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Abstract

Background: The RTS,S/ASO1 malaria vaccine candidate recently completed Phase Il trials in 11 African sites.
Recommendations for its deployment will partly depend on predictions of public health impact in endemic countries.
Previous predictions of these used only limited information on underlying vaccine properties and have not
considered country-specific contextual data.

Methods: Each Phase Il trial cohort was simulated explicitly using an ensemble of individual-based stochastic
models, and many hypothetical vaccine profiles. The true profile was estimated by Bayesian fitting of these models to
the site- and time-specific incidence of clinical malaria in both trial arms over 18 months of follow-up. Health impacts
of implementation via two vaccine schedules in 43 endemic sub-Saharan African countries, using country-specific
prevalence, access to care, immunisation coverage and demography data, were predicted via weighted averaging
over many simulations.

Results: The efficacy against infection of three doses of vaccine was initially approximately 65 % (when immunising
6-12 week old infants) and 80 % (children 5-17 months old), with a 1 year half-life (exponential decay). Either
schedule will avert substantial disease, but predicted impact strongly depends on the decay rate of vaccine effects
and average transmission intensity.

Conclusions: For the first time Phase Ill site- and time-specific data were available to estimate both the underlying
profile of RTS,S/AS01 and likely country-specific health impacts. Initial efficacy will probably be high, but decay rapidly.
Adding RTS,S to existing control programs, assuming continuation of current levels of malaria exposure and of health
system performance, will potentially avert 100-580 malaria deaths and 45,000 to 80,000 clinical episodes per 100,000
fully vaccinated children over an initial 10-year phase.
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Background

The first malaria vaccine against Plasmodium falciparum
to reach Phase III clinical trials, RTS,S/AS01, has demon-
strated moderate levels of efficacy against both clinical
and severe malaria in young children in the 18 month
follow-up of Phase III trials across 11 African sites and
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in several Phase II trials in Africa [1-5]. Site- and time-
specific data from the Phase III trial recently published [1]
indicated a vaccine efficacy against clinical cases over 18
months post third dose of 46 % (95 % CI 42—50) in children
5—17 months at first vaccination and 27 % (95 % CI 20-32)
in infants (6 weeks at first immunisation, 12 weeks at third
dose) [1], with much higher observed efficacy at 6 months
post third dose (5—17 months: 68.3 % (95 % CI 64.3-71.8),
6—12 weeks: 47.2 % (95 % CI 39.4—54.1)) indicating an ini-
tial quick decay [1]. Since the malaria burden in many
countries is still high, even a vaccine whose efficacy decays
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quickly may be of public health benefit. A WHO policy
recommendation on the implementation of RTS,S vacci-
nation in a number of malaria endemic countries in Africa
is possible earliest at the end of 2015 [6]. Quantitative
predictions of the expected public health impact and cost-
effectiveness for different immunisation schedules may
partly inform this recommendation.

Plasmodium falciparum malaria is transmitted to
humans through bites from infected mosquitoes and has
a complex life cycle in the human host. An infected
mosquito injects sporozoites into subcutaneous tissue of
the host; the sporozoites then travel to the liver. Successful
invasion of hepatocytes depends on the circumsporozoite
protein (CSP) of the sporozoite [7]. Following replication
in the liver the parasite enters the blood stream, infecting
erythrocytes and multiplying. It is the erythrocytic cycle
of Plasmodium falciparum that causes clinical disease.

The RTS,S vaccine induces antibodies in the host
against CSP and thus, with high enough antibody titre,
prevents liver infection and subsequent clinical malaria
that would have resulted from a blood stage infection.
RTS,S has been shown to be efficacious and safe [1], but
as antibody titres to CSP wane so does protection against
successful infection of the liver [8], and observed efficacy
against clinical disease decays relatively rapidly in the trial
[1]. Repeated malaria infections induce natural, but not
complete, immunity in the host to many stages of the par-
asite life cycle, predominantly to the blood stage causing
clinical disease. There is a tendency for efficacy against
clinical malaria to wane more rapidly in sites where expo-
sure is higher [1], which is to be expected, because nat-
ural immunity to blood stage parasites is more rapidly
acquired by non-vaccinated individuals. Any partially pro-
tective malaria infection blocking intervention, such as
RTS,S or seasonal malaria chemoprophylaxis, aimed at
infants and young children will give rise to age-shifts of
burden and susceptibility to infection for this reason.

A moderately efficacious, leaky vaccine such as RTS;S,
that reduces probability of infection but faces a high
force of infection has complicated dynamics, including
effects that cannot be detected in field trials [9] and,
prior to Phase IV follow-up studies, mathematical models
are essential to predict long-term outcomes of vaccina-
tion programs when delivered to populations outside trial
settings. Such models indicate how population-level out-
comes relate to vaccine properties (efficacy and duration
of protection) or to the schedule of delivery, age at vac-
cination, exposure and other contextual factors. Models
can address the question of whether different clinical effi-
cacies observed in different transmission settings [4] are
a result of differences in the challenge or due to differ-
ences in the vaccine effect. By identifying key long-term
drivers of differences in public health impact and cost-
effectiveness between possible immunisation schedules,
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or between different health system contexts, models can
also help optimise vaccination schedules.

A number of micro-simulation models of malaria in
humans have been specifically designed for predicting the
public health impact of interventions, including malaria
vaccines [10-13]. These models take into account lev-
els of herd immunity and long-term effects of vaccina-
tion or other infection blocking interventions, such as
deferral of events to older ages, and suggest that vaccina-
tion with pre-erythrocytic vaccines such as RTS,S via the
Expanded Program of Immunisation (EPI), could substan-
tially reduce paediatric morbidity and mortality during
the first decade of vaccine use. The benefits of RTS,S
are likely to be highest with levels of transmission ento-
mological inoculation rate (EIR) between 2 to 50, which
corresponds to intermediate levels of transmission in our
model [9, 11, 14—17]. The EIR at the start of a vaccination
program is critical, irrespective of how it has come about,
or of whether transmission is increasing or decreasing
[18], while herd immunity is likely to be negligible [9, 11].
A probabilistic sensitivity analysis [17] indicated that the
EIR distribution, decay rate of vaccine effects and model
for severe disease are important drivers of uncertainty in
public health impact.

Development of these models focused heavily on fitting
models to field data because of the need for quantita-
tive predictions, but only limited data were available on
the actual profile of the RTS,S vaccine. Previously pub-
lished results from Phase III clinical trials of RTS,S [3, 4]
have been of limited value for parameterising mathemati-
cal models of public health impact. Site- and time-specific
data recently published [1] for the first 18 months of
follow-up of Phase III trials now make it possible to carry
out comprehensive fitting of models of vaccine action and
their validation.

This paper reports the use of models within the Open-
Malaria platform [11] to obtain precise estimates of
underlying vaccine properties given 18 months follow-up,
with observations every six months, across 11 trial sites.
Using a Bayesian Markov chain Monte Carlo (MCMC)
approach the likely profile of the RTS,S vaccine is deter-
mined, estimating the rate of decay of efficacy in the Phase
III trial, thus allowing one to project longer term trial
outcomes. Investigations of validity and the consequent
estimates of vaccine properties and of clinical efficacy
expected in each of the trial sites for follow-up longer than
18 months are also investigated.

In addition and beyond previous analyses, country-
specific estimates are made of the likely public health
impact of RTS,S programs in 43 sub-Saharan African
countries, with vaccine properties aligned with the latest
results from Phase III trials of RTS,S resulting from the
fitting analysis in this paper. The predictions are made
via a weighted averaging approach over a large database
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of simulations that take into account country-specific
context of current malaria burden, intervention cover-
age, demographics, and health system capacity. Several
possible implementation strategies of immunising infants
and children are considered. The parameterisation and
prediction approach using micro-simulations provides us
with uncertainty estimates around both the vaccine profile
and the predictions of public health impact, highlight-
ing where additional data are needed. Although a very
large number of computationally expensive simulations
are needed, the method will allow the estimates to be
updated once final Phase III data are available, without
re-running these simulations.

The predictions for both public health impact and for
clinical trial efficacy fitting make use of an ensemble of
structurally different models [11], each a variant on a
single baseline model [10], with final results derived by
aggregating many simulation runs. Further examination of
public health impact includes analysis of result sensitiv-
ity to vaccine properties (initial efficacy against infection,
vaccine half-life of efficacy against infection, decay shape)
and country-specific properties (transmission, access to
care) and considers the effects of structural and stochastic
uncertainty on our predictions.

Methods

Simulations from an individual-based stochastic model of
malaria transmission

The simulation models were built around the origi-
nal micro-simulation model developed for predicting
the likely impact of the RTS,S malaria vaccine [10].
This model includes components simulating infection of
humans, the course of parasitaemia, pathogenesis, severe
disease and mortality, and infection of mosquitoes. All
these components were parameterised by fitting to avail-
able field data [10, 11].

Simulations of both the clinical trial and of the pub-
lic health impact of RTS,S were made using six differ-
ent model variants to represent Plasmodium falciparum
malaria. These model variants form an ensemble from
which to make predictions of the impact of RTS,S in the
trials and were chosen from among a larger set of model
variants [11] because they represent the diversity of avail-
able variants that fit well to the calibration datasets. They
are described in brief in Table 1.

Predictions via weighted ensemble predictions

For both prediction of clinical trial outcomes and country-
specific predictions of impact, weighted averages of a
large number of simulations were calculated with a wide
range of vaccine characteristics, deployed across a range
of health system and transmission settings. The weights
applied to each simulation are dependent on the country-
specific data and on vaccine properties being investigated
for predictions or fitting.

Page 3 of 20

For fitting to trial data, two databases of simulations
that predict the effect of vaccination of two vaccine
cohorts, EPI and 5-17 months in the Phase III trials, were
created. Each simulated the trials explicitly as a complete
factorial combination of all levels of each variable listed in
Table 1. This resulted in a total of 311,040 simulations of
vaccination (coverage 100%, at 6-12 weeks or 5-17
months) and 4,320 comparator simulations (coverage
0), with the variables and levels being six structurally
different models: eight different levels of EIR, three differ-
ent levels of access for uncomplicated disease, and three
different levels of access for severe disease. In addition,
vaccine characteristics considered were: initial efficacy
against infection (six levels 20 %—85%), the half-life of
decay of efficacy against infection over time (three levels
1-5 years), and decay shape (four levels, correspond-
ing to exponential and three Weibull decay functions)
as well as vaccination coverage (summarised in Table 1).
Additionally, for every simulation combination (referred
to as a scenario) results from multiple seeds were recorded
to estimate the stochastic uncertainty in the predictions.
Results for an EIR of 0.1 were not simulated but calculated
by linear interpolation between the comparators and the
results for EIR 1 (as done previously [19]).

For country-specific prediction four sets of Open-
Malaria simulations were created, one each for each of the
four immunisation schedules considered for RTS,S deliv-
ery, each comprising a full factorial design covering the
entire span of vaccine properties, health system-specific
parameters, vaccine schedule coverage and transmission-
specific parameters for each of the six model variants
(see Table 1). Overall this required a total of 226,800
simulations of vaccination (coverage 100%), and 1,260
comparator simulations (coverage 0 %).

Each scenario tracked a population with size 100,000,
and a model burn-in period of 99 years was completed
(to achieve a periodic stable state) before vaccination
was initiated. For the public health impact predictions,
events and population demographics were recorded with
yearly surveys for 20 years from the start of vaccination
campaign. Simulated surveys for the clinical trial simula-
tions were carried out at 6 month intervals. At each survey
and for each age group the following was monitored: the
prevalence of patent parasitaemia, the numbers of uncom-
plicated cases, severe cases, direct malaria deaths, indirect
malaria deaths, sequelae events, first line, second line
and third line treatments given, hospitalised cases that
recovered, hospitalised cases that resulted in sequelae and
hospitalised cases that resulted in death.

To obtain impact predictions of a given vaccine deliv-
ery schedule or vaccinated cohort for a given country
or trial site and vaccine profile, for a certain outcome,
weighted averages over all simulations in the appropri-
ate database were used (see Additional file 1: Methods).
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Table 1 Summary of Simulations: Variables and levels
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Variable Levels simulated

Vaccination age for fitting databases

EPI cohort 6, 10, 14 weeks

5-17 month cohort all children ages between 5-17 months first dose, and for third dose 8-20 months

Vaccination age in predictions databases

EPI schedule 6, 10, 14 weeks

Extended routine vaccination schedule : 6, 7.5 and 9 months

Boosting is 18 months post third dose (EPI 21 months, extended routine 27 months)

Model variants [11] 1) RO000 Base model

)
)
3)
)
)
)

2) R0068 Heterogeneity in transmission: within-host variability

RO131 Immunity decay in effective cumulative exposure

4) R0132 Immunity decay in immune proxies

5) R0O133 Immunity decay in both immune proxies and effective cumulative exposure

6) R0670 Heterogeneity in susceptibility to co-morbidity

EIR 0.19,1,2,4,8,16,64,256

Access to uncomplicated case mamagememb (%) 0,5,40

Access inpatient care for severe cases® (%)

0,100 (for fitting 0, 40, 80)

Vaccination coveraged (%) 0,100

Initial efficacy against infection (%)

30,50, 65, 80, 95 (for fitting 20,30, 40, 50, 60, 85)

Half-life (years) 1,2,5

Weibull decay shape parameter (k) k = 1 (exponential)

k = 0.5 (bi-phasic)

k = 2 (slow decay, followed by quick decay)

9EIR of 0.1 was not simulated, but any predictions for this level are taken as 10 % of EIR 1

bProbability of access to treatment for uncomplicated disease during a 5-day period

“Probability of access to hospital care (or equivalent) for severe disease during any 5-day period

dFor each of the four delivery schedules

Results are presented as mean weighted averages and
reported range via minimum and maximum limits over
the weighted averages for all models and seeds, with-
out model weighting. This captures both structural and
stochastic uncertainty in the model.

Pre-erythrocytic vaccine efficacy and decay

The action of a pre-erythrocytic vaccine like RTS,S is
implemented in the models as vaccine efficacy in prevent-
ing a new infection. This corresponds to the proportion of
blood stage infections averted, and hence is similar to the
efficacy measured in a sporozoite challenge trial. This is
different from the efficacy in averting clinical episodes as
reported in the Phase III clinical trials, which differs from
the simulated efficacy both in average value and in the way
in which it evolves over time, with factors including trans-
mission heterogeneity and age-shifting of susceptibility
leading to greater decays over time in field-measurable
quantities than in the underlying efficacy against infection
assumed in the models [11].

OpenMalaria allows different rates of decay [20] in
underlying efficacy over time and different shapes of the
decay. For fitting, decay was assumed to follow a Weibull
decay curve described by the initial value of the efficacy,

the half-life, and a shape parameter, k. For further details
see Additional file 1: Methods. Simulations were carried
out with shape parameter k with values of 0.5,1 or 4,
where k = 1 corresponds to exponential decay. For k
less than 1, the initial decay is faster than exponential
and then slower than exponential after the time equiva-
lent to half-life is reached; this is similar to a bi-phasic
like decay, with a sharp decline (quick decay) in efficacy
followed by longer decay. For k greater than 1, the ini-
tial decay of efficacy against infection is slow until the
time equivalent to half-life, and then the decay is much
faster.

Determining vaccine properties from Phase lll clinical trial
data

Simulations of RTS,S Phase lll clinical trials with OpenMalaria
The vaccination cohorts 6—12 weeks and 5-17 months
were explicitly simulated according to the trial design
[1]. The cohorts were as follows: 1) For the 6-12 week
cohort, the vaccinated cohort was constructed by vac-
cinating all simulated individuals for a year when they
reached age 3 months (assuming that at that point they
received the third dose and achieved maximum efficacy
against infection). These individuals were followed for 6
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monthly intervals after their third dose to replicate trial
reported events (this accounted for seasonality in expo-
sure). The control cohort was not vaccinated, but the same
ages were followed as the vaccinated cohort (illustrated
in Additional file 1: Figure SM1a). 2) For the 5-17 month
simulation design, individuals aged 5-17 months at day
one of simulation were enrolled into two equally sized
cohorts. The vaccinated cohort was vaccinated at day one
after warm-up assuming different levels of initial vaccine
efficacy against infection that would be achieved at third
dose. Events were then counted at 6 monthly periods. The
control cohort received no vaccination.

Additional file 1: Figure SM1a details the cohorts and
how events averted are calculated for the virtual cohorts.

Fitting of vaccine properties

The underlying vaccine properties were fitted to site-
specific according to protocol (ATP) values of the numbers
of clinical cases meeting the primary case definition in
each 6 month period, in each age group in each trial site
for the control cohort and for each vaccinated cohort
(EPI and 5—17 months). Due to absence of site- and time-
specific data from Phase II, trial data is restricted to Phase
III sites using adjuvant ASOl. Data from the Kilifi and
Manbhica trial sites were used for a preliminary validation
and thus not used for the fitting of vaccine properties. All
data was published in [1], with the study conducted in
accordance with Good Clinical Practice guidelines, and in
compliance with the Helsinki Declaration. The trial proto-
col was approved by the ethical review board at each study
centre and partner institution and by the national regu-
latory authority in each country (detailed in Additional
file 2: Table S1A of the clinical trial publication [1]). As this
work involves data stimulations and analysis, informed
consent was not required.

A Bayesian MCMC approach was used to estimate vac-
cine properties, site-specific access to care, and the extent
of within-site variation in clinical disease (number of
episodes per individual for a defined time period). This
approach results in a posterior distribution for unknown
parameters. The log of the observed clinical data (disease
rates in the control and vaccinated groups at each time
point) was assumed to be normally distributed with the
log of the model predictions for a given set of parameters.
Namely,

log(Y,)10, o7 ~ Normal (log(74:(6)), o7) , (1)

where Y;; is the observed disease rate (for control or vac-
cinated) at time ¢ and site i, [i,,; is the weighted model
prediction for the equivalent outcome at time ¢ and site
i, O represents the parameters being fitted (vaccine prop-
erties and access to care), o; is the standard deviation for
trial site i. The weighted model prediction, fis;, is a pre-
dicted weighted estimate for the disease rate at time ¢ and
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site i detailed below and uses two databases of cohort pre-
dictions from OpenMalaria, the trial site-specific inputs
concerning transmission and the MCMC sampled param-
eters 6 to calculate the weights for efficacy, half-life and
access.

A series of different models were fitted (increasing in
complexity and varying as to which parameters to fit or
assume, or whether to parameterise against one cohort
(6—12 weeks or 5-17 months) or both simultaneously) as
listed in Additional file 2: Table S1. The models fit were:

1. Fit cohort-specific efficacy, fit site-specific access, fit
common variance in incidence across sites and
assume vaccine half-life (either 1 year or 3 years)

2. Fit cohort-specific efficacy, fit site-specific access, fit
site-specific variance in incidence and assume
vaccine half-life (either 1 year or 3 years)

3. Fit cohort-specific efficacy, fit vaccine half-life, fit
site-specific access, fit common variance in incidence
across sites

4. Fit cohort-specific efficacy, fit vaccine half-life, fit
site-specific access, fit site-specific variance in
incidence

For models fitted simultaneously to data of both vacci-
nated cohorts, separate vaccine initial efficacies against
infection were fitted for each cohort, but common half-
lives of decay of efficacy against infection, access to care
and levels of within-site variation in incidence were used.
In addition, site-specific parameters were estimated for
the average exposure to infective mosquitoes (EIR) and
the proportion of uncomplicated malaria fevers accessing
care, by simultaneous fitting to the parasite prevalence,
and the recorded clinical incidence data from the con-
trol arms. For each site, within-site variability in EIR was
allowed by defining a limited number of EIR bins. For
any specific EIR, an estimate of the proportion of the
site population exposed at that level was used, calculated
from population-weighted averages of the pixel-specific
posterior distributions corresponding to that bin, derived
from the Malaria Atlas Project (MAP) 2010 prevalence
surfaces [21], as described in Additional file 1: Methods
and [Penny et al: Distributions of malaria exposure in
endemic countries in Africa considering country levels of
effective treatment, submitted].

The standard statistical criteria (using the deviance
information criterion (DIC)) were calculated and used to
compare the different fitted models and determine the
most appropriate model for final vaccine parameters (see
Additional file 1: Methods).

In each case, the response to which the models were fit-
ted was the number of episodes recorded in the health
facilities divided by those at risk (as opposed to the
total number of clinical cases uncomplicated and severe,
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making no assumption on case definition in the trials),
which was assumed to correspond to the number of
malaria treatments recorded in the simulations divided by
the number of individuals at risk.

Two chains with very different initial conditions for
efficacy, access to care and half-life were used for each
fit. Uniform non-informative priors were assigned for all
parameters. Posterior distributions were sampled for each
of the fitted parameters (EPI efficacy against infection,
5-17 months efficacy against infection, vaccine half-life,
within site variation against clinical disease and site-
specific access to care).

Country-specific predictions of the expected public health
impact of RTS,S

Conditional on the vaccine properties informed by fitting
to Phase III data, predictions of the likely public health
impact of RTS,S when deployed in 43 sub-Saharan Africa
malaria endemic countries via four vaccination schedules
was made. Multiple doses of RTS,S are required to give
modest protection against clinical episodes and to induce
high antibody titres. A 3-dose regimen of vaccination
was considered and given via the Expanded Program on
Immunisation (EPI) with a standard diphtheria-tetanus-
pertussis (DTP) schedule of 3 doses between 6 and 12
weeks of age. In addition, an extended routine sched-
ule beginning with the vitamin A visit at 6 months and
subsequent doses at 7.5 months and ending with measles-
containing vaccine at 9 months is examined (this schedule
is considered as a possible implementation of the 5 to 17
months cohort in the Phase III trials [22] which demon-
strated higher clinical efficacy compared to the 6-12 week
cohort in trial data [4, 22]). The addition of a booster at
18 months after the third dose to both routine EPI and the
extended routine (6—9 months) was also considered. The
likely efficacy of the RTS,S booster dose has not yet been
demonstrated, and in the absence of Phase III data the ini-
tial efficacy against infection and decay of the booster dose
was assumed to be the same as that of the third dose.

Vaccine properties and weights

The vaccine property of initial efficacy against infection,
half-life and decay shape and subsequent weights used in
the weighted averages (see Additional file 1: Methods) for
each delivery are calculated to give initial efficacies, half-
life and decay shape as determined via fitting to Phase III
trials (see Table 2).

Table 2 Fitted vaccine RTS,S properties

Cohorts Initial efficacy Half-life (exponential decay)
6-12 week 62.7 % 1.12 years

cohort (with 95 % Cl 39.5-80.3 %) (with 95 % Cl 1-1.43 years)
5-17month  792% 1.12 years

cohort (with 95 % Cl 67.3-84.8 %) (with 95 % Cl 1-1.43 years)
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Country-specific malaria transmission, health system and
vaccination coverage

Country-level realistic distributions of malaria exposure,
access to case management for malaria treatment and
inpatient care, demographics and vaccination coverage
have been collated and modelled. Further details are pro-
vided in Additional file 1: Methods.

Vaccine introduction was assumed to occur at the
beginning of 2017 for all countries and the country-
specific immunisation coverage levels for RTS,S delivered
via routine EPI based on the third dose of DTP reported
by WHO-UNICEEF for EPI in 2012 [23]. For simplicity and
to avoid erroneous assumptions, instantaneous coverage
of RTS,S vaccination is assumed at 2017 (at 2012 DTP3
levels) and these remain constant from 2017 up to 2032.
DTP3 coverage levels were scaled by 75% for extended
routine (6—9 months) delivery. In addition, boosting
schedules for EPI and extended routine assume 80 % cov-
erage of the third dose for that schedule. It is noted that
these coverage values are controversial [24] and that the
WHO-UNICEEF values for EPI may be slightly optimistic.
An overestimation of the coverage achieved will lead to
overestimation of the public health impact of the vaccine
program.

The level of malaria transmission (distributions of EIR)
for a particular country was estimated based on the
MAP 2010 prevalence surfaces [21] for the geographic
area in question. Similar to the trial sites for fitting,
for this method MAP prevalence and the OpenMalaria
model relationship between EIR and prevalence, along
with country-specific access to effective treatment, were
used to derive distributions of exposure [Penny et al:
Distributions of malaria exposure in endemic countries
in Africa considering country levels of effective treat-
ment, submitted]. Country-level estimates of access to
malaria treatment for uncomplicated cases are detailed in
Additional file 1: Methods and [25]. The derived distri-
butions of malaria transmission for each country reflect
transmission at the current level of control interventions.

Public health impact outcomes

The numbers of malaria infections, uncomplicated
malaria episodes, severe malaria episodes, malaria-related
hospitalisations, and direct and indirect malaria deaths for
each country by time were simulated, both in the absence
of the vaccination and in the presence of the RTS,S pro-
gram (illustrated in Additional file 1: Figure SM1b). Public
health impact was calculated as events averted in each
country in time (or cumulative in time), events averted (or
cumulative) per 100,000 fully vaccinated individuals and
cumulative effectiveness for a given outcome. The events
averted comprise numbers of uncomplicated episodes,
severe episodes, hospitalisations, direct malaria deaths,
all deaths (direct malaria deaths and indirect associated
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with co-morbidities) and unweighted and undiscounted
disability adjusted life years (DALYs) averted. Analogous
algorithms were used to compile the numbers of events
averted for each of these outcomes. Details of DALY cal-
culations and how the public health impact was calculated
over weighted averages are detailed in Additional file 1.
Indirect malaria deaths are deaths that occur because of
malaria infection but that do not satisfy the definition
of direct malaria deaths. These comprise neonatal deaths
secondary to malaria in pregnancy, and deaths resulting
from interactions between pathogens where malaria plays
an essential role, but the terminal illness does not satisfy
the definition of severe malaria [26].

Sensitivity analysis

Both the robustness and sensitivity of the country-specific
predictions of public health impact of RTS,S with respect
to vaccine parameter uncertainty and country-specific
implementation, transmission, and health system parame-
ters were assessed. Ranges of public health impact predic-
tions are produced by varying a single input while keeping
all other parameters at their reference value (see Table 3
and Additional file 1: Table SM1). Uncertainty about vac-
cine properties will have the greatest impact on the level
of predictions. Ranges for vaccine properties are based
on posteriors from the fitting to Phase III data assumed;
other ranges associated with country-specific inputs are
illustrative of a given country setting but broad enough
to inform our understanding of the direction and mag-
nitude of the potential bias in impact estimates induced
by uncertainty around these key parameters (Additional
file 1: Table SM1).

Results

Methodological advances

The weighted ensembles approach using large databases
of predictions has enabled both a novel methodology for
parameterising underlying vaccine properties of RTS,S
and a means to update those parameters quickly as new
clinical efficacy data from the Phase III trial is available. In
addition, using databases of predictions of implementing

Table 3 Sensitivity analysis and reference levels of inputs
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the vaccine in populations via four possible immunisation
schedules, the weighting methodology allows quick esti-
mation of the expected public health impact for most
up-to-date vaccine properties. The results presented here
are based on the 18-month follow-up of the RTS,S Phase
II1 trials.

RTS,S vaccine properties determined from Phase lll clinical
trial data

Results of the Bayesian MCMC fits to data from the
18 month follow-up Phase III data are summarised in
Additional file 2: Table S1. The table shows estimated
posterior distributions (mean and 95 % confidence inter-
val) for vaccine properties (efficacy against infection for
EPI and 5-17 month cohort, vaccine half-life) for each
of the fitted models for transmission assumption (ii) of
Additional file 1: Methods, assuming exponential decay.
Plots of the posterior distributions are shown in Figs. 1
and 2 and Additional file 2: Figures S1-S2 and Figures
S4-S5. Statistical models were fitted either jointly to both
trial cohorts or individually to single cohorts. Model diag-
nostic estimates of deviance and deviance information
criteria (DIC) are also summarised in Additional file 2:
Table S1. Results and differences between the models are
given in Additional file 2: Results.

In general, when fitting to both cohorts simultane-
ously, or to the 6-12 week or 5-17 month cohort
separately (Additional file 2: Table S1) the best fitting
models with lowest DIC were obtained when models
fit for site-specific variation in incidence, even though
these estimates had the same values for all sites. In
addition, best fits were obtained by either assuming a
vaccine half-life of 1 year or when fitting for vaccine
half-life.

Our optimum model fit, with lowest DIC and narrow-
est posterior distributions for half-life and efficacy (model
18), estimated vaccine properties as follows (mean, 95 %
confidence intervals):

1. Initial vaccine efficacy against infection in the 6—12
week cohort : 62.7 % (39.5-80.3 %)

Name Initial efficacy? Half-life? Decay shape? Vaccine coverage

Reference EPI: 62.5 %, 6-9 months: 79.2 % EPI: 1.12 year, 6-9 months: 1.12 year Exponential EPI: DTP3, 6-9 months: 75 % of DTP3
B Reference Reference Reference Increase 6-9 months to EPI coverage
C Increase (EPI: 80.3 %, 6-9 months: 84.8%)  Reference Reference Reference

D Decrease (EPI: 39.5 %, 6-9 months: 67.3.%) Reference Reference Reference

E Reference Increase (EPI: 3 year, 6-9 months: 3 year) Reference Reference

F Decrease (EPI: 39.5 %, 6-9 months: 67.3.%) Increase (EPI : 3 year, 6-9 months: 3 year) Reference Reference

G Increase (EPI: 80.3 %, 6-9 months: 84.8%)  Increase (EPI: 3 year, 6-9 months: 3 year) Reference Reference

“Vaccine efficacy against infection and vaccine half-life of decay against infection
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5-17 month cohort efficacy against infection (proportion)

Fig. 1 Posterior distributions of initial efficacy against infection for 5-
17 month and EPI cohort for best fitted model. Posterior distributions
of efficacy against infection for the 5-17 month cohort and EPI cohort
for models fitted with the adjusted transmission assumptions (ii).
Results are from final model fit, fitting vaccine properties initial
efficacy, half-life against infection for exponential decay, site-specific
access to effective treatment, and site-specific variation in incidence.
The distribution is shown for efficacy when fitting for both cohorts;
rose colour indicates the 5-17 month cohort and blue the EPI cohort

2. Initial vaccine efficacy against infection in the 5-17
month cohort : 79.2 % (67.3—84.8 %)

3. Half-life for decay of efficacy against infection with
exponential decay of 1.12 years (with 95 % CI 1-1.43
years)

All the fitted models had estimates of the half-life of
vaccine efficacy against infection of approximately 1 year.
This estimate does not depend on the linear interpola-
tion between simulated scenarios since 1 year is among
the values of half-life simulated (Table 1). Lower DIC was
obtained for models fitting for site-specific variation in
incidence, assuming a half-life of 1 year or fitting for half-
life, indicating that under the assumption of exponential
decay, and with only 18 months of follow-up data, the half-
life against vaccine efficacy against infection is likely to be
around 1 year, rather than longer (Fig. 2 and Additional
file 2: Table S1).

For the EPI cohort, the predicted mean initial efficacy
against infection is lower than that of the 5-17 month
cohort, and the posterior distributions on efficacy against
infection (see Additional file 2: Figure S2) are much wider
than those predicted for the 5-17 month cohort. Nar-
rower distributions are obtained when one fits for a
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common variation in incidence across all trial sites. Not
surprisingly, much lower mean initial efficacy is predicted
for models assuming a half-life of three years.

The predicted posterior distributions for half-life of
decay (Fig. 2) are similar for both cohorts, with lower half-
life obtained when both cohorts are fitted jointly. Overall
the posterior densities for both EPI efficacy and 5-17
month efficacy and for the corresponding half-life of effi-
cacy are narrower when the model is fitted jointly to both
cohorts (Fig. 2), rather than when separate models are
fitted. This is also not surprising as there is more data
informing site-specific parameters (that is, access to care).
When the model includes site-specific terms to model the
variance in incidence, the half-life posteriors are much
narrower and more precise.

Models attempting to fit for the decay shape parameter
of the non-exponential Weibull decays failed to converge,
because more time points are needed to simultaneously
estimate the effects of other factors and the shape of
vaccine efficacy decay.

Access to care and site-specific variation in clinical incidence
Estimated site-specific access to care for our optimal
model (model 18) indicates that access to effective treat-
ment is low for most trial sites (Additional file 2: Figure S4
shows posterior distributions for access to effective treat-
ment for model 18 (fit for half-life, efficacy, site-specific
variation in incidence with adjusted transmission assump-
tions (ii) for both cohorts)), though it is still higher than
the average levels for the countries in which the trials took
place [25].

Site-specific variation in estimated incidence varied
widely between sites when prevalence was low (Additional
file 2: Figure S5). Estimating site-specific variation, as
opposed to a common variation in incidence, resulted in
better fitting models, and narrow posterior distributions
of vaccine properties initial efficacy and half-life, indicat-
ing that the variation within each site is perhaps more
important than the variation between sites.

Comparison of different model predictions with site-specific
data and validation
Plots of trial site clinical efficacy by 6 month periods
from the 18 month follow-up of Phase III [1], along with
predicted mean and credible intervals for different fitted
models are shown in Additional file 2: Figure S3 for the
5-17 month cohort and for the EPI cohort. Further plots
comparing predicted incidence with observed (Additional
file 2: Figure S6 and Additional file 2: Figure S7) are dis-
cussed in Additional file 2: Results. Further comparisons
to incidence are detailed in Additional file 2: Figure S6 and
Additional file 2: Figure S7.

In general, the model predictions for clinical efficacy
for both the EPI and 5-17 month cohorts captured the
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Fig. 2 Posterior distributions of half-life of decay of efficacy against infection. Posterior distributions of half-life of decay of efficacy against infection
for models fitted with the adjusted transmission assumptions (i), assuming exponential decay. Panels a and ¢ show fits when site-specific variation
in incidence is fitted. Panels b and d show fits when common variation in incidence across all sites is fitted. The green histograms indicate when
5-17 month cohort is fitted alone, the blue the EPI cohort and the rose when both cohorts fit

observed trends in the trials [1], and predictions fall within
the data confidence limits. For some sites large confidence
bounds were obtained on the predicted disease rate per
person year and clinical efficacy, indicating difficulties in
achieving convergence for those sites with low transmis-
sion or less than three observed time points. An exception
was the first 6 month time point efficacy for the 5-17
month cohort, to which the fit was rather poor, possibly
related to maternal immunity in the model [27].

Two sites, Manhica and Kilifi, were not used in the fit-
ting, but predicted clinical efficacy is shown in Additional
file 2: Figure S8 for the 5-17 month and EPI cohorts.
There are reported wide confidence bounds for both sites
and outliers with estimates of clinical efficacy less than 0,
and thus limited data to validate the model with any cer-
tainty. The validation thus provided no reason to reject
the new parameterisations, but had only very limited
statistical power.

Predicted clinical efficacy beyond 18 months
Predictions of expected clinical efficacy by 6 month time
points in each of the trial sites for 6, 12 and 18 month

follow-up and for longer follow-up than 18 months are
shown in Fig. 3 for both the 5-17 month and EPI
cohorts. These results assume exponential decay with vac-
cine properties from fitted model 18 (Additional file 2:
Table S1). Results show that we expect efficacy below zero,
with a small rebound, at around 3-3.5 years for some trial
sites. This is consistent with Phase II follow-up [22]. The
clinical efficacy of both cohorts is predicted to converge
around 3 years after last vaccine dose.

Predictions of expected clinical efficacy by 6 month time
points, namely the percentage of clinical events averted
in the previous 6 month period, and expected cumula-
tive efficacy in time over all trial sites for the two cohorts
are shown in Fig. 4. The overall efficacy against clini-
cal disease in time is predicted to be sustained for both
the 6-12 week and 5-17 month cohorts, even up to four
year follow-up. However, the prediction of efficacy against
clinical cases (including repeated episodes in the same
individuals) for 6 month time intervals indicates that the
proportion of cases averted in each 6 month period will
decrease to 10 % towards the end of the final follow-up of
the trial.
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Fig. 3 Predicted clinical efficacy beyond 18 months for EPl and 5-17 month cohorts for trials sites used for the fitting. Projections of clinical efficacy
by site for the EPI cohort (orange) and 5-17 month cohort for follow-up longer than 18 months for trials sites used for fitting. Predictions are results
of assuming vaccine parameters from model 18 (fit for half-life, site-specific variation and to both cohorts) and assuming site levels of exposure from
adjusted transmission assumptions (ii). Black indicates mean estimates of trial data with 95 % Cl for the EPI cohort and green for 5-17 month cohort,
orange the model predictions for EPI cohort and purple model predictions for the 5-17 month cohort

Predictions of the public health impact of RTS,S
implementation in endemic malaria countries from 2017
The values for each of the factors driving country-specific
predictions of public health impact are tabulated in
Additional file 1: Table SM2. These include country demo-
graphics (total population and surviving infants), underly-
ing transmission profiles, access to effective treatment and
vaccination coverage. Overall, the predicted non-vaccine
burden from the models suggest that there are somewhat
more malaria episodes and deaths attributable to malaria
than are estimated by WHO [Penny et al: Distributions
of malaria exposure in endemic countries in Africa con-
sidering country levels of effective treatment, submit-
ted], though these estimates vary considerably between
countries.

A substantial number of clinical events are predicted
to be averted 10 years following introduction (total over
endemic countries in Table 4 or per fully vaccinated

individuals in Table 5). Under the immunisation sched-
ules of targeting only the young, and considering that
the protection from the vaccine wanes relatively rapidly,
this translates into a relatively low proportion of malaria
events averted over the entire population (range from
1-4% for clinical events and up to 10% for deaths
(Additional file 2: Figures S14-S15), depending on immu-
nisation schedule). These low proportions are to be
expected since malaria disease can occur at any age, but
only the youngest cohorts will be targeted by vaccine.
The proportion of events averted for persons under five is
much higher.

For each outcome, the uncertainty ranges for the differ-
ent deployment schedules overlap for the predictions of
both numbers and proportions of events that would be
averted by vaccination. In general the ranking of predic-
tions is similar, whether the results are expressed as total
numbers of events averted, events averted per 100,000
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Fig. 4 Clinical efficacy predicted for both 6 month periods and cumulative predicted clinical efficacy in time. Predicted estimates of clinical efficacy
at each 6 month follow-up, and cumulatively in time for the EPl and 5-17 month cohort over all trial sites. Reported efficacy at 18 months post third
dose (mean and 95 % Cl) over all trial sites for each cohort is indicated by red. Prediction estimates by 6 month time periods (mean) are shown in
blue bars for each cohort, 5-17 months (left) and EPI (right). Predictions for cumulative efficacy in time are shown in black, with purple shading to
indicate difference between 6 month period predictions. Predictions are from the best fitted model (fit to both cohorts, fit half-life, and site-specific

fully vaccinated children, or as percentages of the total
burden averted. When the best fitting (reference) vaccine
profile is assumed, EPI vaccination is predicted to avert
more deaths than vaccination of 6—9 month old children
over a 10 year time horizon (Figs. 6 and 8), though when
indirect mortality is excluded and the results expressed as
deaths averted per 100,000 fully vaccinated children, the
point prediction is higher for vaccination at 6—9 months
(Fig. 7). Similarly the total number of cases averted is
higher with EPI (Fig. 5), but cases averted per 100,000
fully vaccinated children is somewhat higher with vacci-
nation at 6—9 months, though in all these analyses the
uncertainty intervals overlap. Adding a booster dose to the
schedule increases the effects roughly in proportion to the
total number of doses administered (Figs. 5, 6, 7 and 8).
Comparison of these predictions with those based on
vaccine profiles with less support from the data indi-
cates the sensitivity of these results to the main uncer-
tainties in the profiles. Each of panels B-G in Figs. 5,
6 and 7 (and Additional file 2: Figures S9-S11) corre-
sponds to a set of alternative assumptions described in
Table 3. The effects of improvements in coverage for
6—9 month vaccination, small increases (C) or decreases
in initial efficacy (D), are small, while increases in the
half-life of the vaccine effect are substantial (E) espe-
cially if accompanied by an increase in initial efficacy
(@). If initial efficacy is decreased, and half-life increased
to give a profile similar to that estimated from Phase
II data [8], the effect is a small improvement in each
of the measures of public health impact, but the uncer-
tainty bounds overlap with those for the reference scenar-
ios. The impacts of other country-specific assumptions

have been quantified in a simple sensitivity analysis
on country levels of transmission exposure, access to
effective treatment and reduced coverage of vaccination
(Additional file 1: Table SM1 and Additional file 2:
Figures S12-S13). If transmission levels decrease or
increase (by 50 %, Additional file 2: Figure S12-S13 (L]))
the impact is not as significant as the impact of increased
or decreased access to effective treatment (Additional
file 2: Figure S12-S13 (1))).

These overall results average out considerable variation
between countries in the predicted impact (Figs. 8, 9 and
10, and Additional file 3: Tables P1-P8). The distributions
of transmission intensity are the main driver of this (Fig. 8
and estimates by map in Figs. 9 and 10 and Additional
file 2: Figures S16-S23). Previous analyses have found
that public health impact of pre-erythrocytic vaccines
will be highest at intermediate transmission intensities,
where there are enough infections to make prevention
worthwhile but where the parasite challenge is not so
great as to drown the effect of the vaccine [9, 17]. The
current analysis indicates that there is a strong general
increase in impact with average level of transmission at
the country level, indicating that in only a few countries
(for example, Burkina Faso) are substantial proportions
of the population in the range where vaccine effective-
ness is compromised by an overwhelming parasitologi-
cal challenge. There is a decrease in effectiveness (the
percentage of events averted) with increasing transmis-
sion rate, especially for severe disease and hospitalisation
(Additional file 2: Figure S14). The effectiveness of vacci-
nation increases with access to effective treatment at the
country level (Additional file 2: Figure S15), but absolute
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Table 4 Cumulative total events averted (all ages) across 43 sub-Saharan African countries, cumulative by 5 year periods for each of
the four deliveries: EPI (6-12 weeks), EPl with boosters, expanded routine (6-9 months) and expanded routine with booster

Events averted

At 5 year followup (thousands)

At 10 year followup (thousands)

At 15 year followup (thousands)

EPI (6-12 weeks)
Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs
Direct DALYs

72,723 (47,523-82,667)
1,757 (1,223-2,460)
842 (579-1243)

206 (126-340)

503 (235-647)

27,075 (12,869-34,801)
11,482 (7,159-18,740)

148,991 (101,067-176,664)
2,608 (1,159-3,943)

1,254 (527-1,955)

370 (152-576)

1033 (558-1389)

55,687 (30,489-74,302)
20,743 (9,307-31,884)

204,966 (144,404-246,843)
3,020 (446-5,414)

1476 (220-2,653)

482 (149-798)

1537 (879-2074)

83,364 (48,162-111,434)
27,642 (9,999-44,694)

EPI with booster
Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs
Direct DALYs

97,337 (63,960-110,268)
2441 (1,705-3,333)
1,168 (808-1,655)

281 (173-421)

622 (320-816)

33,413 (17,362-43,664)
15,519 (9,626-23,042)

217,564 (146,622-256,595)
4,087 (2,554-5,810)

1,960 (1,241-2,858)

549 (332-823)

1334 (771-1674)

71,818 (41,729-89,598)
30,580 (18,902-45,470)

304,518 (212,980-364,054)
4,975 (2,225-7,629)

2416 (1,113-3,703)
731(384-1,134)

1995 (1163-2580)

108,255 (63,463-138,582)
41,714 (23,481-64,095)

Expanded routine (6-9 months)

Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs

Direct DALYs

58,230 (38,260-66,696)
1,528 (1,054-2,054)
727 (501-1,048)

162 (88-264)

329 (160-448)

17,670 (8,749-24,049)
8,955 (4,999-14,537)

119,426 (80,366-141,899)
2,560 (1,788-3,490)

1224 (836-1,746)

306 (173-488)

684 (375-886)

36,881 (20,354-47,826)
17,123 (9,960-26,781)

162,454 (112,002-195,551)
3,239(1,974-4,611)

1,565 (890-2,315)

406 (217-652)

1008 (500-1293)

54,822 (27,867-70,146)
23,251 (13,386-36,555)

Expanded routine with booster

Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs

Direct DALYs

79,300 (52,661-90,279)
2,060 (1,455-2,711)
982 (688-1,346)

218 (137-324)

418 (228-565)

22,409 (12,370-30,176)
12,012 (7,628-17,739)

179,372 (121,591-211,522)
3,744 (2,863-5,028)

1,786 (1,332-2,499)

439 (305-655)

909 (561-1122)

48,905 (30,345-60,518)
24,429 (17,088-35,728)

250,819 (173,421-300,168)
4,839 (3,376-6,722)

2,323 (1,608-3,335)

585 (385-883)

1333 (811-1634)

72,513 (44,534-88,531)
33,367 (22,551-49,362)

numbers of events averted is predicted to be lower with
increased access to effective treatment.

Discussion and conclusions

Simulation models of the public health impact of pre-
erythrocytic vaccines against malaria are not new, but
there is new urgency in making specific predictions for
RTS,S/ASO1 linked to the malaria situation in endemic
countries using available Phase III data to parameterise
models. The reason is that a recommendation on the use
of RTS,S is expected as early as the end of 2015. Previously

the public health impact of introducing the RTS,S vaccine
into routine vaccination schedules in Africa has been dif-
ficult to predict because available clinical trial data were
inadequate for accurately estimating the kinetics of vac-
cine protection, and this uncertainty in the vaccine profile
meant that geographically specific predictions of likely
impact [17] were mainly of value to indicate general prin-
ciples and data gaps. Site- and time- specific data from
18 months of follow-up of the Phase III trials [1] have
now enabled us to estimate the vaccine profile accurately
enough for quantitative predictions of impact at national
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Table 5 Cumulative total events averted per 100,000 fully vaccinated individuals (all ages) across 43 sub-Saharan African countries,
cumulative by 5 year periods for each of the four deliveries: EPI (6-12 weeks), EPl with boosters, expanded routine (6-9 months) and

expanded routine with booster

Event averted

At 5 year followup

At 10 year followup

At 15 year followup

EPI (6-12 weeks)
Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs
Direct DALYs

62,110 (40,590-70,600)
1,500 (1,040-2,100)
720 (490-1,060)

180 (110-290)

430 (200-550)

23,120 (10,990-29,720)
9,810 (6,110-16,010)

61,750 (41,890-73,220)
1,080 (480-1,630)

520 (220-810)

150 (60-240)

430 (230-580)

23,080 (12,640-30,790)
8,600 (3,860-13,210)

55,010 (38,750-66,240)
810 (120-1,450)

400 (60-710)

130 (40-210)

410 (240-560)

22,370 (12,930-29,910)
7,420 (2,680-11,990)

EPI with booster
Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs
Direct DALYs

83,130 (54,620-94,170)
2,080 (1,460-2,850)
1,000 (690-1,410)

240 (150-360)

530 (270-700)

28,540 (14,830-37,290)
13,250 (8,220-19,680)

90,170 (60,770-106,350)
1690 (1,060-2,410)

810 (510-1,180)

230 (140-340)

550 (320-690)

29,760 (17,290-37,130)
12,670 (7,830-18,840)

81,720 (57,160-97,700)
1,340 (600-2,050)

650 (300-990)

200 (100-300)

540 (310-690)

29,050 (17,030-37,190)
11,190 (6,300-17,200)

Expanded routine (6-9 months)

Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs

Direct DALYs

66,310 (43,570-75,950)
1,740 (1200-2,340)
830 (570-1,190)

180 (100-300)

370 (180-510)

20,120 (9,960-27,390)
10,200 (5,690-16,550)

65,990 (44,410-78,410)
1,410 (990-1,930)

680 (460-960)

170 (100-270)

380 (210-490)

20,380 (11,250-26,430)
9,460 (5,500-14,800)

58,130 (40,080-69,970)
1160 (710-1,650)

560 (320-830)

150 (80-230)

360 (180-460)

19,620 (9,970-25,100)
8,320 (4,790-13,080)

Expanded routine with booster

Uncomplicated
Severe
Hospitalisations
Direct deaths
All deaths
DALYs

Direct DALYs

90,300 (59,970-102,800)
2,350 (1,660-3,090)
1,120 (780-1,530)

250 (160-370)

480 (260-640)

25,520 (14,090-34,360)
13,680 (8,690-20,200)

99,120 (67,190-116,890)
2,070 (1,580-2,780)

990 (740-1,380)

240 (170-360)

500 (310-620)

27,020 (16,770-33,440)
13,500 (9,440-19,740)

89,750 (62,050-107,410)
1,730 (1,210-2,410)

830 (580-1,190)

210 (140-320)

480 (290-580)

25,950 (15,940-31,680)
11,940 (8,070-17,660)

level to have sufficient plausibility for guiding policy deci-
sion as well as for informing subsequent implementation
decisions by ministries of health.

Using available clinical trial data, the estimate of the
initial efficacy against infection of RTS,S/AS01 is around
63% (95% CI 39.5-80.3%) for infants and 79.2% (95 %
CI 67.3-84.8 %) for children, and is slightly higher than
the efficacy in challenge trials which directly estimate the
same quantity. In challenge trials with RTS,S in adults,
42 % [28] and 47 % [29] protection against an infection
challenge was observed with adjuvant AS02, and 50 %

observed when using adjuvant ASO01B [30]. Consistent
with our results is the almost equivalent estimate obtained
with natural challenge of 65.9% (95% CI 42.6-79.8 %)
protection against first infection in a Phase I/IIb trial
immunising infants with RTS,S/AS01 [31]. The model
estimates for RTS,S/ASO01 initial efficacy against infection
in this work are substantially higher than those previ-
ously estimated by modelling from the initial Phase II
RTS,S/AS02 of 52% [16], and, as expected, higher than
the directly measured efficacy against clinical episodes at
18 months follow-up [1]. However, there is considerable
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Fig. 5 Predicted cumulative uncomplicated cases averted per 100,000 fully vaccinated over 10 years for sub-Saharan Africa for each of the four
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uncertainty around them, especially for the 6-12 week
cohort.

The underlying vaccine profile of efficacy against
infection and decay, which reflects the induced pre-
erythrocytic immunity, is most likely the same across
the trial sites, even though the measured clinical efficacy
which also depends on secondary effects on blood stage
immunity, appears to be lower in sites with higher expo-
sure [1]. This effect can be accounted for by between-site
variation in transmission level, the extent of transmission
heterogeneity, and in levels of access to care, all of which
modify the relationship between the underlying efficacy
in preventing infection and efficacy against clinical dis-
ease, justifying our use of site-independent estimates of
the underlying initial efficacy and decay.

RTS,S initial protection is high and decays relatively
rapidly and although clinical efficacy over time might

seem low, RTS,S implemented in addition to current
malaria control measures across endemic countries in
Africa will have substantial impact in averting malaria
cases. RTS,S would avert 100-580 malaria deaths and
45,000 to 80,000 clinical events for every 100,000 fully vac-
cinated child in the first 10 years of the program. This
would potentially increase if boosting doses are added.
The uncertainty in the vaccine profile is compounded
in these predictions of public health impact by the
uncertainty in the distributions of transmission levels in
the different countries. This does not even take into con-
sideration the uncertainties in demographic projections,
in future trends of malaria and control, and in the assump-
tions about vaccination coverage; with coverage levels
and population growth in higher transmission areas pre-
dicted to have a much larger impact than uncertainty in
future trends of transmission. In addition, the differences
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in predicted impact between the vaccination schedules are
small in relation to the uncertainty ranges. In particular,
the predictions of public health impact of EPI vaccination
and vaccination at 6—9 months are very similar, with the
former averting overall slightly more episodes of illness,
and the latter overall more deaths depending on cover-
age (a consequence of the age dependence in the case
fatality rate and association with indirect mortality due to
co-morbidities at younger ages [26]).

Previous simulations of the effects of paediatric malaria
vaccination programs demonstrated minimal herd immu-
nity effects [9], meaning that this intervention strategy will
not have any substantial effect on overall levels of malaria
transmission. This is a consequence of the targeting of a
narrow age range (those at highest risk of life-threatening
disease) to vaccinate, not of the vaccine profile per se.
Indeed, the high initial efficacy of RTS,S/AS01 is similar

to the profile aimed at for vaccines aiming to interrupt
transmission [32], and mass administration of a vaccine
with such a high efficacy would have substantial transmis-
sion effects [9]. However, the current strategy for licensure
of RTS,S does not envisage mass vaccination, and this
is outside the scope of this paper, but previous efforts
have indicated the potential benefits in low transmission
settings [9]. Post-registration use of the vaccine will be
important, as will further modelling investigations.

The availability of very extensive data on prevalence
from MAP [21] means that there is a better basis for
estimating the vaccine-avertable burden of disease for
malaria than for other major childhood infections. The
high burden of Plasmodium falciparum disease means
that we predict the public health impact of RTS,S to
be comparable to that of other new childhood vaccines,
such as those against Haemophilus influenza type b and
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pneumococcus, despite the leakiness and relatively low
efficacy of the vaccine. Such a large public health impact
is based on much higher rates of severe disease and
mortality than have been observed in the trials (where
severe disease rates were low and malaria mortality almost
absent, presumably because very high standards of care
were achieved [1]). These higher levels of disease are
those measured in the non-trial datasets to which the
OpenMalaria models were originally fitted [11, 26]. For
comparisons with other vaccines it is also relevant to con-
sider that some deaths arising from co-infections could
be averted by vaccination against either of the pathogens
concerned. This particularly applies to our simulated
numbers of indirect malaria deaths, which are intended
to capture the effects of interactions between Plasmod-
ium falciparum and co-infections, especially respiratory
bacteria.

A very important source of uncertainty in our predic-
tions is in the kinetics of the vaccine effect on infection
rates. The analysis suggests that the efficacy in preventing
infections decays exponentially with a half-life of decay of
around 1 year (Table 2), which is much faster than was
previously thought but is in line with published data of
IgM serum concentrations [8]. The public health impact
will depend on not just the half-life, but also the functional
form of efficacy decay. Once data from longer follow-
up periods of the trial are available it should become
possible to estimate whether decay curves belonging to
families other than the exponential are more appropri-
ate. In line with previous analyses [11] we infer that the
efficacy measured against clinical malaria in the trial is
declining over time even more rapidly than the under-
lying effect in preventing new infections, so the superfi-
cial interpretation that the decline in efficacy means that
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vaccination has only a transient effect should be resisted.
Conversely, the temptation should be resisted to present
efficacy as values cumulated up to specific time points,
which makes waning of efficacy less evident. It is essen-
tial to compare incidence between the arms of the trial
over each time interval, allowing recurrent events in the
same children. However, the prediction that the time-
period specific efficacy in some trial sites may fall below
zero by the end of the trial, based on extrapolating the
existing decay, highlights the need to manage expecta-
tions so that such a result is not misinterpreted. This is
an unavoidable property of a leaky vaccine combatting
recurrent challenges from a pathogen that stimulates par-
tial immunity. Some clinical events in vaccinated children
will be delayed, rather than averted, a phenomenon that
must be taken into account in predicting public health
impact of all partially protective malaria interventions, but
which should not be interpreted as an adverse effect of
vaccination.

Data are still being accrued that will be crucial for
estimating the shape of the efficacy decay, and the esti-
mation will be repeated when the results from the full
follow-up of 32 months are available. This analysis will
also enable us to assess whether a different efficacy for
the boosting dose is expected compared to the third dose
given 18 months prior to boost. This will considerably
reduce the uncertainty in predictions of the effect of
boosting.

All models assume no rapid evolution of the parasite
sensitivity to the RTS,S antigen, and fears over resistance
are actually small, but this should not impact the evalu-
ation of a new intervention with the potential to prevent
malaria morbidity and mortality.

Since the computational requirements of our analy-
sis were enormous, with each of the simulations from
OpenMalaria requiring significant computing time,
repeating the analysis is not a trivial exercise. However,
a distinct benefit of our data-basing and weighting
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approach is that estimates for different countries, trial
sites or geographical areas with different transmission
and health system parameters can be made without
running new micro-simulations. Only the fitting and
weighting steps will need to be repeated when new trial

data are available, and these have comparatively low com-
putational requirements. Bayesian MCMC estimation
of weighting factors also provides a way to fit the very
complex OpenMalaria models simultaneously to mul-
tiple outcomes from the trials (prevalence and clinical

of DTP3 levels of country immunisation)

Fig. 10 Mean predicted total uncomplicated and severe events averted per 100,000 fully vaccinated after 10 years by country for extended
routine (6-9 month) immunisation schedule. Cumulative total uncomplicated and severe events averted per 100,000 fully vaccinated by country,
cumulative at 10 years post introduction immunising via extended routine immunisation schedule of 6-9 months (vaccination coverage is at 75 %
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incidence) without the computationally expensive need
to re-run the simulations iteratively. Other advantages
offered by the model averaging approach over estimates
based on single parameterisations include the propa-
gation of the uncertainty in the vaccine profile through
to the public health impact predictions, allowing the
influence of these factors to be compared with the sen-
sitivity to assumptions about transmission and health
systems. Weighted averaging of simulations also provides
a straightforward approach for analysis by repeating
the calculation of public health impact, using different
weight vectors. The use of a model ensemble capturing
different assumptions around development of immunity
and degree of transmission heterogeneity also provides
lower-bound estimates of the impact of structural uncer-
tainty [11], and replicating simulations with random
number seeds tells us how much stochasticity influences
our results.

An additional key message from this analysis is that the
decay in efficacy is the parameter contributing the most
uncertainty to the prediction of public health impact of
RTS,S and for second generation malaria pre-erythrocytic
vaccines. Other promising pre-erythrocytic vaccines have
already demonstrated near 100% efficacy in challenge
trials [33] before rechallenge. The developers of these
vaccines also need to consider that, while a high initial
efficacy is clearly highly desirable, the temporal pattern
of decay in efficacy is of equal, if not more, importance
as a determinant of the likely public health impact of
vaccination programs.
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Additional file 1: Supplementary methods. Detailed supplementary
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predictions.

Additional file 2: Supplementary results 1. Additional tables associated
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Additional file 3: Supplementary results 2. Additional tables associated
with country-specific predictions of vaccine impact.
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