observe the expected increase in the low
frequency (�) power with both ketamine–medetomidine and
propofol (Fig. 6C,D, thick lines), each individual channel can
deviate quite significantly from the mean behavior (thin lines).
Furthermore, the spatial distribution of changes in power is dif-
ferent between the two anesthetic regimens (Fig. 6D,E). In many
frequency bands, profound fluctuations in the spectral content
are observed such that the changes in the power spectrum depend
strongly on time, the location of the electrode, and the anesthetic
regimen. The complexity of changes in the spectral content ob-
served here is consistent with that observed by Breshears et al.
(2010) in human ECoG recordings obtained during induction
and recovery from propofol anesthesia.

It is not entirely surprising that the distribution of the stability
parameter behaves differently from the power spectrum. In a
steady-state autoregressive process, there is a complex relation-
ship between the power spectrum of the process (the absolute

4

(Figure legend continued.) remains unchanged (internally consistent), one expects to have
very few small p values. D, Cumulative distribution of p values obtained using the procedure
outlined in C for real (blue) and surrogate (red) datasets. The abscissa of this plot corresponds to
the desired statistical significance for rejection of the null hypothesis that the subject is awake.
The ordinate shows the probability of rejecting this null hypothesis at the desired significance
threshold. Data from multiple experiments on the same monkey are combined into a single
distribution. Note that the probability of rejecting the null hypothesis is much higher for the
surrogate than for the real data. Thus, disruption of global correlations induced by the time shift
disrupts the internal consistency of the distribution of criticality indices.
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Figure 6. Changes in the power spectrum are not consistent among anesthetic regimens and cortical areas. A and B show time-resolved spectrograms averaged across all monkeys for each of the
anesthetics. First, spectra from all channels were computed for each monkey and averaged across channels. Spectra were then normalized such that power at each frequency is expressed as a fraction
of total power. To emphasize the effect of anesthetics, spectra are plotted as differences from the mean awake spectrum (computed over 4 min culminating in drug injection for each monkey). Note
that the spectral signatures of the two anesthetic regimens are clearly distinct. Furthermore, note that, in addition to the increase in the power of low (�5 Hz) frequencies, power in many frequencies
changes in a nontrivial manner. These average quantities gloss over both spatial and temporal variability of the spectral changes that accompany induction of anesthesia (C–F). All data in C–F come
from the same monkey that was subjected on different occasions to either propofol or ketamine–medetomidine. C and D show changes in power for each of the different frequency bands for
ketamine–medetomidine and propofol, respectively. Thin lines show spectra from each individual channel. Thick lines show average across channels. Pronounced differences from the mean
behavior are observed for many frequency bands. Changes in spectral power are projected onto the electrode grid (C, ketamine–medetomidine; D, propofol). Power in each frequency band was
averaged across the window shown by the rectangle in C and D. All channels were ordered from highest power to lowest power and colored from red to blue. This shows that, although there are some
similarities between the anesthetics in terms of spatial distribution of spectral power, there are also pronounced differences.
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value squared of its Fourier transform)
and the distribution of the eigenvalues in
the complex plane. Summarily, each
eigenvalue contributes to the power spec-
trum a Lorentzian distribution, whose
center is the frequency given by the imag-
inary part of the eigenvalue and whose
width is given by the (negative) real part of
the eigenvalue. The height is given by the
projection of the noise term onto the cor-
responding eigenvector, meaning that
each channel can have in principle a
sharply different spectrum. Therefore,
very similar power spectra can be achieved
by very different eigenvalue distributions,
and, conversely, the distribution of eigen-
value frequencies by itself does not deter-
mine the spectrum. The objects in which
we are most interested in this study, the
criticality indices, do not determine the
spectrum at all. For instance, it is easy to
conceive of a system in which a high-
frequency mode decays either faster or
slower than a low-frequency mode and
thus can be either more or less stable.

Non-steady-state autoregressive processes, such as in this
work, add additional complexity to the relationship between sta-
bility and spectral characteristics because the dependence on the
initial conditions cannot be brushed aside, as the system never
decays into its asymptotic state before the matrix is changed. The
potential presence of unstable modes generate growing oscilla-
tions that can only truly be taken into account by remembering
that the window is finite and that, at later times, the process will
move that eigenvalue onto the stable regime.

Global reorganization of “functional connectivity”
Although the eigenvalues of the autoregressive matrix (see Materials
and Methods) define the stability of the neuronal dynamics, the
autoregressive coefficients forming these matrices define a network
of interactions between individual cortical areas. Thus, characteriza-
tion of the structure of the autoregressive matrices could be used to
understand changes in directed “functional connectivity” during
transition from consciousness into the anesthetized state (Fig. 7).

Although the fitting procedure was blind to the anatomy, note
the consistency in the overall flow of connections in the awa-
ke state from the primary sensory (occipital) cortices toward the
frontal association and inferotemporal cortical areas. Thus, at
least to some degree, the autoregressive models fitted to the ECoG
capture the patterns of flow of information in the primate cortex.

Loss of consciousness induced with both propofol and the keta-
mine–medetomidine mixture results in the disruption of the global
connectivity pattern. Propofol anesthesia results primarily in the dis-
appearance of connections. In contrast, anesthesia induced with ket-
amine–medetomidine results in the reversal of direction such that
the inferotemporal cortex became the origin of the bulk of the con-
nections. This is consistent with the decrease in the strength of self-
connections observed in the occipital cortex (Fig. 7B). These
results were consistent across experiments and monkeys.
Thus, although loss of consciousness results in the disruption
of functional connectivity patterns, the specific nature of the
disruption depends quite strongly on the identity of the anes-
thetic agent.

Frequency dependence of stabilization
The focus of our analysis thus far has been the criticality index
given by the �
�, but generally, the eigenvalues (
 values) of the
autoregressive matrices are complex: 
j � �je

i�j. Thus, the fre-

quency of the jth eigenmode is given by fj �
�j

2��t, and the

damping rate is given by �j �
log�pj�

�t
, where �t is the sampling

rate (1 ms). Note that � � 0 corresponds to critical dynamics,
� � 0 corresponds to damped modes, and � � 0 corresponds to
unstable modes. Thus, a more complete analysis of changes in
stability examines the changes in the distribution of the eigenval-
ues induced by anesthetics in the plane spanned by the frequency
and damping rate (Fig. 8). Although propofol anesthesia resulted
in the increased damping of eigenmodes in the broad range of
frequencies from 5 to �100 Hz, stabilization induced by keta-
mine–medetomidine was limited to the high-frequency range
greater than �50 Hz.

Discussion
Our main finding is that reversible loss of consciousness is accom-
panied by reversible stabilization of brain dynamics such that critical
oscillations in the awake brain become damped during uncon-
sciousness. The consistency of the stabilization is remarkable given
the clear inconsistencies in the spectral characteristics (Fig. 6), di-
rected functional connectivity (Fig. 7), and frequency dependence of
damping (Fig. 8) observed with different anesthetics.

In dynamical systems theory, “stability analysis” refers to an
evaluation of whether the trajectory of the system would be sim-
ilar or vastly different after a perturbation. It is performed by
evaluating a linear approximation to the full nonlinear dynamics
centered at the observed trajectory. This is what our analysis at-
tempts to do: to capture coarse-grained linear components of the
dynamics valid for a short time window. As the system moves in
its phase space, the linear approximation changes, which is ob-
served as changes to our matrix. An established result of dynam-
ics systems theory is that the dynamics is strongly dominated by
the linear components, except when the linear components are

Figure 7. Induction of anesthesia is associated with changes in functional connectivity. All data are from monkey M2. Strong,
consistent connections were extracted from the autoregressive matrices and plotted for the awake and anesthetized conditions. A,
Off-diagonal elements; B, diagonal elements. Note that the effects of different anesthetics on the connectivity patterns differ
between anesthetics. Although propofol leads to a dramatic decrease in the number of connections, ketamine–medetomidine
leads to the reversal of flow of connections in parallel with the weakening of the autoconnections (diagonal elements) in the
primary sensory cortices.
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critical, in which case the higher-order nonlinear terms decide
the ultimate fate of the system. Thus, within our analysis to find
that a large number of eigenvalues are critical means that the
system is not long-term predictable by this very analysis. What
our analysis is capable of demonstrating is that the system hovers
over a regime with many critical eigenvalues, the central thesis of
this study.

What are the functional consequences of this? Critical dynam-
ics render the system exquisitely sensitive to perturbations (e.g.,
sensory stimuli), not in an exponentially unstable “butterfly ef-
fect” manner but in a more subtle “propagate the perturbation
across the system” manner. Consistent with this intuition, our
results suggest that the decrease in the responsiveness of an anes-
thetized subject is heralded by a shift of the dynamics away from
the critical regime.

Several seemingly disparate results can be explained by the stabi-
lization hypothesis and integrated into a deeper conceptual frame-
work. Imas et al. (2005) demonstrate that the long-latency
component of an evoked potential is suppressed under anesthesia
and that the evoked potentials exhibit damping. Perturbation need
not be sensory. The effect of transcranial magnetic stimulation
(TMS) in the awake subject persists longer and is more complex than
in the anesthetized subject (Ferrarelli et al., 2010). This is exactly
what one expects when the system moves from a dynamically critical

to a stable regime (Yan and Magnasco, 2012). Imas et al. used volatile
anesthetics and Ferrarelli et al. used midazolam, neither one of which
shares significant similarities in terms of molecular mechanisms or
changes in the cortical power spectrum with the ketamine–medeto-
midine mixture. Thus, loss of dynamical criticality maybe a universal
feature of loss of consciousness induced by anesthetics.

Anesthetics may at least in part impinge on the same neuronal
mechanisms as sleep (Brown et al., 2010). There is indeed evidence
that sleep and anesthesia share essential features in terms of the qual-
itative dynamics. For example, the effect of TMS is almost identical
in the naturally sleeping (Massimini et al., 2005) and anesthetized
(Ferrarelli et al., 2010) subjects. Furthermore, the effect of TMS-
induced perturbation during disorders of consciousness is similar to
sleep and anesthesia (Casali et al., 2013). This leads us to make a bold
and tantalizing suggestion that dynamical criticality is an essential
requirement for wakefulness in the brain.

Relationship to functional connectivity
Many methods have been applied previously to show changes in the
functional connectivity in anesthesia—correlation between fMRI
voxels (Peltier et al., 2005) and EEG channels (Lee et al., 2011), 

band coherence (Cimenser et al., 2011), phase lags between EEG
recordings (Ku et al., 2011), nonlinear generative models of EEG
(Boly et al., 2012), and frequency-specific modes of large-scale

Figure 8. Frequency dependence of stabilization. All data are from monkey M2. Histogram of complex eigenvalues is plotted in the plane spanned by the damping timescale and frequency.
Histograms were normalized such that occupancy spans the range from 0 to 1. The histograms are encoded in the green–red– blue color scheme (green for the awake state before the induction of
anesthesia; red for the anesthetized state that ensues after drug administration; blue for the awake state observed after the effect of the anesthetic subsides). The rightmost panels correspond to
the overlay of the three plots. This overlay is constructed such that pure red, green, or blue indicate regions in the plane that are occupied preferentially during each one of the three conditions.
Locations with similar occupancy in the awake and recovery states appear cyan (mixture of green and blue), whereas regions that are exclusive to the anesthetized state appear red. The absence of
pure green or blue in the overlay plot shows that the distribution of eigenmodes is essentially restored after the effect of the anesthetic subsides. The leftward shift from cyan to red in the overlay
panels demonstrates stabilization observed with both anesthetic regimens. Although in the case of propofol stabilization is observed across the entire frequency range, with the ketamine–
medetomidine regimen, stabilization is most prominent at higher frequencies.
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communications (Yanagawa et al., 2013) revealed using spectral
Granger causality—all show changes with anesthetic-induced
unconsciousness.

Here, we use autoregressive matrices to define “directed func-
tional connectivity.” Although our results with propofol are
consistent with the notions of “disconnected” brain, under keta-
mine–medetomidine anesthesia, we observe reversal of the direc-
tion of many connections rather than disappearance of
connections. One manifestation of this reversal is that, in the
brain anesthetized with ketamine–medetomidine, signals from
the visual cortex become less “self-driven” and more influenced
by the activity of the inferotemporal cortex. Ketamine is known
to elicit visual hallucinations and has been used as a pharmaco-
logical model of positive symptoms of schizophrenia (Krystal et
al., 2003). Visual hallucinations are associated with increased ac-
tivity in the occipital cortex (Ffytche et al., 1998). Our results
suggest that, during visual hallucination, this activity in the oc-
cipital cortex is driven by other brain areas rather than sensory
experience to generate the illusion or hallucination.

For propofol, stabilization can be related directly to the de-
crease in functional connectivity. Elimination of the off-diagonal
elements in the autoregressive matrices has the effect of decreas-
ing the number of feedback loops that can destabilize the system.
The precise nature of the relationship between functional con-
nectivity and stability is less clear for the brain anesthetized with
ketamine–medetomidine.

However, regardless of the specifics, our methodology offers
significant advantages over other methods. While autoregressive
modeling is conceptually closer to the notion of causation pro-
posed by Granger than correlation-based connectivity (Garg et
al., 2011), the main advantage in the present context is that it
allows for direct interrogation of the global brain dynamics that
arise out of this correlation structure through eigenmode decom-
position. By fitting autoregressive models to short temporal
windows, our method allows for globally nonstationary and non-
linear dynamics and yet takes advantage of the well tractable lin-
ear stability analysis.

Neurophysiological measures of the depth of anesthesia
In clinical and most research settings, depth of anesthesia (DOA)
is estimated through changes in the various statistical measures of
EEG channels taken in isolation, such as the bispectral index and
spectral entropy (Palanca et al., 2009). Despite years of research
and use in clinical practice, these DOA monitors fail to prevent
intra-operative awareness and postoperative recall (Avidan et al.,
2011). One reason for this failure is that, in contrast to the slow
progression measured by the criticality index, there is no uniform
signature of DOA in the statistical structure of individual record-
ings. This is consistent with the notion that consciousness is likely
an emergent phenomenon that involves correlated activity dis-
tributed among multiple brain regions. Here, we suggest that
stability is one such emergent property exhibiting robust changes
with onset of anesthesia and is independent of individual differ-
ences in the spectral properties of individual recordings and of
the specific identity of anesthetic agents. Thus, stability analysis
may prove useful in characterizing DOA in clinical settings.

Our recordings were confined to a single hemisphere. Al-
though administration of anesthetic to a single hemisphere
(Wada test) can trigger confusion, disorientation, and amnesia, it
does not render one unconscious (Posner et al., 2007). Further-
more, en bloc resection of an entire cerebral hemisphere does not
routinely produce a comatose or a stuporous state (Austin and
Grant, 1955).

For systemic drug administration, our stabilization hypothe-
sis predicts that the combined system including both hemi-
spheres should exhibit stabilization during loss of consciousness.
Furthermore, we would expect that spatial projections of some
eigenmodes would span both hemispheres. These predictions can
be tested experimentally in the future. What is less clear is what
should happen with direct administration of the anesthetic
agents to a single hemisphere. In light of the observations with the
Wada test and hemispherectomy, we would hypothesize that
modes localized to the ipsilateral hemisphere and those that span
both hemispheres may exhibit stabilization, whereas the modes
localized only to the contralateral hemisphere may be spared.

Outlook
One common interpretation of dynamical criticality in the brain
is that a system can only achieve optimal information processing
in the vicinity of a phase transition (Langton, 1990), yet most
physical systems enjoy “physical stability”: they preserve their
qualitative behavior under perturbations, i.e., the defining pa-
rameters of most systems are found away from a bifurcation. In
stark contrast to this, our results and those of others (Solovey et
al., 2012; Alonso et al., 2014) suggest that a significant fraction of
cortical dynamics is found close to a bifurcation. This conclusion
is not unique to cortical dynamics. The most compelling case for
dynamical criticality has been made for the auditory periphery in
which Hopf bifurcation is thought to give rise to some of the
fundamental aspects of hearing, such as compressive gain, fre-
quency tuning, and spontaneous otoacoustic emissions (Hud-
speth et al., 2010).

The very fact that a system is found close to a bifurcation
implies self-tuning because bifurcations occupy a small region in
the parameter space. Although our analysis is phenomenological
and thus does not allow for the direct interrogation of underlying
mechanisms, in theoretical models (Magnasco et al., 2009), sim-
ple and biologically plausible anti-Hebbian synaptic plasticity
leads robustly to a dynamically critical regime. It is possible that
the slow increase in stability seen with induction of anesthesia is a
manifestation of the changes in the synaptic plasticity.

Notes
Supplemental material for this article is available at http://sur.rockefeller.
edu/Plone/lab-members/leandro-alonso/. Animation showing evolu-
tion of stability analysis during reversible loss of consciousness. This
material has not been peer reviewed.
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