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Abstract

We report theoretical as well as numerical investigations of deformable nanocarriers (NCs) under 

physiologically relevant flow conditions. Specifically, to model the deformable lysozyme-core/

dextran-shell crosslinked polymer based NC with internal nanostructure and subject it to external 

hydrodynamic shear, we have introduced a coarse-grained model for the NC and have adopted a 

Brownian dynamics framework, which incorporates hydrodynamic interactions, in order to 

describe the static and dynamic properties of the NC. In order to represent the fluidity of the 

polymer network in the dextran brush-like corona, we coarse-grain the structure of the NC based 

on the hypothesis that Brownian motion, polymer melt reptations, and crosslinking density 

dominate their structure and dynamics. In our model, we specify a crosslinking density and 

employ the simulated annealing protocol to mimic the experimental synthesis steps in order to 

obtain the appropriate internal structure of the core–shell polymer. We then compute the 

equilibrium as well as steady shear rheological properties as functions of the Péclet number and 

the crosslinking density, in the presence of hydrodynamic interactions. We find that with 

increasing crosslinking, the stiffness of the nano-carrier increases, the radius of gyration decreases, 

and as a consequence the self-diffusivity increases. The nanocarrier under shear deforms and 

orients along the direction of the applied shear and we find that the orientation and deformation 

under shear are dependent on the shear rate and the crosslinking density. We compare various 

dynamic properties of the NC as a function of the shear force, such as orientation, deformation, 

intrinsic stresses etc., with previously reported computational and experimental results of other 

model systems. The computational approach described here serves as a powerful tool for the 

rational design of NCs by taking both the physiological as well as the hydrodynamic environments 

into consideration. Development of such models is essential in order to gain useful insights that 

may be translated into the optimal design of NCs for diagnostic as well as targeted drug delivery 

applications.
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 1 Introduction

Targeting nanocarriers (NCs) loaded with drugs towards specific pathological tissues in the 

body promise to improve the treatment and the early/correct detection of many diseases. 

Optimal targeting requires the tuning of the physicochemical properties of the NCs in order 

to achieve the required pharmacodynamics.1–3 In general, NCs can be classified into non-

deformable (or hard) and deformable (or soft) categories. Non-deformable NCs are often 

made of a dense polymer matrix which undergoes erosion or swelling to release the drug. 

While the hardness gives the NC a definite shape and size which make it relatively easier to 

rationally account for physical effects such as hydrodynamic interactions, it is constraining 

because when functionalized, the targeting molecules (antibodies) are rigidly anchored 

providing very little compliance to facilitate multivalent binding interactions. Soft NCs, in 

contrast, deform under the application of external stress or when approaching a confining 

boundary, which can offer a larger area for adhesion (leading to an increased propensity for 

multivalent binding). However, deformable NCs are also typified by an enhancement in drug 

loss under high shear conditions in the vasculature, when the NC is away from the target 

site. Moreover, the irregular geometry of a deformed NC makes it not only difficult to 

account for the hydrodynamic interactions, but the deformability itself can impose entropic 

penalties which can severely compromise the propensity for multivalent binding 

interactions.

The physical properties of the NC also directly impact their physiological performance. It 

has been shown that polystyrene-based (hard) NCs show a strong propensity for 

phagocytosis,4 which makes them amenable for easy capture by macrophages.5 Altering the 

shape of these NCs can enhance their adhesion to the endothelium,6 however 

biocompatibility is usually a concern with such NC constructs. Micelles and related 

amphiphilic assemblies represent the smallest of the deformable NC constructs, but are 

typically faced with low drug encapsulation and low storage stability.7,8 Liposomes are soft 

NCs, which offer a better control over size, and better drug encapsulation compared to their 

micellar counter-parts, but are typified by short shelf lives and high degrees of drug 

leakage.9 In the deformable NC category, polymersomes offer a nice middle ground as they 

are mechanically robust and stable, and can fuse with cellular membranes to transfer cargo 

to cells;10 however, in terms of biocompatibility, they leave more to be desired, as they can 

trigger pseudoallergic reactions due to the activation of the immune system. Other 

deformable NCs such as crosslinked polymers and polyvalent conjugates11,12 promise 

control over size, rigidity, drug encapsulation, and storage stability,13,14 but their 

optimization in design is in the early stages. Although a significant amount of research has 

been done on this topic, little has been achieved on the optimization of surface properties, 

payload capacity and other design concerns. Various combinatorial techniques for 

functionalizing these constructs with ligands as diagnostic markers and encapsulation of 

drugs have opened new directions. However the lack of mechanistic understanding of how 

the nanostructure and dynamics of such NCs impact their pharmacokinetics has been a 

major impediment in their clinical translation, which is still in in vivo animal testing in terms 

of bench-to-bedside development.15
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In this article, we focus on a new class of biocompatible core–shell polymer-based NCs 

consisting of a lysozyme rich core with a dextran-rich corona, which has the capability to 

host small-molecule drugs as well as larger metal-oxide nano-particles.11,16 This unique 

architecture can be exploited in a range of biotechnology and biomedical applications 

involving diagnostic imaging and therapeutic delivery. However, its response to, and its 

performance in, the physiological environment remain to be quantitatively assessed, which 

currently limits its utility in rational design. In the aforementioned core–shell polymer 

construct, the lysozyme constitutes a defined central rigid core and the dextran brushes 

constitute a fluid and soft corona. The overall size of the NC assembly is tunable in the 

range of 100–500 nm in diameter and is determined by the molecular weight of the dextran. 

The softness of the NC assembly is controlled by the degree of crosslinking interactions.

In previous studies in the literature which have focused on quantitative mechanisms 

applicable to NC interactions, the behavior of star like carriers has been modeled as multi-

arm star shaped microstructures. Grest and Kremer17 and Grest et al.18 have shown a way to 

compute microstructural conformations of star polymers at constant temperature using 

Langevin dynamics simulations. For the large molecular weight of the polymer, i.e., for star-

polymers with long arms, these authors17,18 have computed static and dynamic properties 

such as structure factors and relaxation rates, and compared them with known results.19 At 

time-scales larger than the inertial relaxation time, the free-draining fluid-like chain 

assumption made by these authors causes the frictional forces of all the arms of star 

polymers to be additive and to be equal to the frictional forces of isolated chain segments in 

the solvent. However, in general, due to solvent hydrodynamics, the frictional forces on the 

arms of the star polymer will be different when compared to isolated chain segments. Ripoll 

et al.20 and Singh et al.21 have introduced the effect of solvent hydrodynamics in calculating 

the dynamics of star shaped polymers using the multiple collision dynamics (MPC) model, 

while studying the effect of shear on the deformation of star-shaped microstructures. Similar 

treatments including hydrodynamic interactions but excluding inertial effects have been used 

to probe the effect of flow on microstructure deformation. For e.g., Foss and Brady,22 Hur et 
al.,23 and Petera and Muthukumar24 have characterized the gradual deformation of 

microstructures under weak flow conditions, and Schroeder et al.,25 Hsieh et al.,26 and 

Jendrejack et al.27 have considered the effect of hydrodynamic interactions under strong 

flow.

Most of the studies described above have focused on large ratios of end-to-end distances 

with respect to the size of beads. In the core–shell cross-linked polymer,11 however, the 

length of each arm is the same order as the core, such that their behavior will be less 

signified by self-entanglements within a chain/strand, while the crosslinking density will 

have a significant impact on the static and dynamic properties. In this limit, how precisely 

the internal hydrodynamics of the deformable NC relaxation is coupled to the external 

hydrodynamics will determine core–shell polymer deformability, multivalent adhesion, and 

drug release kinetics, all of which will ultimately influence the efficacy and performance of 

these carriers in pharmacological and clinical settings.15 For example, mixing of dextran 

brushes increases entropy, whereas crosslinking opposes the motion and imposes an entropic 

penalty. The shear stress near the endothelial surface in the microvasculature drives the 

system away from equilibrium (flow-free) conformations. Such hydrodynamic and 
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thermodynamic constraints are explicitly captured in the coarse-grained model of the 

lysozyme-core/dextran-shell crosslinked star polymer we have proposed here. We include 

stochastic and hydrodynamic shear forces to model the internal dynamics of these 

deformable carriers under physiologically relevant conditions. Brownian dynamics 

simulations are carried out to understand their equilibrium properties as well as the response 

to shear. We also include intra-particle hydrodynamic interactions28 in order to resolve the 

internal relaxation of hydrodynamic modes and how they couple to the external flow-field. 

That is, depending on the inter-bead positions, radii, and the viscosity of the solvent, this 

long-range interaction impacts the transient temporal response of the core–shell polymer. In 

Section 2 we describe the polymer configurations, in Section 3 we describe the simulation 

methodology, in Section 4 the static properties (including structure factors and radius of 

gyration) are computed as a function of crosslinking, and in Section 5 deformation and 

tumbling under shear are shown in terms of normal strain differences and shear strain. We 

also focus on extending this method to resolve the effect of inhomogeneity on intrinsic 

stresses, carrier deformation, and relaxation dynamics.

 2 Core–shell cross-linked polymer NC model

We model the polymer microstructure as a fixed number of strands attached to a core, which 

mimics the experimentally inferred architecture for this material, see Fig. 1, where each 

strand is modeled as connected segments of freely jointed chains (FJCs). The core radius is 

set to a = 10 nm following the experimental estimates of Coll Ferrer et al.11,16 For 

simplicity, we set the size of each bead in the arms to be the same as that of the core, i.e., a = 

10 nm. The initial microstructure is a unit star polymer with 25 arms attached to a core, with 

each arm modeled by beads connected through four links in series; that is, each link 

connecting two adjacent beads in an arm is modeled as a Kuhn spring. Following the reports 

of Liu et al.,29 and Pelton et al.,30 the stiffness of each link and the equilibrium distance are 

determined using a freely jointed chain model.

The molecular weight of a dextran monomer (denoted by M) is 162 Da.30 For a typical 

molecular weight of 70 kDa of the dextran polymer used to synthesize the NC (see Fig. 1), 

the number of monomers per arm is  and the number of monomers per per bead is 

. If the number of Kuhn’s segments per bead is Nk and the size of each Kuhn’s 

segment is bk, we impose Nkbk = Nb, where b is the size of each monomer. For dextran, bk 

is 0.44 nm29 and the size of the monomer (b) is 1.5 nm using which we calculate the 

stiffness (ks) of the links between beads as derived from the FJC model, i.e., . We 

also model the stiffness of the coarse-grained crosslinks to be identical to the stiffness of 

each link.

We mimic the experimental protocol to obtain a relaxed structure of the polymer assembly 

(see Fig. 1): (1) we use molecular dynamics simulations to relax the structure at 1200 K. (2) 

At this high T, we track individual beads and the inter-bead distances between the pair of 

beads from two different chains. If the center-to-center distance between beads is less than 
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19.7 nm – this is the distance from a given bead at which the probability to find a 

neighboring bead approaches zero, as evident from the radial distribution functions 

discussed below –, we assign a crosslink between the beads. (3) We repeat the crosslinking 

process for different pairs of beads until we reach the desired crosslinking density. (4) Once 

crosslinked, the interaction between the beads is augmented by a harmonic potential. (5) We 

then follow a simulated annealing protocol described by Beers31 in order to relax the 

crosslinked structure of the assembly to 300 K. For each crosslinking density we model 4–5 

configurations (replicas) and then carry out Brownian dynamics simulations as described by 

eqn (11) in each of the replicas. The error bars of the reported quantities are determined 

through the standard deviations of the five replicas.

 3 Simulation methodology

We solve the equations of motion of a system of connected beads in a solvent with the 

following parameters: the mass of each bead is m, the radius is a, the velocity is v, the fluid 

viscosity is μ and fluid velocity is v∞. The equations of motion for one bead are given by:

(1)

where Fbr denotes Brownian forces and Fnbr denotes non-Brownian forces due to inter-bead 

interactions such as due to harmonic potentials constraining the beads and excluded volume 

interactions between beads. We consider time scales larger than the inertial relaxation time 

i.e., , where ξ = 6πμa, for which, following Ermak and McCammon32 we reduce eqn 

(1) to:

(2)

Here, for a given bead,  is the mobility, and r is the position. We consider 

unconstrained Brownian forces as white noise which yields the following expressions:

Here, I is the unit second-order tensor, kB is the Boltzmann constant, T is the temperature, 

and δ(t − t′) is the Dirac delta function.

In addition to Brownian forces, the beads experience the following non-Brownian forces: (1) 

Fs represents the spring restoring forces derived from a harmonic potential between adjacent 

connected beads:

Sarkar et al. Page 5

Soft Matter. Author manuscript; available in PMC 2016 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where ro is the equilibrium bond distance, which is set to 2a. Excluded volume interactions 

between beads is considered through the Weeks–Chandler–Anderson potential:33

(4)

for r ≤ rC and = 0 for r > rC; here,  is the scaled interaction strength and σ is the 

excluded volume radius which we set to σ = 2a; the cut-off radius for the WCA potential is 

rC = 21/6σ and we set ε = 0.7kBT.

So far, the equations of motion have been described just for one bead. Below, we consider 

multiple beads and hydrodynamic interactions (HI) between two beads mediated by the 

solvent by adopting the Rotne–Prager–Yamakawa hydrodynamic mobility tensor34,35 to 

introduce the effect of bead-to-bead hydrodynamics. For a pair of beads i and j, the pair-wise 

mobility is a function of configuration and is given by:

(5)

where the superscript HI indicates hydrodynamic interactions, rij = r is the relative position 

vector between beads i and j while rr/r2 is the product of normalized vectors. Since the 

mobility, formally valid at large separations, i.e., for r ≥ σ, as shown in eqn (5), decays 

slowly, (i.e., as ), the pairwise additive contribution of the hydrodynamic interaction term is 

still significant for interactions with the image beads of the periodic system, which is 

conceived as a 3D lattice system of identical cells of volume V; each image cell is denoted 

by an index l (see below) and contains the same number of beads N. We follow the Ewald 

summation method described by Beenakker28 to account for the interactions from the 

periodic images. The resultant velocity is a product of the mobility resulting from the Ewald 

sum, and the forces acting on the bead, i.e.:

(6)

where  is the distance between bead i in the central simulation box and bead j in the 

image replica indexed by l, which is comprised of the components of the 3D lattice vector 
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expressed as l = (l1L, l2L, l3L) and L is the length of the simulation box. The central 

simulation box is given by l = 0 and the distance between bead i and bead j in the central box 

is therefore  which for simplicity is just denoted by rij; with this simplification in the 

notation, . The mobility term for r < σ, does not contribute to the long-ranged 

hydrodynamic interaction, and hence it is added separately only for l = 0. These 

considerations collectively lead to the relationship:

(7)

Eqn (7) defines the pair-wise mobility Mij, which includes hydrodynamic interactions and 

contribution from image-replicas:

(8)

Here, M(1) and M(2) are functions of the inter-bead distance, derived by Beenakker.28 The 

lattice sum over M(2) is in reciprocal space over reciprocal lattice vectors k, where k = 

2πM/L, and m = (m1, m2, m3), which all take integer values. We check for the convergence 

of the mobility tensor in determining the number of lattice vectors and k-points, and to 

justify the value of ζ; specifically, we use 125–216 k-points, 27–125 lattice vectors, and set 

. The sum mentioned in eqn (7) is only valid for r > 2a, and hence, to introduce 

the effect of overlapping beads, the term shown in eqn (5) for r <2a is added to keep the 

Rotne–Prager–Yamakawa tensor (Mij) positive-definite for all configurations.36 Since, the 

term associated with r <2a does not contribute to the long-ranged part of the Rotne–Prager–

Yamakawa tensor (i.e., it only survives for n = 0), it is kept out of the real space lattice sum, 

and is added outside the sum.

The resulting equations of motion are given by:

(9)
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Here, Δt is the time-step of integration, B is a weight factor, and n is a random vector chosen 

from a Gaussian distribution of zero mean and unit variance. B is computed by the 

decomposition of M, i.e.,

(10)

We follow the Cholesky decomposition to compute B from the Rotne–Prager–Yamakawa 

tensor.

We scale time t with the relaxation time of diffusion  (where Do is the unconstrained 

diffusivity of a Brownian bead given by ), we scale r with a, M is scaled by , and F 

with . We use a nondimensional form of the spring energy, in terms of , which is 

a non-dimensionalized stiffness constant. In general, we use an over-bar to signify the non-

dimensionalized form of the parent variable. We rewrite eqn (9) in-terms of scaled variables 

to yield:

(11)

Here, Pe is the Péclet number  and the overbar is used to represent the scaled variables. 

We use the forward explicit Euler time integration method to discretize eqn (11) and solve 

for the time evolution of the positions of the beads. We set the viscosity of the blood plasma 

(μ) to be 1.3 mPa s, and the temperature T to be 300 K.

For the WCA potential, the inertial time τWCA is  (where, m is the mass of a bead), 

while for Brownian dynamics, the time scale (τBr) is . We find that for our system: 

. We note that one can estimate the collisional time for WCA particles in 

the condensed phase based on an effective thermodynamic potential given by −kBT ln g(r), 
where g(r) is the radial distribution function introduced below; we find that the estimate for 

the collisional time is larger than τWCA.

The value of the time step of integration (Δt) we use, ranges from , which 

is (much) smaller than both τWCA and τBr, hence easily satisfies the linear stability criterion. 

The initial configuration (generated by the simulated annealing protocol) is allowed to 

equilibriate for 1 × 104 to 1 × 106 time steps; we note below that this length of time exceeds 

the slowest timescales of relaxation typical for our systems, thereby ensuring equilibrium.
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The configurations are then subjected to Brownian dynamics simulations. Following Grest et 

al.37 for 0% crosslink NCs, the largest relaxation time is . NCs with large degree of 

crosslinking will relax like a hard sphere of equivalent radius of gyration, and the 

corresponding relaxation rate is smaller than that for star polymers. We first simulate the 

production runs for . We save the last configuration, which is then used as the initial 

configuration for the next simulation run, which is executed for a period of . For 

each configuration (replica), we perform atleast 3 independent simulations with different 

initial conditions. We repeat these steps for 4–5 independent configurations (replicas with 

varying internal structures). The procedure for estimating the statistical error is based on 

computing the standard deviation across these replicas, as noted earlier.

Overall, the position vectors of beads are recorded for 2.5 × 106–5 × 107 time steps. The 

computations for a typical trajectory noted above require 4 CPU-weeks on a single core of 

an Intel Xeon 2.7 GHz workstation.

 4 Static properties: results and discussion

 4.1 Radial distribution function

The radial distribution function quantifies the spatial variance of density of beads and it is 

defined as:

(12)

where ρ is the number density . With increasing degree of crosslinking, each bead is 

connected to more number of beads through harmonic interactions, which leads to crowding 

of the beads in the nearest neighbor coordination shell around a given bead. In Fig. 2, g(r) is 

plotted against the scaled bead-to-bead distance, with the relative height of the first peak 

indicating how crowding is impacted by the degree of crosslinking.

Since the beads in NCs are in close proximity, crowding of beads also likely impacts the 

movement of each test bead. Hence, we use a Voronoi diagram analysis in order to allocate a 

fluid volume element to each bead, and we calculate the neighbor statistics and the volume 

of the Voronoi elements for each bead. We follow Rycroft38 to generate a Voronoi volume 

around each bead (Fig. 3(a)). However, since the beads are clustered in a network, leading to 

an inhomogeneity in the structure, an irregular Voronoi tessellation is more appropriate for 

such structures, as depicted in Fig. 3(b).

A star polymer without any crosslinking shows arm retractions, which can be captured by 

collecting the volume of each Voronoi cell and then plotting the probability density function 

of the Voronoi-cell volumes of the beads. In Fig. 4 the probability distributions of Voronoi-
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cell volumes for different crosslinked densities are shown. The characteristic bimodal 

distribution is a reflection of the star-shaped conformation of the NC, where there is a clear 

separation of the Voronoi-cell volumes associated with the outer radial (arm) regions, and 

those in the inner-regions of the NC including the core, see Fig. 5. With increasing 

crosslinking, the distribution of volumes shifts and the demarkation of the two afore-

mentioned regions becomes increasingly nebulous.

With increasing crosslinking the distribution of nearest neighbors is also altered. 

Specifically, to estimate the number of nearest neighbors, we calculate the area around a 

bead and divide by the projected area between a pair of beads, (which for spherical beads 

would yield a value of π in scaled units). The average number of nearest neighbors (over a 

period of  is estimated to be between 16–20) and is plotted against % crosslinking in 

Fig. 4(e), which clearly shows that with increase in crosslinking, there is a corresponding 

increase in the crowding of beads.

 4.2 Radius of gyration and diffusivity

In order to characterize the size of the NC, we compute the radius of gyration (Rg) based on 

bead positions. For a model with all the beads having the same mass, the radius of gyration 

tensor (G) is defined as

(13)

where cm denotes center of mass of the NC beads. The characteristic size along three 

orthogonal directions is denoted by the eigenvalues λi (i = 1, 3) of the matrix G, and the 

radius of gyration is defined as:

(14)

In Fig. 6(a), the radius of gyration is plotted against the cross-linking density, showing that 

with increasing crosslinking, the radius of gyration decreases.

Since, the NC size is shown to decrease with increasing crosslinking, we hypothesize that 

the crosslinking will also influence the self diffusivity of NCs. To test this hypothesis, we 

compute the mean squared displacement (MSD) and the self-diffusivity (Ds) of the NC. 

MSD is defined as:

(15)
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where ri represents the absolute position of bead i, Ds is self-diffusivity of the NC and t is 

the trajectory time. Here, the ensemble average is taken over all the beads.

For 160% crosslinked NCs, the radius of gyration Rg/a ≈ 4.3 ± 0.3 and the self-diffusivity is 

calculated to be Ds/Do ≈ 0.15. It is already evident from the g(r) data (Fig. 2) that the 160% 

crosslinked microstructures represent the highest degree of closed packing in terms of 

conformations. We, therefore, compare the diffusivity of the 160% crosslinked nanocarrier 

with theoretical prediction for hard spheres; we compute the volume fraction based on radius 

of gyration of the 160% cross-linked nanocarrier and compute the corresponding diffusivity 

based on Einstein’s correction to intrinsic viscosity of hard spheres, i.e., 

. The calculated diffusivity of the NC based on MSD is i.e. 

. This computed value is in close agreement with the estimate based on the 

Einstein correction; for a hard sphere of radius 4.3a, φ = 0.15 and , 

suggesting that the 160% crosslinked NC shows diffusion very similar to that of hard 

spheres. We plot  against Rg for the NC and for the NC-core in Fig. 6(b). The 

diffusivity varies inversely with the radius of gyration for the NC as well as for the NC-core. 

It is clear from Fig. 6(b) that the core of the NC microstructure also exhibits Brownian 

motion. Since the environment surrounding the core has the highest density of beads, the 

diffusivity of the NC-core is reduced relative to that of the NC. However, since the core 

follows the center of mass of the NC, the self-diffusivity of the core tracks that of the center 

of mass of the NC microstructure, and with increasing diffusivity of the NC, the self-

diffusivity of the core also increases (see Fig. 6(b)).

The characteristic size of the NC can be estimated from the root-mean-squared end-center 

distance, which is a closely related quantity to the radius of gyration. If there are f number of 

arms, with Nb, number of beads in each arm, then the mean-squared end-center distance is 

defined as:

(16)

where rcore is the position of the core and rk,Nb is the position of the last bead in the kth arm. 

We compute the end-to-center distance (Rarm) of the NC using eqn (16). Significantly, the 

simulated end-to-center distance of the polymer is estimated to be 144–184 nm (for the 

crosslinking density in the range 20–160%), which compares very favorably to the measured 

size of 120–180 nm for the NC.16 This favorable comparison justifies our choice of utilizing 

25-arms per NC in our coarse-grained model.

 4.3 Structure factor

To complete our analysis of the NC structure, we compute the structure factor, defined as:
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(17)

where k is the wave vector, rj represents the position of bead j, and the average represents an 

average over the trajectory. In Fig. 7, we choose k = (k, 0, 0) and plot S(k) against k. The 

large k behavior characterizes the NC internal structure (form factor), while the small k 

behavior characterizes the overall NC packing. In particular, we argue that  will 

track the overall compressibility of the NC. This value of k can also be regarded as 

differentiation between the large k behavior and the small k one. We note that the 

justification for scaling k with Rg (instead of with a) is based on the models proposed by 

Grest et al.18 and by Prentis,19 where eqn (17) is approximated in the limit kRg ≪ 1 as:

(18)

Hence, when we rescale k with  and plot  in Fig. 7, we find that the data collapse 

onto a single master curve for kRg ≪ 1 (specifically for ). The terrace-like 

behavior for k̄ ≪ 1 also consistent with the trends reported in other computational studies of 

star polymers of large molecular weights, and in neutron scattering of microgels.39 The 

differences in the curves for k̄ > 1 reflects the differences in the internal structure of the NC 

(or in form factors) caused by changing the crosslinking densities.

Since, with increasing crosslinking, the radius of gyration decreases (see Fig. 6(a)), we 

surmise that the normal stress or pressure (P) should scale as , (i.e. increases 

with increasing crosslinking). We show in Fig. 7 (inset) that  decreases with 

increasing crosslinking, which indicates an increase in compressibility as a consequence of 

increased pressure. In this discussion, the scaling exponent d can simply represent the 

dimensionality for dilute systems, or can be significantly different from dimensionality for 

strongly correlated systems; we explore this scaling of pressure with Rg in a later section 

dealing with the direct calculation of stresses.

The static properties discussed here will also be impacted by the deformation of the NC 

under shear flow, which is discussed in Section 5.
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 5 Dynamic properties: results and discussion

The dynamic properties are studied to investigate the response of the NC to shear forces. 

The context we consider is that of blood capillaries of radius typically 5 times the radius of 

red blood cells (RBCs). The characteristic radius of a RBC is aRBC = 2.5 μm. Under flow, 

the RBCs in a capillary migrate to the center, therefore, causing the NCs to marginate to the 

cell free layer.3 The cell-free layer represents the gap between the RBC-occupied core and 

the wall of the capillary, which is 2aRBC (see Fig. 8). We consider a physiologically relevant 

shear near the endothelium (shown in Fig. 8). Yeh and Eckstein40 have measured wall shear 

in blood flow in the range of 785–1250 s−1. Considering the viscosity of blood plasma as 1.3 

mPa s, and based on our bead radius a, we calculate the maximum Péclet number 

to be 5. However, we explore the range of 0 ≤ Pe ≤ 5, where the lower end, the range 

corresponds to the flow rate in smaller capillaries as well as lymphatic flows.3,41

In our simulations, a steady shear is applied along the r1–r2 direction, where r1 is the shear 

direction and r2 is the gradient direction, see Fig. 9(b). We solve eqn (11) for bead positions 

with the Lees–Edward boundary condition42 for a given shear rate. We mostly represent our 

results interms of the Weissenberg number (Wi), defined as Wi = γ̇τa, where γ̇ is the shear 

rate, and τa is the relaxation time of the NC, i.e., . Since Pe is defined in terms of the 

radius of the beads, for linear polymers . Grest et al.43 investigated the relaxation 

of self-entangled star polymers and showed that the star polymers relax faster than their 

linear counter-parts, and that the ratio of the relaxation times scales as . Hence, for the 

present case, .

Under shear (see Fig. 9(a)), the NC undergoes stretching and the crosslinked bonds resist 

deformation (see Fig. 9(b)). Depending on the crosslinking density and the shear rate, the 

NC orients at an angle θ with the shear direction (see Fig. 9(c)). While the angle θ contains 

critical information about the strain response of the NC, crosslinking of the deformation of 

the NC along r3 (orthogonal to the shear plane) would also depend on the shear rate (see Fig. 

9(d)). Internal stresses originate from bead-to-bead interactions and stretching of the bonds. 

In particular, the configurational stresses arise from bond stretching, while forces due to 

deformation can lead to an increase in the collisional stresses.

In addition to the internal stresses, the tumbling of the NC can cause an additional mode of 

relaxation to an already complex phenomenon. Hence, below, we explore the effect of the 

shear and crosslinking on the NC shape, deformability, tumbling behavior, shear and normal 

stress distributions.

 5.1 Shape of the NC under shear

Deformation of the NC is computed from the components of the radius of gyration tensor 

(G). Eigen values of the radius of gyration tensor defined in eqn (13) are used to calculate 

the degree of prolateness, defined as,
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(19)

where . In prior studies S has been shown to vary from −0.25 to 2, where the 

change in the sign from ‘−ve’ to ‘+ve’ signifies an oblate to a prolate shape change.43 In Fig. 

10, S is plotted against the shear rate, and as is evident, with increasing shear rate the NC 

undergoes deformation and assumes a shape that is similar to a prolate spheroid. In 

particular, the NC without crosslinking undergoes a large deformation (see the inset of Fig. 

10), and with increasing crosslinking densities, the degree of prolateness is smaller, Fig. 10.

Ripoll et al.20 have investigated the effect of shear on the asphericity of a star polymer, 

which is a measure analogous to S. To quantify the extent of deformation due to shear, the 

asphericity is computed as , where λ1 ≥ λ2 ≥ λ3, see Fig. 11; we note that 

corresponds to a sphere. We find that for the NC with 0% crosslink which is closest to the 

star polymer approximation, our results are in close agreement with those of Ripoll et al.20 

as shown in Fig. 11.

With increasing crosslinking the resistance to deformation increases and hence our results 

deviate from the 0% crosslink density case. In particular, the deformation is low and shows a 

much weaker dependence on Pe. However, as discussed later, the deformation along the 

gradient direction offers information on the effect of shear on the stiffness of the NC.

 5.2 Internal structure of the NC under shear

We now consider how the spatial distribution of beads is perturbed in the shear flow field. 

Unlike the zero shear case considered in Section 4, we consider the radial distribution 

function as a perturbation expansion along the plane of shear, and compute the 1st 

perturbation of the radial distribution function shown in eqn (20). Strating44 has showed that

(20)

Here, go(r) is the equilibrium radial distribution function, g1(r) is the 1st perturbation to the 

radial distribution function g(r). The orientation in the stretch direction is represented by θ, 

and φ represents the azimuthal angle. In Fig. 12, we plot g1(r), which we calculate using the 

relationship:
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(21)

In a shear field, two beads approach each other in the upstream configuration and rotate to a 

downstream configuration. In the upstream configuration, g1(r) is negative while in the 

downstream configuration it is positive; however, the spring restoring force acts against 

shear, and since the beads are connected, a given pair of beads that rotates from upstream to 

downstream also show spring and tumbling relaxations that depend on Pe and the degree of 

crosslinking of the NC. Hence, the internal structure of the NC gets perturbed by the shear, 

and the degree of perturbation is strongly dependent on Pe and % crosslinking.

Due to the prolate shape of the NC (see Fig. 10), the majority of the bead-to-bead contacts 

originates from the orientation orthogonal to the shear direction, chiefly contributed by the 

deformation. Since, the difference in the area under the g1(r) curve is anti-symmetrical (i.e. 
the depletion upstream is matched by the enhancement downstream), the collisional stresses 

contribute less to the overall shear stress. Hence, for a given crosslinking density, there is no 

significant change in the g1(r) function with Pe. For a similar shear rate, however, with 

increasing crosslinking, there is a significant shift in the g1(r) curve, suggesting that the 

increased crosslinks cause the NC to resist shear deformation, and perhaps contribute 

significantly to the build-up of internal stress. In Section 5.4, stresses computed 

independently from the Virial expression also support the observations gleaned from the 1st 

perturbation to the radial distribution function.

 5.3 Comparison of NC deformation under shear with related models of polymer 
assemblies

The stresses induced are caused by the stretching of bonds which results in deformation of 

the microstructure and the corresponding strain is computed from the components of the 

radius of gyration tensor (G). The configuration thickness (δ2) is defined as

(22)

The ratio of shear and the normal strain difference determines the orientation45 of the NC, 

given by:

(23)

where θ is the configurational orientation of the NC. The configurational thickness and 

configurational orientation calculated from eqn (22) and (23) are plotted in Fig. 13, where 

〈θ〉 and 〈δ̄
2〉 for various shear rates and crosslinking densities are depicted. Since the applied 
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shear is in the r1 direction, with r2 being the gradient direction, G12 represents the shear 

strain, and G11–G22 represents the 1st normal strain difference. We plot the configuration 

thickness as well as the NC orientation against time in Fig. 14(a), which together indicate 

how the configuration thickness associated with the change in shape of the NC is related to 

the NC tumbling motion. The correlated motion in θ versus t and δ versus t clearly suggests 

that the tumbling motion is a mechanism by which the system relieves the build-up of 

internal stress. It is also intriguing to note that the tumbling relaxation time is highly 

sensitive and decreases with the increasing degree of crosslinking.

In a linear response model, the ratio of the applied force to the deformation represents a 

“stiffness”: for e.g., in the case of a Hookean spring, the stiffness constant Kspring = |force|/|

displacement|. Since, δ2 depends on Wi, Teixeira et al.45 have introduced a general 

relationship: 〈δ2〉 ~ Wi−n in order to compare various models. Since Wi can be regarded as 

an applied force and 1/δ2 as an effective deformation, the stiffness or resistance to 

configurational thickness can be measured by the product 〈δ2〉Wi. Fig. 14(b) shows the 

averaged configurational thickness resistance (〈δ2〉Wi). Fits to the data indicate the 

configurational thickness resistance increase with increasing crosslinking. That is, the 

configuration thickness scales as Wi−0.01 for 0% crosslinking and as Wi−0.11 for 160% 

crosslinking. Teixeira et al.45 have previously shown that for a linear worm-like chain 

(WLC) polymer system 〈δ2〉 ~ Wi−0.26. Here, compared to the Teixeira et al.45 result for a 

soft linear system, 〈δ2〉 is a relatively weak function of Wi for all NCs. Due to the prolate 

shape of the NC under shear, the stresses are not only dependent on the deformation but also 

on the orientation of the nanocarrier, which is evident from Fig. 13 and 14. In particular Fig. 

10 and 11 show that under shear, a large degree of crosslinking leads to sphere-like shapes, 

while a smaller degree of crosslinking leads to NC shapes approaching rod-like geometries. 

Moreover with the deformation field along the r1–r2 direction, and increasing shear, the NC 

tumbles (Fig. 14(a)) and the average orientation over the tumbling cycle gives important 

information regarding the ratio of shear strain to normal strain difference, see eqn (23). The 

rheological response of rod-like particles, under small shear, is described by G12 ~ Pe and 

(G11–G22) ~ Pe2,46,47 for which . Since Wi ~ Pe, the scaling for rod-like 

particles corresponds to tan(2θ) ~ Wi−1, as indicated in Fig. 15.

In contrast, a star polymer’s orientation can be expressed as a function of Wi and it has been 

shown that tan(2θ) ~ Wi−m, where m ~ 0.35–1.20,21,45 In Fig. 15 we plot  for various 

shear rates and crosslinking densities, and show the corresponding fits to the data by 

reporting the values of m; we omit results for large crosslinking densities (100% and 160%) 

due to their spherical shape (see Fig. 13). It is evident that the behavior of the NC with 

smaller degrees of crosslinking approach the scaling for rod-like particles.

For ultra soft colloids investigated by Singh et al.21 m = 0.43, by Ripoll et al.20 m = 0.35, 

while Teixeira et al.45 have shown that for long linear WLC polymers, m = 0.46. Our results 

in Fig. 15 indicate that m decreases with decreasing crosslinking; stated differently, m 

decreases as the degree of deformation (shown as  in Fig. 11) of the NC increases.
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In Fig. 16, the ratio of shear strain G12 to Wi is plotted for various shear rates and 

crosslinking densities. A decrease in  indicates a decrease in the first normal strain 

coefficient which is akin to the effective viscosity of a single NC,45 which is observed for 

increasing crosslinking. In particular, the exponent governing the decrease in the first normal 

strain coefficient with Wi of the crosslinked NC is similar to that reported in single molecule 

experimental results shown by Teixeira et al.45 The 0% crosslinked NC at a large shear rate, 

is highly stretched and approaches G12 ~ Wi, which is close to that for a rod-like polymer 

response to steady shear flow.

 5.4 Internal stresses and stiffness of the NC under shear

We calculate internal stresses to estimate the response of the NC to the observed structural 

changes. Following Irving and Kirkwood,48 (see Appendix A for derivation) stresses are 

calculated using the expression:

(24)

where σ is the stress tensor, Fij is the force on bead i due to bead j, and rij is the distance 

vector between the beads i and j.

In Fig. 17(a) the shear stresses  are plotted for various shear rates, confirming 

that the NC under shear shows shear thinning akin to Fig. 16, and the shear thinning effect is 

significantly higher than that reported for hard sphere suspensions.49

We have shown that with increasing crosslinking the radius of gyration of the NC decreases 

(Fig. 6) and the stiffness of the NC increases (Fig. 7), causing us to hypothesize that there is 

a likely build-up of normal stress. To directly test this hypothesis, we compute the trace of 

the stress tensor, i.e.,  Fig. 17(b), the computed normal stress  is 

plotted for various shear rates and for different crosslinking. For smaller crosslinking the 

normal stress increases with shear, and the shear dependence gets weaker with increasing 

crosslinking density; for the largest crosslinking we consider the normal stress is 

independent of shear. This trend is also consistent with those discussed in Fig. 11, which 

shows that the deformation of a highly crosslinked NC is a weak function of shear. Our data 

in Fig. 17(c) validate our hypothesis that the stiffness of the NC originates from the osmotic 

pressure by clearly showing that with decreasing radius of gyration, the normal stress 

increases. For dilute suspensions, the osmotic pressure ~ Rg
−3, however as shown in the 

figure, the exponent of −8.28 indicates that the intrinsic stress build-up is significantly larger 

than that expected from a dilute system. Below, we explore the mechanism contributing to 

the intrinsic stress through a simple theoretical model from the literature.
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In their textbook, Dill and Bromberg50 have described a network of freely jointed chains to 

explain the elasticity of networked polymers and have expressed the free energy (F) as a 

function of strain subject to a volume conservation constraint, given by:

(25)

where, the elongation ratio  (where Lo = LWi=0) and  is a modulus of elasticity. We 

approximate the volume of the NC at Wi = 0 as a sphere of diameter Lo (i.e. Lio = Lo). For 

Wi > 0, the normal stress difference (based on the direction of stretching) deforms the NC 

from a sphere to an ellipsoid. From the volume conservation condition we get:

(26)

The normal stress difference defined as:

(27)

where σ1′ is the stress along the direction of stretch and σ2′ and σ3′ are stresses orthognal to 

σ1′. We assume that the deformation of the NC is symmetric along the directions orthogonal 

to stretching direction i.e. L1 = L and L2 = L3. We obtain from eqn (25) and (26):

(28)

In the above-described model, it can also be stipulated that the network consists of m freely 

jointed chains each with Nk links of length bk, and one can relate the force (f1) needed for a 

given elongation L1, from which the force per unit area can be written as:

(29)

Comparing eqn (28) and (29), . For small elongations we assume that L̄ = 1 + ε 

and we get:
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(30)

If C is the modulus of elasticity of the NC, then . We calculate the eigenvalues of the 

radius of gyration tensor eqn (13). We define the elongation L as  where λ1 is the 

eigenvalue of the radius of gyration tensor along the direction of elongation. Similarly, we 

calculate the eigenvalues of the stress tensor eqn (24) and the normal stress difference is 

calculated from eqn (27). In Fig. 18 the normal stress difference σN′ is plotted against 

elongation L̄.

We fit the data for the normal stress difference for each crosslinking density (dotted lines in 

Fig. 18) for small elongations as shown in eqn (28), from which we further estimate the 

elasticity modulus (C). We find that with increasing crosslinking the elasticity modulus 

increases from 0.4 to 15 kPa.

We also compare the calculated stiffness of the NC with previously measured stiffness of 

soft and hard biomaterials in Table 1, and we find that the stiffness of the NC falls in the 

range of moderately soft materials.

 6 Conclusions

We have developed a model for a new class of highly deformable polymer based NCs 

synthesized by Coll Ferrer et al.11,16 and Ferrer et al.15 We have explored zero shear 

properties of the microstructures and have demonstrated the effects of physiologically 

relevant shear on the structure and dynamic properties of the NC. Our findings are also 

consistent with other theoretical findings in limit cases. We believe that the development of 

such models is essential to gain useful insights that can be translated into the optimal design 

of nanocarriers for targeted drug delivery. Future work will focus on combining this model 

with previous models for functionalized NCs54,55 to include adhesive interactions, along 

with experimental investigation in vitro and in vivo. Together, these will advance our 

understanding of the binding affinities of soft crosslinked NCs to cells.
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 A Intrinsic stress

Following Irving and Kirkwood,48 the stress tensor is given by:

(31)

where, Oij is the differential operator given by:

(32)

We scale stresses by nkBT, where n is the number density of beads, kB is the Boltzmann 

constant, and T is the temperature, and rewrite the expression for stresses as:

(33)

Here, τI is the inertial relaxation time and τD is the relaxation time due to diffusion. 

Following eqn (3), we impose a force balance in the limit of . The stresses are 

computed using eqn (33), with the differential operator truncated to the 1st order 

approximation, i.e. with Oij = 1. This leads to eqn (24).
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Fig. 1. 
Construction of the coarse-grained model for the core–shell polymer based NCs and 

comparison with the experimental protocol.
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Fig. 2. 
Radial distribution functions of bead positions in NCs with different crosslinking densities. 

For comparison, the g(r) for an equivalent system of free WCA particles (i.e., not 

constrained by any Kuhn or crosslinking interactions) is also depicted.
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Fig. 3. 
(a) Periodic Voronoi tessellation around the beads, (b) irregular Voronoi tessellation around 

the beads of the NC; here the gray spheres represent the beads and the red lines represent the 

skeleton of the Voronoi tessellated lattice.
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Fig. 4. 
(a–d) Distributions of Voronoi tessellated cell volumes (P(v)) for different crosslinking 

densities, and (e) number of nearest neighbors for different crosslinking.
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Fig. 5. 
Schematic of a star polymer configuration. The two headed arrow shows the direction of arm 

retractions.
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Fig. 6. 
(a) Radius of gyration of NCs for various crosslinking densities; the radius of gyration is 

nondimensionalized with the radius of the beads. (b) Diffusivity of the beads and of the core 

of the NC against the radius of gyration, Rg.
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Fig. 7. 

Static structure factor S(k) and  (inset) at various crosslinking densities. The wave 

vectors are scaled with  i.e. .
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Fig. 8. 
Schematic of a marginated NC in a blood capillary near the endothelium.
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Fig. 9. 
(a) Direction of the applied shear; (b) schematic of a sheared NC, (c) the angle of inclination 

of the sheared NC; and (d) simulation results of representative bead positions showing 

connected bonds. With increasing shear rates, an ellipsoid or a rod-like conformation is 

observed, which inclines more towards the shear direction at an angle θ to shear direction. 

With increasing crosslinking, the nanocarrier changes the inclination angle as well as the 

shape.
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Fig. 10. 
Prolateness of NCs versus shear (Pe) and crosslinking density.
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Fig. 11. 
Degree of deformation of NCs for various shear rates and cross-linking densities, quantified 

in term of the asphericity.
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Fig. 12. 
1st perturbation to the radial distribution function in the shear flow field for different 

crosslinkings and Péclet numbers.

Sarkar et al. Page 33

Soft Matter. Author manuscript; available in PMC 2016 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
(a) Configurational orientation and (b) configurational thickness for various Wi and 

crosslinking densities.

Sarkar et al. Page 34

Soft Matter. Author manuscript; available in PMC 2016 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
(a) Time evolution of configurational thickness and NC orientation for various crosslinking 

densities at Pe = 5. (b) Configurational thickness resistance for various Wi and crosslinking 

densities.
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Fig. 15. 

 for various Wi and crosslinking densities.
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Fig. 16. 

 for various Wi and crosslinking densities. The data are fit to a power law curve: G12 ~ 

Win.
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Fig. 17. 

(a) Shear stress ; (b) normal stress at different crosslink densities; and (c) 

normal stress plotted versus the radius of gyration.
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Fig. 18. 
Normal stress difference versus elongation for various cross-linking densities.
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Table 1

Computed stiffness of the NC and the measured structural stiffness of common biomaterials

Material type Method Stiffness Ref.

Confluent endothelial monolayers Experimental 0.1–0.8 Pa Dewey et al.51

Chondrocytes Experimental 0.5 kPa Hochmuth52

Human platelets Experimental 1.5–4 kPa Mathur et al.53

Endothelial cells Experimental 1.4–6.8 kPa Mathur et al.53

Nanocarrier Calculated (this work) 0.4–15 kPa

Skeletal muscle cells Experimental 24.7 ± 3.5 kPa Mathur et al.53

Cardiac cells Experimental 100.3 ± 10.7 kPa Mathur et al.53
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