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ABSTRACT

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to
produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. sac-
charolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce
ethanol at lower yields (�50% of the theoretical maximum). In the course of engineering these strains, a number of mutations
have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase
(ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. sac-
charolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography,
and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and
ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed
increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired
high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single
amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T.
saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE pro-
teins was performed to provide explanations for the cofactor specificity change on a molecular level.

IMPORTANCE

This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum.
C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol
and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains,
several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity.
We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol
production by C. thermocellum and T. saccharolyticum.

Thermophilic organisms, Clostridium thermocellum in particu-
lar, hold great promise for the production of ethanol from

lignocellulosic feedstocks (1, 2). C. thermocellum is a thermo-
philic, Gram-positive obligate anaerobe that rapidly consumes
cellulose. Engineered strains of Thermoanaerobacterium saccharo-
lyticum (3), a thermophilic anaerobe that ferments xylan and
other sugars derived from biomass, have been shown to produce
ethanol at �50 g/liter, a near-theoretical yield (4). While compa-
rable concentrations of ethanol are tolerated by selected strains of
C. thermocellum (5–7), the maximum reported concentration of
ethanol produced by this organism is 23.6 g/liter (8) and the max-
imum ethanol yield achieved to date is 51% of the theoretical
maximum (9) versus 92% in T. saccharolyticum (10). It is of inter-
est to understand why ethanol production by T. saccharolyticum is
thus far superior to that by C. thermocellum, in order to facilitate
engineering of the C. thermocellum ethanol production pathway.

In microorganisms, fermentation of pyruvate to ethanol can
proceed either with or without acetyl coenzyme A (acetyl-CoA) as
an intermediate. In yeasts and Zymomonas mobilis, pyruvate is
decarboxylated directly to acetaldehyde, which is then reduced to
ethanol (11). In many other organisms, pyruvate is oxidatively

decarboxylated to acetyl-CoA, which is reduced to acetaldehyde,
which is further reduced to ethanol. This two-step conversion of
acetyl-CoA to ethanol can be catalyzed by one protein, a bifunc-
tional alcohol dehydrogenase (ADH), AdhE. AdhE consists of a
C-terminal ADH domain and an N-terminal aldehyde dehydro-
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genase (ALDH) domain; the ADH domain is usually part of the
iron-containing ADH superfamily (Fig. 1) (12). AdhE is present in
a variety of mesophilic and thermophilic anaerobic bacteria capa-
ble of producing ethanol as a fermentation product (13–16). AdhE
has also been found in parasitic eukaryotes (17), anaerobic fungi
(18), and algae (19). In all of the organisms investigated thus far,
the deletion of adhE is associated with loss of ethanol formation.
When adhE was deleted from C. thermocellum and T. saccharolyti-
cum, nearly 100% of their ethanol production was eliminated
(20), demonstrating the importance of AdhE in ethanol formation
by these two organisms.

Numerous mutations in adhE have appeared during the course
of engineering C. thermocellum and T. saccharolyticum for higher
ethanol production and tolerance (Fig. 1; Table 1). In C. thermo-
cellum strain LL346 [also known as adhE*(EA)], the mutations
P704L and H734R in AdhE were associated with higher ethanol
tolerance (21); in strain LL350, the D494G mutation in AdhE was
associated with higher ethanol production (22). In T. saccharolyti-
cum strains LL1040 (also known as ALK2) (10) and LL1049 (23),
higher ethanol yield was achieved and mutations were also ob-
served in AdhE. In wild-type C. thermocellum and T. saccharolyti-

cum, the ADH activity in cell extracts was largely NADH linked
(10, 21). In cell extracts from all of the engineered strains men-
tioned above, there was an increase in NADPH-linked ADH ac-
tivity (10, 21, 22). However, it has not been unequivocally estab-
lished whether this cofactor specificity change must be ascribed to
mutations in AdhE, as cells contain multiple ADHs and measure-
ments of cell extracts cannot distinguish between isoenzymes.

It was therefore of interest to investigate purified preparations
of AdhE and mutant forms thereof to determine whether ALDH
and/or ADH activity has changed in cofactor specificity and
whether it is a general trend that the change in AdhE cofactor
specificity from NADH to NADPH is associated with more favor-
able features for ethanol production.

MATERIALS AND METHODS
Plasmid and strain construction. The adhE genes from strains LL1004
(wild-type C. thermocellum), LL346, LL350, LL1025 (wild-type T. saccha-
rolyticum), LL1040, and LL1049 (Table 1 contains descriptions of these
strains) were cloned into plasmid pEXP5-NT/TOPO (Invitrogen) by
standard molecular biology techniques, generating the respective Esche-
richia coli expression plasmids (see Table S1 in the supplemental mate-

FIG 1 Primary structures of AdhE proteins of wild-type C. thermocellum and T. saccharolyticum. (A) The ALDH domain is at positions 1 to 423 for C.
thermocellum and 1 to 420 for T. saccharolyticum, the ADH domain is at positions 463 to 873 for C. thermocellum and 460 to 860 for T. saccharolyticum, and the
linker sequence is at positions 424 to 462 for C. thermocellum and 421 to 459 for T. saccharolyticum. NADH binding site 1 is at positions 200 to 221 for C.
thermocellum and 199 to 220 for T. saccharolyticum; NADH binding site 2 is at positions 551 to 553 for C. thermocellum and 543 to 545 for T. saccharolyticum.
Mutated residues discussed in this study are annotated at the appropriate positions as follows: D494G in LL350; P704L and H734R in LL346; V52A, K451N, and
a 13-amino-acid (a.a.) insertion in LL1040; and G544D in LL1049. All elements are drawn to scale. Panels B and C show the sequence conservation of the NADH
binding motifs (highlighted in yellow in the consensus sequence) of AdhE from Thermoanaerobacter ethanolicus, Thermoanaerobacter mathranii, T. saccharo-
lyticum, Entamoeba histolytica, E. coli, C. thermocellum, Leuconostoc mesenteroides, Lactococcus lactis, Oenococcus oeni, and Streptococcus equinus. The residues
highlighted in red are the most conserved, and those highlighted in blue are the least conserved. The numbering of amino acids is based on the AdhE sequence
of C. thermocellum.
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rial). Cloning of the adhE genes into plasmid pEXP5-CT/TOPO instead of
pEXP5-NT/TOPO generated native AdhE proteins without His tags. The
plasmids were Sanger sequenced (Genewiz) to confirm correct insertion
of the target gene and then transformed into chemically competent lysY/Iq

E. coli cells (New England BioLabs). Control plasmid pNT-CALML3 (In-
vitrogen) was also transformed into E. coli. The resulting E. coli strains
were used for protein expression. C. thermocellum strains LL1160 and
LL1161 were constructed by transforming respective integration plasmids
pSH016 and pSH019 into strain LL1111 (Table 1; see Table S1); transfor-
mation and colony selection were carried out as previously described (24).
T. saccharolyticum strains LL1193 and LL1194 were constructed by trans-
forming the respective vectors pCP14 and pCP14* into wild-type T. sac-
charolyticum by using a natural-competence-based system (25) (Table 1;
see Table S1), and transformants were selected by resistance to the anti-
biotic kanamycin.

Media and growth conditions. For biochemical characterization and
transformation, C. thermocellum and T. saccharolyticum strains were
grown anaerobically to exponential phase (optical density at 600 nm
[OD600] of �0.5) in the appropriate medium. For C. thermocellum,
CTFUD rich medium at pH 7.0 was used as previously described (24); for
T. saccharolyticum, CTFUD rich medium at pH 6.0 was used. E. coli strains
were grown in LB broth Miller (Acros) with the appropriate antibiotic.
Fermentation end products were measured by high-pressure liquid chro-
matography as previously described (26). For end product analysis, C.
thermocellum and T. saccharolyticum strains were grown in the appropri-
ate medium. For C. thermocellum, chemically defined MTC medium was
used as previously described (27); for T. saccharolyticum, the MTC me-
dium used was modified by adding thiamine to a final concentration of 4
mg/liter and replacing urea with ammonium chloride at a final concen-
tration of 1.5 g/liter. In preparation for fermentation end product analy-
sis, cultures were grown at 55°C in 150-ml serum bottles with a 50-ml
working volume and a 100-ml headspace for 72 h. Ethanol concentrations
were calculated from biological duplicates and are reported in Table 2;
other end products are reported in Table S2 in the supplemental material.

Expression of various adhE genes. A 500-�l volume of an E. coli
culture containing a plasmid with the adhE gene of interest was inoculated
into 100 ml of sterile LB broth Miller (Acros) with the appropriate anti-
biotic and grown aerobically to an OD600 of 0.5 with shaking at 200 rpm at
37°C (Eppendorf Innova 42 shaker). The E. coli strain harboring the pNT-
CALML3 control plasmid (Invitrogen) was used as a negative control to
measure native E. coli ADH or ALDH activity. Because E. coli AdhE was
shown to be sensitive to oxygen (13) and C. thermocellum cell extracts lost
ADH activity after exposure to air for 30 min (data not shown), AdhE
protein expression and all subsequent experiments were carried out an-
aerobically. The E. coli cultures were then transferred to sterile serum
bottles, and 40 mM IPTG (isopropyl-�-D-thiogalactopyranoside) was
used to induce protein expression. The serum bottles were purged with
nitrogen to generate an anaerobic protein expression environment, and
the cells were cultured for an additional 2 h at 37°C before being har-
vested.

Preparation of cell extracts. C. thermocellum, T. saccharolyticum, and
E. coli cultures were grown as described above. Cells were harvested by
centrifugation at 3,000 � g for 30 min at 4°C, the supernatant was de-
canted, and the pellet was stored anaerobically at �80°C. All cell extracts
were generated anaerobically. Prior to cell extract generation, the frozen
pellets were thawed on ice and resuspended in 0.5 ml of lysis buffer con-
sisting of 1� BugBuster reagent (EMD Millipore) at pH 7.0 in phosphate
buffer (100 mM) with 5 �M FeSO4. Dithiothreitol (DTT) was added to a
final concentration of 0.1 mM. For the T. saccharolyticum cell extracts
used in ALDH activity measurements, ubiquinone-0 (Sigma catalog num-
ber D9150) was added to a final concentration of 2 mM to relieve the
possible inhibition of ALDH activity as previously reported (20). The cells
were lysed with Ready-Lyse Lysozyme (Epicentre), and DNase I (New
England BioLabs) was added to reduce viscosity. The resulting solution
was centrifuged at 10,000 � g for 5 min at room temperature, and the
supernatant was used as cell-free extract for enzyme assays.

Protein purification. The E. coli crude extracts described above were
incubated at 50°C anaerobically for 20 min to denature E. coli proteins,

TABLE 1 Strains used in this study

Organism Strain Description
Accession
no.a

Source or
reference(s)

C. thermocellum LL1004 Wild-type C. thermocellum strain DSM 1313; low ethanol productionb CP002416 DSMZc

C. thermocellum LL346 Also known as adhE*(EA); evolved C. thermocellum strain, tolerates ethanol at 40
g/liter, has mutations P704L and H734R in AdhE; low ethanol production

SRX030164.1 21

C. thermocellum LL350 Also known as �hydG mutant; C. thermocellum �hpt �hydG strain with mutation
D494G in AdhE; moderate ethanol productiond

NAf 22

C. thermocellum LL1111 C. thermocellum �hpt �adhE; no ethanol production SRX744221 20
C. thermocellum LL1160 LL1111 C. thermocellum strain with adhE reintroduced into the original adhE

locus; low ethanol production
NA This study

C. thermocellum LL1161 LL1160 with mutation D494G in AdhE; moderate ethanol production NA This study
T. saccharolyticum LL1025 Wild-type T. saccharolyticum strain JW/SL-YS485; moderate ethanol production CP003184 3
T. saccharolyticum LL1049 Also known as M1442 or MO1442; evolved T. saccharolyticum �(pta-ack) �ldh

�or796 ure metE �eps strain with mutation G544D in AdhE; high ethanol
productione

SRA233073 23, 51

T. saccharolyticum LL1040 Also known as strain ALK2; evolved T. saccharolyticum �ldh::erm �(pta-ack)::kan
strain with mutations V52A and K451N and 13-amino-acid insertion in AdhE;
high ethanol production

SRA233066 10

T. saccharolyticum LL1076 �adhE::(pta-ack kan); no ethanol production SRX744220 Mascoma Corp.
T. saccharolyticum LL1193 adhE::kan; differs from wild type only by kan marker downstream of AdhE;

moderate ethanol production; also known as M2203
NA 23

T. saccharolyticum LL1194 LL1193 with G544D mutation in AdhE; also known as M2202 NA 23
a Accession numbers starting with CP refer to finished genome sequences in GenBank; accession numbers starting with SR refer to raw sequencing data from the Joint Genome
Institute.
b Produces ethanol at a 0 to 40% theoretical yield.
c DSMZ, German Collection of Microorganisms and Cell Cultures, Leibniz Institute, Braunschweig, Germany.
d Produces ethanol at a 40 to 80% theoretical yield.
e Produces ethanol at an 80 to 90% theoretical yield.
f NA, not applicable.
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and the denatured proteins were separated by centrifugation. The ADH
activity in cell extracts of E. coli strains LL346 and LL1040 expressing
AdhE was sensitive to heat and lost activity after incubation at 50°C, so
these cell extracts were applied directly to the purification column without
heating. E. coli cells expressing control plasmid pNT-CALML3 were sub-
jected to the same treatment as described above, and their ALDH and
ADH activities before and after heat treatment were measured (see Table
S3 in the supplemental material). The cell extracts containing His-tagged
AdhE were then subjected to anaerobic affinity column purification (Ni-
nitrilotriacetic acid [NTA] spin columns; Qiagen). The purification was
carried out according to the Qiagen protocol for Ni-NTA–agarose puri-
fication of 6�His-tagged proteins from E. coli under native conditions,
with some modifications, as described below. The column was first equil-
ibrated with equilibrium buffer (50 mM NaH2PO4, 300 mM NaCl, 5 mM
imidazole, 5 �M FeSO4, pH 7), cell extracts were applied to the column,
and then the column was washed twice with wash buffer (50 mM
NaH2PO4, 300 mM NaCl, 50 mM imidazole, 20% ethanol, 5 �M FeSO4,
pH 7). The His-tagged AdhE protein was eluted by the addition of 200 �l
of elution buffer (50 mM NaH2PO4, 300 mM NaCl, 500 mM imidazole, 5
�M FeSO4, pH 7); this is eluent 1 in Tables S3 and S4 in the supplemental
material. Repetition of this elution step sequentially generated more-pu-
rified eluents 2 and 3. C. thermocellum and T. saccharolyticum AdhE ac-
tivities were measured at various stages during purification (see Table S4).
Electrophoresis results showed that eluent 3 had the least amount of con-
taminating bands; thus, eluent 3 was used for enzyme assays. The degree of
protein purity was estimated by gel densitometry with the image analysis
software ImageJ, where the density of each visible gel band from eluent 3
was plotted against its size in the gel. The area of each resulting peak was
then integrated and compared to the total of all of the peaks to estimate the
percentage of protein that can be attributed to each band (see Table S5 in
the supplemental material). E. coli cell extracts with native AdhE ex-
pressed (i.e., without the His tag) were used directly without purification
(see Table S6 in the supplemental material).

ALDH and ADH activity assays. All of the ALDH activity measure-
ments mentioned in this report refer to the reaction in the acetaldehyde-
producing direction. All of the ADH activity measurements mentioned in
this report refer to the reaction in the ethanol-producing direction. For
ADH (acetaldehyde reduction) reactions, the anaerobic reaction mixture
contained 0.24 mM NADH or NADPH, 17.6 mM acetaldehyde, 1 mM
DTT, 100 mM Tris-HCl, 5 �M FeSO4, and cell extract or purified protein
solution (the protein amount is indicated separately for each assay). The
final volume was 850 �l, the assay temperature was 55°C, and the assay
was started by the addition of acetaldehyde. For ALDH (acetyl-CoA re-
duction) reactions, the acetaldehyde in the above-described anaerobic
reaction mixture was replaced with 0.35 mM acetyl-CoA. Background
activity was recorded before the start of the reaction (addition of acetal-
dehyde or acetyl-CoA) and was subtracted from the reaction activity re-
corded. In the inhibition assays (see Table S8 in the supplemental mate-
rial), the inhibitor was added before the start of the reaction at the
following concentration: 1 M ethanol or 2.35 mM NAD(P)	. The de-
crease in absorbance at 340 nm caused by NAD(P)H oxidation was mon-
itored with an Agilent 8453 UV-Vis spectrophotometer with Peltier tem-
perature control (28). Protein concentration was determined by the
Bradford method with bovine serum albumin (Thermo Scientific) as the
standard. Specific activities are expressed in units per milligram of pro-
tein. One unit of activity equals the formation of 1 �mol of product per
minute. Specific activities in Tables 2 and 3 are reported for at least two
biological replicates. t tests were performed to analyze the cofactor speci-
ficity in Tables 2 and 3: NADH-linked and NADPH-linked activities were
analyzed with the unpaired two-tailed t test, and differences between the
two cofactors were considered significant if the P value was 
0.05. Stan-
dard deviations and raw data for all enzyme assays are presented in Table
S7 in the supplemental material. The software Visual Enzymics
(SoftZymics) was used for nonlinear regression to calculate the apparent
Km and kcat values in Table 4. kcat was calculated on the basis of a molecular
mass of 96 kDa for LL1004 AdhE and LL350 AdhE.

TABLE 2 ALDH and ADH activities in C. thermocellum and T. saccharolyticum cell extracts

Strain Description Ethanol yielda

ALDH activityb ADH activity

NADH NADPH NADH NADPH

C. thermocellum LL1004 Wild type 0.16 2.20 � 0.05c 0.21 � 0.03 6.73 � 0.72 0.04 � 0.00
C. thermocellum LL346 Ethanol tolerant 0.11 0.27 � 0.13 0.05 � 0.03 0.66 � 0.20 0.38 � 0.02
C. thermocellum LL350 Moderate ethanol production 0.22 2.00 � 0.49 0.05 � 0.01 6.71 � 0.93 5.90 � 0.27
C. thermocellum LL1111 adhE deletion 0.01 0.05 � 0.00 0.13 � 0.02 0.10 � 0.09 0.22 � 0.18
T. saccharolyticum LL1025 Wild type 0.26 0.41 � 0.13 0.05 � 0.04 7.06 � 0.50 0.95 � 0.58
T. saccharolyticum LL1049 High ethanol production 0.43 0.09 � 0.02 0.50 � 0.05 0.18 � 0.14 1.10 � 0.42
T. saccharolyticum LL1040 High ethanol production 0.45 0.08 � 0.02 0.30 � 0.02 0.08 � 0.05 1.55 � 0.72
T. saccharolyticum LL1076 adhE deletion 0.01 0.00 � 0.18d 0.018 � 0.09 0.04 � 0.18 1.78 � 0.56
a Ethanol yield is in grams per gram of cellobiose produced from cellobiose at 5 g/liter.
b Activity is expressed in units per milligram of protein (see Materials and Methods).
c Error represents 1 standard deviation (n � 4 to 8).
d When activity is very low and the background activity is higher than the measured activity, the value is negative (see Materials and Methods) and is shown here as zero activity.

TABLE 3 Cofactor specificities of purified AdhE proteins

Source of AdhE Description

ALDH activitya ADH activity

NADH NADPH NADH NADPH

C. thermocellum LL1004 Wild type 18.02 � 2.45b 2.03 � 0.46 42.23 � 3.13 1.96 � 1.25
C. thermocellum LL346 Ethanol tolerant 13.50 � 3.54 0.43 � 0.42 4.02 � 1.48 0.03 � 0.34
C. thermocellum LL350 Moderate ethanol production 31.50 � 5.80 5.76 � 0.16 42.67 �7.46 42.30 � 4.28
T. saccharolyticum LL1025 Wild type 10.63 � 1.15 4.46 � 1.63 17.43 � 2.45 2.43 � 2.43
T. saccharolyticum LL1049 High ethanol production 1.63 � 0.30 11.13 � 1.35 0.66 � 1.97 12.70 � 2.18
T. saccharolyticum LL1040 High ethanol production 0.07 � 0.55 5.03 � 2.05 0.01 � 1.34 12.96 � 4.54
a Activity is expressed in units per milligram of protein (see Materials and Methods).
b Error represents 1 standard deviation (n � 4 to 8).
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Homology modeling and molecular dynamics. The homology mod-
els corresponding to the ADH domains of the AdhE proteins from
LL1004, LL346, LL350, LL1025, LL1040, and LL1049 were constructed
with the bioinformatics toolkit SWISS-MODEL (Swiss Institute of Bioin-
formatics). The recent 2.5 Å resolution X-ray structure of the ADH of
Geobacillus thermoglucosidasius (3ZDR) (12) and 1.3 Å resolution X-ray
structure of the ADH from Thermotoga maritima (1O2D) (29) were used
as templates for their high level of homology and the presence of NADP
cofactor and iron ion, respectively. The resulting structures were in-
spected for proper phi/psi angles. All resulting structures were submitted
to molecular dynamics simulations with the program CHARMM with the
CHARMM 36 force field and the TIP3P water model (30). The systems
were generated via the CHARMM-GUI web server (31), and the param-
eters for NADP were generated by ParamChem. The structures were ini-
tially minimized in vacuo with the steepest descent for 1,000 steps and
then solvated in a cubic water box with a minimum of 10 Å from the edge
of the box; sodium cations were added to neutralize the system. The re-
sulting systems were minimized by using the steepest descent for 1,000
steps, followed by Newton-Raphson minimization for 100 steps. They
were then submitted to 1 ns of equilibration in the NPT ensemble at 298 K
and 105 Pa, followed by 10 ns of simulation in the NVT ensemble with an
integration time step of 2 fs. All simulations were conducted in duplicate
with different starting seeds and analyzed with carma (32).

Nucleotide sequence accession numbers. The accession numbers of
the adhE genes of strains LL1004, LL346, LL350, LL1025, LL1040, and
LL1049 are KR632757, KR632758, KR632759, KR632761, KR632760, and
KR632762, respectively.

RESULTS
Cofactor specificity of wild-type and mutant AdhE. ALDH and
ADH activities were determined in cell extracts of C. thermocellum
and T. saccharolyticum strains, as well as in the affinity-purified
AdhE expressed in E. coli. In purified preparations of AdhE, gel
densitometry results showed that the proteins were all �70% pure
(see Table S5 in the supplemental material). Furthermore, nega-
tive E. coli controls all showed 
0.4 U/mg specific activity for
ALDH and ADH (see Table S3 in the supplemental material),
indicating that the small amount of contaminating protein ob-
served on the gel did not substantially interfere with ADH or
ALDH activity measurements. With respect to cofactor prefer-

ence, the cell extracts of the T. saccharolyticum high ethanol pro-
ducers (LL1040, LL1049) has changed their ADH and ALDH co-
factor specificity to mostly NADPH linked, compared to mostly
NADH linked in the wild type (LL1025) (Table 2). The difference
between NADH- and NADPH-linked activities was significant
(P 
 0.05) for all three strains, except for ADH activity in LL1049.
Cell extracts from wild-type (LL1004) and ethanol-tolerant
(LL346) C. thermocellum strains both showed a greater preference
for NADH as a cofactor, but the preference was statistically signif-
icant for the wild-type strain and nonsignificant for the ethanol-
tolerant strain. The C. thermocellum moderate ethanol producer
(LL350) had significantly increased NADPH-linked ADH activity
while maintaining significant NADH linkage in ALDH activity.
The results for affinity-purified AdhE enzymes (Table 3) also
showed higher NADPH-linked AdhE activity in evolved strains.
The purified AdhE enzymes were all significantly linked to either
NADH or NADPH (P 
 0.05), with the exception of LL350 AdhE,
where, as in cell extracts, NADPH-linked ADH activity increased
to an amount comparable to that of NADH-linked ADH activity.
In all cases, the change in cofactor specificity for NADPH was
much more complete in T. saccharolyticum AdhE than in C. ther-
mocellum AdhE (Table 3). Additionally, strains exhibiting this in-
crease in NADPH-linked cofactor specificity in AdhE also gener-
ally showed greater ethanol production than their parent strains
(Table 2 and 3).

Because the Asp-494-Gly (D494G) mutation (22) in AdhE of
the C. thermocellum moderate ethanol producer (LL350) enabled
the enzyme to use both NADH and NADPH as cofactors, the
apparent kcat and Km values were measured with purified protein
from LL350 and wild-type C. thermocellum expressed in E. coli
(Table 4). Unpaired t tests were conducted to compare the kinetic
parameters of wild-type AdhE and the D494G mutant form. In
terms of Km, kcat, and catalytic efficiency (kcat/Km), the newly ac-
quired NADPH-linked activity in the D494G mutant form was
not significantly different from the NADH-linked ADH activity in
the wild-type protein (P � 0.05). For NADH-linked activity, how-
ever, a significantly lower (P 
 0.05) catalytic efficiency was ob-

TABLE 4 Apparent Km and kcat values of purified C. thermocellum wild-type and LL350 AdhE proteins

C. thermocellum straina

(characteristic) and enzyme Substrate Km (mM) kcat (S�1) kcat/Km (S�1 M�1)

LL1004 (wild type)
ALDH Acetyl-CoA 0.0084 � 0.0002e 280 � 2 3.3E 	 07

NADH 0.052 � 0.003 150 � 3 3.0E 	 06
ADH Acetaldehyde 1.6 � 0.05 240 � 4 1.5E 	 05

NADH 0.088 � 0.006 240 � 6 2.7E 	 06

LL350 (moderate ethanol production)
ALDH Acetyl-CoA 0.0042 � 0.0004d 230 � 2f 5.4E 	 07

NADH 0.026 � 0.0002d 62 � 0.1f 2.4E 	 06d

ADH Acetaldehydeb 1.4 � 0.05 220 � 2d 1.5E 	 05
Acetaldehydec 1.4 � 0.04 210 � 3d 1.5E 	 05
NADH 0.17 � 0.01d 220 � 5 1.3E 	 06d

NADPH 0.075 � 0.01 280 � 7 3.7E 	 06
a Source of AdhE, which was expressed in E. coli and affinity purified.
b Measurements were done with NADH as a cofactor.
c Measurements were done with NADPH as a cofactor.
d Compared to value obtained with wild-type AdhE, two-tailed P value of 
0.05.
e Error represents 1 standard error, at a confidence level of 0.95 (n � 10 to 16, depending on the sample).
f Compared to value obtained with wild-type AdhE, two-tailed P value of 
0.01.
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served for NADH in the D494G mutant protein than in the wild
type.

Product inhibition [ethanol or NAD(P)	] of purified AdhE
proteins from C. thermocellum and T. saccharolyticum was mea-
sured (see Table S8 in the supplemental material). AdhE of the C.
thermocellum ethanol-tolerant strain (LL346) was significantly
different from other AdhE proteins in both ethanol and NAD(P)	

inhibition. It retained 98% of its ADH activity and 92% of its
ALDH activity in the presence of 2.35 mM NAD	, while the other
five AdhE proteins, on average, retained only 30% of their ADH
activity and 33% of their ALDH activity. Interestingly, in the pres-
ence of 1 M ethanol, LL346 AdhE showed a 2-fold increase in
ADH activity, while the other five AdhE proteins, on average, re-
tained only 40% of their ADH activity.

Effects of AdhE mutations on ethanol production. The phys-
iological effects of two selected point mutations were investigated
by reintroducing those mutations into either C. thermocellum or
T. saccharolyticum. For C. thermocellum, the D494G mutation
(22) was chosen. This mutation could not be introduced directly
into the wild-type strain (because of limits of existing genetic
tools), so instead, adhE was deleted (strain LL1111) and replaced
with D494G mutant adhE (strain LL1161). A control strain
(LL1160) was made by the reintroducing wild-type adhE into
strain LL1111. Fermentation of cellobiose at 5 g/liter resulted in
ethanol yields of 0.14 g/g of cellobiose for strain LL1160 and 0.24
g/g of cellobiose for strain LL1161, a 1.7-fold increase. This in-
crease is larger than the 1.4-fold increase in ethanol yield over that
of wild-type C. thermocellum in moderate ethanol producer
LL350, which has the D494G AdhE mutation but also other ge-
netic modifications.

For T. saccharolyticum, the AdhE G544D mutation (23) was

chosen. In this organism, the mutation could be introduced di-
rectly into the wild-type strain, although a kanamycin antibiotic
resistance marker (kan) had to be added downstream of adhE. The
resulting strain was LL1194. A control strain (LL1193) was made
by inserting only the kan marker downstream of adhE. Fermenta-
tion of cellobiose at 5 g/liter resulted in ethanol production of 0.21
g/liter for strain LL1193 and 0.32 g/liter for strain LL1194, a 1.5-
fold increase. This increase is comparable to the 1.7-fold increase
in ethanol production from wild-type T. saccharolyticum to high
ethanol producer LL1049, which has the G544D AdhE mutation
but also other genetic modifications.

AdhE protein structure prediction. To understand the impact
of mutations on cofactor specificity, we performed homology
modeling and docking. The average structure of the ADH do-
mains from the wild-type and D494G mutant forms of C. thermo-
cellum AdhE were compared to identify potential explanations for
the switch in cofactor specificity (Fig. 2). In wild-type C. thermo-
cellum AdhE, Asp-494 interferes with the 2=-phosphate group of
NADPH because of electrostatic repulsion (both are negatively
charged) and steric hindrance. Molecular dynamics simulation
was conducted to compare the average structures of the six differ-
ent ADH domains (Fig. 3), including the previously mentioned
D494G mutant form, to evaluate if the observations from homol-
ogy modeling and docking were correct. The conformation of
NADPH in the binding pocket of the ADH domain varied in the
AdhE mutants. In the case of C. thermocellum, NADPH behaves
similarly in wild-type C. thermocellum (LL1004) AdhE and etha-
nol-tolerant C. thermocellum (LL346) AdhE, where the 2=-phos-
phate group of NADPH does not have access to the binding pocket
(Fig. 3). In the C. thermocellum moderate ethanol producer
(LL350) AdhE protein, the D494G mutation changed NADPH
binding significantly, as mentioned above, allowing the 2=-phos-
phate group of NADPH access to the binding pocket. A similar
trend was observed in the case of T. saccharolyticum AdhE, where
the mutations in the high ethanol producers LL1049 and LL1040
seem to change the conformation of NADPH in the binding
pocket, allowing NADPH to bind.

DISCUSSION
Primary structure of AdhE. The ALDH and ADH domains of
AdhE are highly conserved and connected by a linker sequence.
There is a disagreement in the literature on the number of NADH
binding sites in AdhE. Some studies predict a single NADH bind-
ing site located within or near the linker region of AdhE (13, 33–
37), suggesting that the ALDH and ADH domains share one nic-
otinamide binding site. Other studies have predicted an additional
NADH binding site in the ALDH domain (19, 28, 38, 39). Fungal
AdhE enzymes have been shown to have three putative NADH
binding sites (18). In our analysis, we focused on glycine-rich
regions and relied on structural information from our homology
models or closely related structural homologs. In both the C. ther-
mocellum and T. saccharolyticum AdhE proteins, we found two
strong NADH binding sites (Fig. 1A) and an additional putative
nucleotide binding region with a GXGXXG motif in the linker
region between the ALDH and ADH domains, which has been
reported in previous studies as a potential recognition locus (13,
18, 19, 28, 33–39). This putative binding region within the linker is
almost identical to one identified in another iron-dependent ADH
from E. coli (40). In this study, the glycine at the center of the locus
was mutated but resulted in only a marginal loss of NAD	 bind-

FIG 2 Homology modeling and docking analysis of the phosphate in NADPH
interacting with C. thermocellum wild-type AdhE (A) and the D494G mutant
form (B). The dotted lines represent hydrogen bonds. The red residue is D494,
the yellow residue is G494, and the blue residues are N495 and F496.

AdhE in C. thermocellum and T. saccharolyticum

August 2015 Volume 197 Number 15 jb.asm.org 2615Journal of Bacteriology

http://jb.asm.org


ing. However, mutations in the other glycine-rich locus with the
motif GGG located in the ALDH domain resulted in complete loss
of NAD	 binding (40), indicating that the GGG motif is impor-
tant in NAD	 binding. The GXGXXG motif located in the linker
is conserved in several AdhE enzymes but does not seem to con-
tribute to nucleotide binding directly; however, it might be im-
portant in nucleotide channeling or recognition before entering
the binding pocket. The NADH binding site in the ALDH domain
appears to be a combination of a conventionally accepted binding
motif (GXGXG) and another glycine-rich helix turn (Fig. 1B). The
NADH binding site in the ALDH domain has also been suggested
to have acetyl-CoA binding abilities (28). We see a high level of
conservation of both strong binding sites across different organ-
isms (Fig. 1B and C). The prediction of two binding sites (one in
each domain) agrees with our observation that D494G mutant
AdhE gained NADPH specificity for ADH activity but not for
ALDH activity. If D494G mutant AdhE shared a single NADH
binding site in the linker region, then one would expect to find
NADPH cofactor specificity in ALDH activity as well.

Effect of AdhE cofactor specificity on ethanol production.
Thus far, most of the bifunctional AdhE enzymes investigated are
NADH linked; however, there are some exceptions. Thermoan-
aerobacter mathranii AdhE showed a small amount of NADPH-
linked activity in addition to NADH-linked activity for both
ALDH and ADH (37), and Thermoanaerobacter ethanolicus
JW200 AdhE showed NADH-linked ALDH activity and small
amounts of NADPH-linked ADH activity (36). In all of the T.
saccharolyticum strains investigated in this study, higher ethanol
production was associated with an increase in NADPH specificity
and a decrease in NADH specificity for both ADH and ALDH

activities (Tables 2 and 3). In C. thermocellum, this association is
not as consistent; although NADPH-linked ADH activity signifi-
cantly increased, NADH-linked ADH and ALDH activities were
maintained at wild-type levels in the moderate ethanol producer
LL350 strain (Tables 2 and 3). When mutations that were previ-
ously shown to increase NADPH-linked ADH activity were rein-
troduced into wild-type C. thermocellum and T. saccharolyticum
AdhE, ethanol production increased in the resulting strains
(LL1161 and LL1194), showing that these mutations (both of
which caused changes in cofactor specificity) are responsible for at
least some of the increased ethanol production in the high-etha-
nol-producing strains. The effect of reintroducing the adhE mu-
tations depends somewhat on medium composition. Another
study comparing the same mutants found almost no difference in
ethanol production (M2202 versus M2203 in Table 3 in reference
23). We suspect that the difference between our results and those
of Shaw et al. is due to the presence of large quantities of yeast
extract in the medium they used.

The physiological reason for the increase in NADPH-linked
activity in strains LL350, LL1040, and LL1049 remains to be elu-
cidated. NADPH is generally thought to be the reducing equiva-
lent for anabolism, whereas NADH is generally thought to be the
reducing equivalent in anaerobic catabolism. Apparently, these
strains use NADPH for both anabolic and catabolic processes.
This may be related to changes in the fluxes of NADH and
NADPH generation elsewhere in metabolism. There are several
possible sources in C. thermocellum and T. saccharolyticum that
can provide NADPH for ethanol production. The nfnAB genes,
which are present in both C. thermocellum and T. saccharolyticum,
encode the NfnAB complex that catalyzes the reaction 2NADP	

FIG 3 Average structure of the ADH domains of AdhE from C. thermocellum wild-type LL1004 (A), the ethanol-tolerant LL346 strain (B), moderate ethanol
producer LL350 (C), T. saccharolyticum wild-type LL1025 (D), high ethanol producer LL1049 (E), and high ethanol producer LL1040 (F). The amino acids of
interest are shown in blue and red; the NADPH cofactor is shown color coded by elements, with its 2=-phosphate group highlighted (green open circle); and the
iron ions (green) are also shown. Additionally, the 39-bp insertion in the high ethanol producer LL1040 is shown in orange (F). The yellow-filled circle represents
the binding pocket where the additional 2=-phosphate of NADPH is commonly found in NADPH-dependent AdhE proteins. The locations of D494 and D486
are usually the recognition sites for NADH and do not allow the 2=-phosphate group of NADPH (green circle) to access the preferred binding pocket (yellow
circle). When the green open circle and the yellow filled circle overlap, that indicates that the NADPH molecule is able to access its preferred binding pocket. This
is present in panels C, E, and F but not in the other panels. Panels C, E, and F correspond to enzymes that can use NADPH as a cofactor. Note that NADPH was
used for modeling purposes and does not reflect the actual cofactor specificity of the enzymes but rather was used to explain the observed levels of affinity of the
enzymes for NADPH.
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ferredoxinox (41). Other T. saccharolyticum enzymes that generate
NADPH for catabolic purposes include the glucose-6-phosphate
dehydrogenase and the phosphogluconate dehydrogenase. These
T. saccharolyticum genes are both highly expressed (42). Although
C. thermocellum does not have the above two enzymes present in
the pentose phosphate cycle, the malic enzyme in C. thermocellum,
which catalyzes the formation of pyruvate from L-malate and gen-
erates NADPH, is very active (26).

Enzymes in the T. saccharolyticum ethanol production path-
way. Although the T. saccharolyticum LL1040 and LL1049 strains
are able to produce ethanol at high yield, purified AdhE proteins
from these mutant strains showed comparable or lower ADH ac-
tivity (Table 3). Furthermore, one-way analysis of variance
showed that the ADH activity in cell extracts of LL1040 and
LL1049 (Table 2) is not significantly different from that in T. sac-
charolyticum adhE deletion strain LL1076 (P value 0.56). This sug-
gests that the T. saccharolyticum high ethanol producers do not
largely rely on the ADH activity from AdhE for ethanol produc-
tion and that another ADH may be the main ADH in these strains.
The cell extract activity measurements in Table 2 suggest that this
other ADH is NADPH linked and may have higher ADH activity
than AdhE. It has been reported that an NADPH-linked primary
ADH, AdhA, is present in the Thermoanaerobacter species and
may be part of the ethanol production pathway (43, 44). Sequence
analysis shows that T. saccharolyticum JW/SL-YS485 has a gene
(Tsac_2087) encoding an ADH that is 86% identical (at the pro-
tein level) to T. mathranii and T. ethanolicus AdhA. Other re-
ported NADPH-linked ADHs involved in ethanol production in-
clude the AdhB enzyme, such as the secondary ADH reported in T.
ethanolicus 39E (45). However, sequence analysis showed that T.
saccharolyticum does not possess an adhB gene. Therefore, AdhA
may be responsible for the observed NADPH-linked ADH activity
in T. saccharolyticum cell extracts and also may be important in
ethanol production by T. saccharolyticum high ethanol produc-
tion strains LL1040 and LL1049.

Unique characteristics of ethanol-tolerant C. thermocellum
strain LL346. The mutations introduced into the AdhE protein
from the ethanol-tolerant strain of C. thermocellum, LL346 [also
known as adhE*(EA)], are notably different from the other muta-
tions that we have described thus far with respect to inhibition. It
has been reported that small amounts of NAD	 and ethanol in-
hibit ADH activity in cell extracts of C. thermocellum (46). High
inhibition by NAD(P)	 of purified AdhE proteins of C. thermo-
cellum was observed (at least 70% of the activity was inhibited),
with the exception of LL346, in which inhibition by NAD	 was
less than 10% (see Table S8 in the supplemental material). An-
other unexpected property of AdhE from strain LL346 was in-
creased activity in the presence of ethanol. A similar phenomenon
has been observed with the Z. mobilis ZADH-2 enzyme, which was
also stimulated by ethanol (47). The authors proposed ethanol-
induced acceleration of NAD	 dissociation as a mechanism for
the observed activation by ethanol, because nicotinamide dissoci-
ation is presumed to be the rate-limiting step in most dehydroge-
nases.

It has been reported by Brown et al. (21) that mutations in the
adhE gene of C. thermocellum LL346 (P704L and H734R) are the
sole basis for the alcohol tolerance of this mutant. As the muta-
tions coincided with a change from NADH-linked to NADPH-
linked ADH activity in cell extracts, they concluded that these

mutations are responsible for a change in cofactor specificity from
NADH to NADPH in the ADH part of AdhE. An increase in
NADPH-linked ADH activity was observed in the cell extracts of
LL346 compared to those of the wild type (Table 2), but in assays
done with purified AdhE from LL346, nearly 100% of the activity
for both ALDH and ADH was NADH linked (Table 3). This
changes the interpretation of the effect of the mutation, and sug-
gests that it reduced enzyme activity instead of changing cofactor
specificity. Thus, the small increase in NADPH-linked ADH ac-
tivity observed in the cell extracts of LL346 may be the result of
another enzyme.

AdhE cofactor specificity at the molecular level. Several fac-
tors can explain the changes in cofactor specificity described in
AdhE of the moderate ethanol producer C. thermocellum strain
LL350. It is clearly not energetically favorable to accommodate the
extra 2=-phosphate group in wild-type C. thermocellum AdhE be-
cause of the negative charge of Asp-494. This 2=-phosphate group
is absent from NADH, which may, in fact, be stabilized by hydro-
gen bonding interactions with this residue. This evidence suggests
that Asp-494 is important in distinguishing nicotinamide cofac-
tors as previously described. As shown in Fig. 2, substitution of
glycine for Asp-494 removes the interference between Asp-494
and NADPH, thus enabling the ADH to use both NADH and
NADPH as cofactors. The low Km value for NADPH in D494G
mutant AdhE (Table 4) agrees with the structural prediction, as it
suggests that this mutation resulted in an increase in the affinity of
the enzyme for NADPH. Aspartic acid residues have been shown
to play an important role in regulating the binding of NADH over
NADPH and are potential targets for mutations to change cofac-
tor specificity. For example, the D38N mutation in the NADH
recognition motif of an NADH-dependent Drosophila ADH al-
lowed the enzyme to use both NADH and NADPH (48). A similar
study was conducted with an ADH yielding the same results (40).
The positions of these aspartic acids are almost identical to that of
D494 in wild-type C. thermocellum (LL1004) AdhE.

Regarding LL346, the mutations would likely lead to a loss of
enzymatic activity in AdhE. Even though the LL346 mutations
H734R and P704L both occurred in the ADH domain, the ALDH
activity may also be affected. The H734R mutation has been stud-
ied in E. histolytica AdhE (also known as EhADH2), where it re-
sulted in reduced ALDH and ADH activities (28). Those results
suggested that alterations in the ADH domain, especially within
the putative iron binding domain where H734R resides, could
affect ALDH domain activity.

Helical assemblies of AdhE proteins named “spirosomes” have
been observed in many other organisms (12, 28, 34, 49), as well as
in recombinant AdhE following His purification (50). The forma-
tion of such structures has been suggested to influence enzyme
activity (28). The formation of this quaternary structure offers a
potential explanation for how mutations in one domain of AdhE
could impact the activity of the other domain.

In wild-type T. saccharolyticum AdhE (from strain LL1025),
Asp-486 is the equivalent of Asp-494 in C. thermocellum AdhE
and, as mentioned above, may selectively mediate the binding of
NADH over NADPH. The G544D mutation in LL1049 replaces a
glycine residue with a charged aspartic acid across from Asp-486,
and the 2=-phosphate group of NADPH appears sandwiched be-
tween these two amino acid residues (Fig. 3E). There are several
hydrogen bonds shared between this phosphate group and the two
aspartic acids that could help relieve their overall repulsion based
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on their respective charges. In the case of the LL1040 variant, there
is a large loop of 13 amino acids introduced in the ADH domain,
and given its flexibility and close proximity to the NADH binding
site in the linker sequence, it could induce subtle changes in the
binding site that would result in the observed cofactor specificity
change (Fig. 3F).

Regarding cofactor change in the ALDH domain of the LL1040
and LL1049 mutants, this domain either possesses a mutation far
from the NADH binding site (LL1040) or lacks such a mutation
(LL1049). It is possible that spirosome formation (12, 28, 34, 49)
not only influences enzyme activity but also affects cofactor spec-
ificity; thus, cofactor changes in the ADH domain may cause co-
factor changes in the ALDH domain through the formation of
such superstructures.
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