Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):o446. doi: 10.1107/S2056989015010300

Crystal structure of 3,4-di­chloro­anilinium hydrogen phthalate

Muhammad Shahid a, Muhammad Nawaz Tahir b,*, Muhammad Salim a, Munawar Ali Munawar a
PMCID: PMC4518937  PMID: 26279899

Abstract

In the title salt, C6H6Cl2N+·C8H5O4 , the carb­oxy­lic acid and carboxyl­ate groups of the anion form dihedral angles of 20.79 (19) and 74.76 (14)°, respectively, with the plane of the benzene ring. In the crystal, mol­ecules are assembled into a two-dimensional polymeric network parallel to (100) via N—H⋯O and O—H⋯O hydrogen bonds. In addition, within the layer, there are π–π stacking inter­actions between the benzene rings of the cation and the anion [centroid–centroid distance = 3.6794 (17) Å]. A weak C—H⋯O interaction is also observed.

Keywords: crystal structure, hydrogen phthalate, hydrogen bonding, π–π stacking inter­actions

Related literature  

For related structures, see: Jagan & Sivakumar (2009, 2011); Kozma et al. (1994); Liang et al. (2011); Liu (2012).graphic file with name e-71-0o446-scheme1.jpg

Experimental  

Crystal data  

  • C6H6Cl2N+·C8H5O4

  • M r = 328.14

  • Monoclinic, Inline graphic

  • a = 29.694 (5) Å

  • b = 7.7536 (13) Å

  • c = 13.125 (2) Å

  • β = 98.673 (12)°

  • V = 2987.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.34 × 0.28 × 0.16 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.860, T max = 0.935

  • 11652 measured reflections

  • 3248 independent reflections

  • 1849 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.133

  • S = 1.02

  • 3248 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010300/gk2633sup1.cif

e-71-0o446-sup1.cif (392.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010300/gk2633Isup2.hkl

e-71-0o446-Isup2.hkl (178.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010300/gk2633Isup3.cml

. DOI: 10.1107/S2056989015010300/gk2633fig1.tif

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.

PLATON . DOI: 10.1107/S2056989015010300/gk2633fig2.tif

The packing (PLATON; Spek, 2009) of two-dimensional (100) polymeric networks.

. DOI: 10.1107/S2056989015010300/gk2633fig3.tif

Hydrogen bonds within (100) layer.

CCDC reference: 1403731

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2O4i 0.82 1.77 2.583(2) 171
N1H1AO4 0.89 1.98 2.848(3) 164
N1H1BO3ii 0.89 1.85 2.713(3) 163
N1H1CO3i 0.89 1.90 2.774(3) 165
C13H13O4iii 0.93 2.54 3.328(4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

S1. Comment

The crystal structures of 4-bromoanilinium hydrogen phthalate (Liang, 2011), (R,S)-α-phenylethylammonium hydrogen phthalate (Kozma et al., 1994), 4-chloroanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 3-hydroxyanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 2-hydroxyanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 3-Methylanilinium 2-carboxybenzoate (Liu, 2012) and 4-ethoxyanilinium 2- carboxybenzoate (Jagan & Sivakumar, 2011) have been published which are related to the title compound (I, Fig. 1). (I) is synthesized for the study of co-crystallization.

In (I) the benzene ring A (C2—C7) of the phathalate anion is planar with r.m.s. deviation of 0.0024 Å. The carboxylic B (C1/O1/O2) and carboxylate C (C8/O3/O4) groups are oriented at a dihedral angle of 20.79 (19)° and 74.76 (14)°, respectively, with the parent benzene ring A. The molecules form a two dimensional polymeric network parallel to (100) due to N—H···O and O—H···O hydrogen bonds (Table 1, Fig.2). There exist π···π interaction between Cg11···Cg21i [i = x, y, z] with centroid-centroid distance of 3.6794 (17) Å, where Cg1 and Cg2 are the centroids of the benzene rings A and E (C9—C14). The topology of two-dimensional hydrogen-bond network in the title compound is the same as in 4-chloroanilinium salt (Jagan & Sivakumar, 2009).

S2. Experimental

Equimolar quantities of phathalic acid (0.831 g, 5 mmol) and 3,4-dichloroaniline (0.810 g, 5 mmol) were refluxed in 20 ml of methanol for 2 h. The solution was kept at room temperature and colorless plates appeared after two days (m.p. 422–423 K).

S3. Refinement

The H atoms were positioned geometrically (C–H = 0.93 Å, N–H = 0.89 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq (C, N, O), where x = 1.5 for NH3 and hydroxy and x =1.2 for aromatic H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.

Fig. 2.

Fig. 2.

The packing (PLATON; Spek, 2009) of two-dimensional (100) polymeric networks.

Fig. 3.

Fig. 3.

Hydrogen bonds within (100) layer.

Crystal data

C6H6Cl2N+·C8H5O4 F(000) = 1344
Mr = 328.14 Dx = 1.459 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 29.694 (5) Å Cell parameters from 1849 reflections
b = 7.7536 (13) Å θ = 2.8–27.0°
c = 13.125 (2) Å µ = 0.45 mm1
β = 98.673 (12)° T = 296 K
V = 2987.3 (9) Å3 Plate, colorless
Z = 8 0.34 × 0.28 × 0.16 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3248 independent reflections
Radiation source: fine-focus sealed tube 1849 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 7.80 pixels mm-1 θmax = 27.0°, θmin = 2.8°
ω scans h = −37→37
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −9→9
Tmin = 0.860, Tmax = 0.935 l = −15→16
11652 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0503P)2 + 2.3478P] where P = (Fo2 + 2Fc2)/3
3248 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21968 (8) 0.5928 (3) 0.41451 (18) 0.0727 (7)
O2 0.23502 (6) 0.8002 (2) 0.30759 (13) 0.0427 (5)
H2 0.2590 0.7471 0.3096 0.064*
O3 0.21509 (6) 1.1573 (2) 0.37561 (12) 0.0417 (5)
O4 0.19151 (5) 1.1301 (2) 0.20757 (12) 0.0377 (4)
C1 0.20865 (9) 0.7204 (4) 0.3646 (2) 0.0416 (7)
C2 0.16278 (8) 0.8021 (4) 0.35827 (18) 0.0379 (6)
C3 0.15350 (8) 0.9708 (4) 0.32373 (16) 0.0340 (6)
C4 0.10931 (9) 1.0324 (4) 0.3140 (2) 0.0476 (7)
H4 0.1029 1.1443 0.2907 0.057*
C5 0.07466 (10) 0.9285 (5) 0.3386 (2) 0.0575 (9)
H5 0.0451 0.9709 0.3316 0.069*
C6 0.08358 (10) 0.7643 (5) 0.3731 (2) 0.0654 (10)
H6 0.0601 0.6957 0.3900 0.078*
C7 0.12732 (10) 0.6995 (4) 0.3830 (2) 0.0533 (8)
H7 0.1332 0.5872 0.4063 0.064*
C8 0.18979 (8) 1.0937 (3) 0.30026 (18) 0.0324 (6)
Cl1 0.03331 (3) 0.83295 (14) 0.06616 (8) 0.0831 (4)
Cl2 0.04230 (3) 0.44073 (16) 0.13559 (9) 0.0970 (4)
N1 0.20521 (7) 0.8466 (3) 0.07778 (14) 0.0374 (5)
H1A 0.2041 0.9466 0.1106 0.056*
H1B 0.2057 0.8662 0.0111 0.056*
H1C 0.2303 0.7895 0.1043 0.056*
C9 0.16540 (8) 0.7446 (4) 0.08969 (16) 0.0334 (6)
C10 0.12353 (8) 0.8247 (4) 0.07404 (18) 0.0396 (6)
H10 0.1211 0.9403 0.0551 0.047*
C11 0.08537 (9) 0.7318 (4) 0.0867 (2) 0.0496 (8)
C12 0.08933 (9) 0.5597 (5) 0.1155 (2) 0.0530 (8)
C13 0.13137 (10) 0.4807 (4) 0.1296 (2) 0.0526 (8)
H13 0.1339 0.3649 0.1480 0.063*
C14 0.16975 (9) 0.5740 (4) 0.1163 (2) 0.0440 (7)
H14 0.1982 0.5214 0.1253 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0725 (15) 0.0638 (16) 0.0883 (17) 0.0207 (12) 0.0337 (12) 0.0404 (14)
O2 0.0415 (10) 0.0463 (12) 0.0432 (10) 0.0097 (9) 0.0159 (9) 0.0077 (9)
O3 0.0421 (10) 0.0544 (13) 0.0293 (9) −0.0072 (9) 0.0077 (8) −0.0073 (9)
O4 0.0425 (10) 0.0423 (12) 0.0297 (9) −0.0029 (8) 0.0099 (7) 0.0012 (8)
C1 0.0494 (16) 0.0422 (18) 0.0352 (14) 0.0016 (14) 0.0130 (12) 0.0024 (13)
C2 0.0431 (15) 0.0443 (17) 0.0289 (13) −0.0027 (13) 0.0134 (11) 0.0022 (12)
C3 0.0350 (13) 0.0466 (18) 0.0215 (12) −0.0019 (12) 0.0081 (10) −0.0032 (11)
C4 0.0389 (15) 0.060 (2) 0.0461 (16) 0.0032 (14) 0.0129 (12) 0.0022 (14)
C5 0.0377 (16) 0.079 (3) 0.0589 (19) −0.0002 (16) 0.0161 (14) 0.0029 (18)
C6 0.0465 (18) 0.087 (3) 0.067 (2) −0.0160 (19) 0.0239 (15) 0.001 (2)
C7 0.0604 (19) 0.054 (2) 0.0493 (17) −0.0114 (16) 0.0211 (14) 0.0061 (15)
C8 0.0333 (13) 0.0358 (15) 0.0297 (13) 0.0046 (11) 0.0103 (10) −0.0041 (11)
Cl1 0.0388 (4) 0.1064 (9) 0.1041 (7) 0.0154 (5) 0.0106 (4) 0.0168 (6)
Cl2 0.0625 (6) 0.1052 (9) 0.1236 (9) −0.0304 (6) 0.0149 (5) 0.0246 (7)
N1 0.0389 (12) 0.0462 (15) 0.0275 (10) 0.0019 (10) 0.0061 (9) −0.0017 (10)
C9 0.0376 (14) 0.0429 (17) 0.0205 (11) −0.0011 (12) 0.0069 (10) −0.0035 (11)
C10 0.0409 (15) 0.0439 (18) 0.0344 (13) 0.0058 (13) 0.0074 (11) 0.0020 (12)
C11 0.0374 (15) 0.067 (2) 0.0450 (16) 0.0050 (15) 0.0073 (12) 0.0014 (15)
C12 0.0451 (17) 0.065 (2) 0.0493 (17) −0.0126 (16) 0.0076 (13) 0.0005 (16)
C13 0.060 (2) 0.0458 (19) 0.0521 (17) −0.0053 (16) 0.0104 (14) 0.0020 (15)
C14 0.0440 (16) 0.0467 (19) 0.0412 (15) 0.0064 (14) 0.0057 (12) −0.0002 (13)

Geometric parameters (Å, º)

O1—C1 1.204 (3) C7—H7 0.9300
O2—C1 1.316 (3) Cl1—C11 1.718 (3)
O2—H2 0.8200 Cl2—C12 1.726 (3)
O3—C8 1.250 (3) N1—C9 1.450 (3)
O4—C8 1.257 (3) N1—H1A 0.8900
C1—C2 1.493 (4) N1—H1B 0.8900
C2—C7 1.396 (4) N1—H1C 0.8900
C2—C3 1.398 (4) C9—C14 1.369 (4)
C3—C4 1.384 (3) C9—C10 1.377 (3)
C3—C8 1.505 (3) C10—C11 1.374 (4)
C4—C5 1.383 (4) C10—H10 0.9300
C4—H4 0.9300 C11—C12 1.388 (5)
C5—C6 1.364 (5) C12—C13 1.378 (4)
C5—H5 0.9300 C13—C14 1.383 (4)
C6—C7 1.380 (4) C13—H13 0.9300
C6—H6 0.9300 C14—H14 0.9300
C1—O2—H2 109.5 C9—N1—H1A 109.5
O1—C1—O2 124.0 (3) C9—N1—H1B 109.5
O1—C1—C2 123.3 (2) H1A—N1—H1B 109.5
O2—C1—C2 112.6 (2) C9—N1—H1C 109.5
C7—C2—C3 119.3 (3) H1A—N1—H1C 109.5
C7—C2—C1 117.3 (3) H1B—N1—H1C 109.5
C3—C2—C1 123.2 (2) C14—C9—C10 121.5 (2)
C4—C3—C2 119.4 (2) C14—C9—N1 120.5 (2)
C4—C3—C8 117.4 (3) C10—C9—N1 118.1 (2)
C2—C3—C8 123.1 (2) C11—C10—C9 119.2 (3)
C5—C4—C3 120.4 (3) C11—C10—H10 120.4
C5—C4—H4 119.8 C9—C10—H10 120.4
C3—C4—H4 119.8 C10—C11—C12 120.0 (3)
C6—C5—C4 120.5 (3) C10—C11—Cl1 118.7 (3)
C6—C5—H5 119.8 C12—C11—Cl1 121.3 (2)
C4—C5—H5 119.8 C13—C12—C11 120.1 (3)
C5—C6—C7 120.3 (3) C13—C12—Cl2 118.7 (3)
C5—C6—H6 119.9 C11—C12—Cl2 121.2 (2)
C7—C6—H6 119.9 C12—C13—C14 119.9 (3)
C6—C7—C2 120.2 (3) C12—C13—H13 120.1
C6—C7—H7 119.9 C14—C13—H13 120.1
C2—C7—H7 119.9 C9—C14—C13 119.3 (3)
O3—C8—O4 124.7 (2) C9—C14—H14 120.3
O3—C8—C3 116.8 (2) C13—C14—H14 120.3
O4—C8—C3 118.4 (2)
O1—C1—C2—C7 −20.8 (4) C2—C3—C8—O3 −74.5 (3)
O2—C1—C2—C7 157.5 (2) C4—C3—C8—O4 −74.4 (3)
O1—C1—C2—C3 162.9 (3) C2—C3—C8—O4 108.1 (3)
O2—C1—C2—C3 −18.9 (4) C14—C9—C10—C11 0.8 (4)
C7—C2—C3—C4 −0.5 (4) N1—C9—C10—C11 −178.8 (2)
C1—C2—C3—C4 175.8 (2) C9—C10—C11—C12 0.4 (4)
C7—C2—C3—C8 176.9 (2) C9—C10—C11—Cl1 −179.63 (18)
C1—C2—C3—C8 −6.8 (4) C10—C11—C12—C13 −1.3 (4)
C2—C3—C4—C5 0.3 (4) Cl1—C11—C12—C13 178.8 (2)
C8—C3—C4—C5 −177.2 (2) C10—C11—C12—Cl2 178.2 (2)
C3—C4—C5—C6 0.2 (4) Cl1—C11—C12—Cl2 −1.8 (4)
C4—C5—C6—C7 −0.5 (5) C11—C12—C13—C14 0.9 (4)
C5—C6—C7—C2 0.3 (5) Cl2—C12—C13—C14 −178.6 (2)
C3—C2—C7—C6 0.2 (4) C10—C9—C14—C13 −1.2 (4)
C1—C2—C7—C6 −176.3 (3) N1—C9—C14—C13 178.5 (2)
C4—C3—C8—O3 102.9 (3) C12—C13—C14—C9 0.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O4i 0.82 1.77 2.583 (2) 171
N1—H1A···O4 0.89 1.98 2.848 (3) 164
N1—H1B···O3ii 0.89 1.85 2.713 (3) 163
N1—H1C···O3i 0.89 1.90 2.774 (3) 165
C13—H13···O4iii 0.93 2.54 3.328 (4) 143

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, −y+2, z−1/2; (iii) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2633).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414–o418. [DOI] [PubMed]
  5. Jagan, R. & Sivakumar, K. (2011). Acta Cryst. C67, o373–o377. [DOI] [PubMed]
  6. Kozma, D., Bocskei, Z., Simon, K. & Fogassy, E. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1883–1886.
  7. Liang, Z. P. (2011). Acta Cryst. E67, o1430. [DOI] [PMC free article] [PubMed]
  8. Liu, M.-L. (2012). Acta Cryst. E68, o228. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010300/gk2633sup1.cif

e-71-0o446-sup1.cif (392.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010300/gk2633Isup2.hkl

e-71-0o446-Isup2.hkl (178.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010300/gk2633Isup3.cml

. DOI: 10.1107/S2056989015010300/gk2633fig1.tif

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown as small circles of arbitrary radii.

PLATON . DOI: 10.1107/S2056989015010300/gk2633fig2.tif

The packing (PLATON; Spek, 2009) of two-dimensional (100) polymeric networks.

. DOI: 10.1107/S2056989015010300/gk2633fig3.tif

Hydrogen bonds within (100) layer.

CCDC reference: 1403731

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES