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Abstract
Decidualization is a crucial process for successful embryo implantation and pregnancy in

humans. Defects in decidualization during early pregnancy are associated with several

pregnancy complications, such as pre-eclampsia, intrauterine growth restriction and

recurrent pregnancy loss. However, the mechanism underlying decidualization remains

poorly understood. In the present study, we performed a systematic analysis of decidualiza-

tion-related genes using text mining. We identified 286 genes for humans and 287 genes

for mice respectively, with an overlap of 111 genes shared by both species. Through

enrichment test, we demonstrated that although divergence was observed, the majority of

enriched gene ontology terms and pathways were shared by both species, suggesting that

functional categories were more conserved than individual genes. We further constructed a

decidualization-related protein-protein interaction network consisted of 344 nodes con-

nected via 1,541 edges. We prioritized genes in this network and identified 12 genes that

may be key regulators of decidualization. These findings would provide some clues for fur-

ther research on the mechanism underlying decidualization.

Introduction
In mammals, pregnancy begins with embryo implantation into uterus [1]. In some species
such as humans and mice, invasive embryo implantation is accompanied by a rapid remodel-
ing process in the stromal compartment of uterus known as decidualization. Upon decidualiza-
tion, stromal cells undergo proliferation and subsequent differentiation into large epithelioid
cells characterized by cytoplasmic accumulation of glycogen and lipid droplets, as well as an
expansion of Golgi complex and rough endoplasmic reticulum [2, 3]. This process is marked
by the secretion of decidual prolactin (PRL) and insulin-like growth factor binding protein
1 (IGFBP1) [4]. From a functional perspective, decidualization contributes to uterine angio-
genesis and hemostasis during trophoblast invasion and placenta formation [5]. It also enables
establishing maternal immunological tolerance to embryonic antigens [6]. Defects in deciduali-
zation during early pregnancy are associated with several pregnancy complications, such as

PLOSONE | DOI:10.1371/journal.pone.0134585 July 29, 2015 1 / 12

OPEN ACCESS

Citation: Liu J-L, Wang T-S (2015) Systematic
Analysis of the Molecular Mechanism Underlying
Decidualization Using a Text Mining Approach. PLoS
ONE 10(7): e0134585. doi:10.1371/journal.
pone.0134585

Editor: Qinghua Shi, University of Science and
Technology of China, CHINA

Received: January 12, 2015

Accepted: July 10, 2015

Published: July 29, 2015

Copyright: © 2015 Liu, Wang. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by National
Natural Science Foundation of China Grant
(31271602 to JLL) (http://www.nsfc.gov.cn/).

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0134585&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn/


pre-eclampsia, intrauterine growth restriction and recurrent pregnancy loss [7]. Therefore, it is
imperative to gain a clear understanding of the molecular mechanism underlying decidualiza-
tion in order to improve reproductive health.

In humans, decidualization is initiated spontaneously in the secretory phase of menstrual
cycle [8]. If pregnancy is obtained, decidualization continues as the embryo undergoes implan-
tation; otherwise, menstruation occurs. Most knowledge about human decidualization has
come from studies using in vitromodel systems. It is well established that decidualization can
be induced in cultured endometrial stromal cells by incubation with progesterone after proper
estrogen priming [9]. Decidualization is mediated by a gradual increase in intracellular cAMP
level and addition of cAMP analogues leads to a boost of this process [10, 11]. The main advan-
tage of the in vitromodel systems is the ability to provide key information on a single cell type
reaction. However, a cell growing as a layer in a dish does not have the complexity that a cell
growing in vivo has. Most importantly, the uterus is a complex organ comprised of many cell
types. Cultured stromal cells lack whole organ physiology and interacting microenvironment.

Because of ethical restrictions and experimental difficulties, it is not practical for in vivo
study of decidualization in humans. Direct analysis of decidualization heavily relies on mice.
Unlike humans, the decidual reaction in mice is an embryo-dependent process [8]. Deciduali-
zation begins shortly after the blastocyst attaches to the uterine luminal epithelium. Interest-
ingly, hormonally primed uterus can be stimulated by mechanical means (e.g. sesame oil) to
trigger decidualization in the absence of an embryo [12]. The mechanically decidualized endo-
metrium, known as the deciduoma, is morphologically similar to the embryo-induced decidua,
making it a good model of in vivo decidualization free of embryo contamination [13, 14]. A
previous study has compared the global gene expression profiles between deciduoma and
decidua [15]. Approximately 1,500 genes were differentially expressed by at least 1.2 folds.
However, only 53 genes exhibited 2.5 folds or more, indicating that deciduoma is also similar
to decidua at the transcriptome level.

Nevertheless, a comprehensive analysis of the molecular mechanism underlying deciduali-
zation is lacking. A wealth of information remains hidden within published research articles,
the number of which is growing fast. Recently, the text mining methodology has been imple-
mented, providing a necessary means to retrieve these data in an automated way [16]. Here we
reported a systematic analysis of decidualization-related genes in humans and mice using text
mining. Our study provides in-depth insights into the molecular mechanism underlying decid-
ualization from a comparative aspect.

Methods

Text mining
The PubMed database was used. We conducted a search with the following combinations of
query key words: “decidualization OR decidual OR decidua OR deciduas OR deciduoma OR
decidualized OR decidualizing”. The search tag “[Title/Abstract]” was added after each key
word. The relevant articles were retrieved in XML format. This format makes information
extraction more precise owning to the use of enclosed contents within tag pairs. For each arti-
cle, titles and abstract texts were fetched using the dom4j XML parser class in JAVA. Abstract
texts were further divided into sentences through a sentence tokenizer implemented in Ling-
Pipe (Alias-I, Inc). Text mining was performed at the sentence level. Species names were parsed
based on a lexicon [17]. All articles were classified into two categories according to species
names mentioned in the texts: those studying human decidualization (including the monkey)
and those studying mouse decidualization (including the rat). When no species name or multi-
ple species names were detected, articles were classified manually.
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Gene mention recognition was performed using two different gene mention taggers, the
hidden Markov model (HMM) tagger implemented in LingPipe and the ABNER tagger [18]
based on a machine learning system of conditional random fields (CRF). Gene mentions
detected by both taggers were merged. Because researchers name the genes in a highly variable
manner, we built a gene synonym dictionary from Entrez gene database [19]. This dictionary
was used for the gene name normalization process during which gene mentions were mapped
to unique Entrez genes using exact string match. If multiple Entrez genes were linked to the
same gene mention, the ambiguity was resolved manually. In order to reduce false positives, we
required co-occurrence of decidualization mention and gene mention within a single sentence.
In general, the abstract is sufficient for our text mining task, as it contains the most important
findings of an article. However, articles on high throughput experiments often reveal a large
number of genes which cannot be fully listed in the abstracts. For these articles, we downloaded
full texts (as well as supplementary files if needed) and extracted gene mentions by hands.
Finally, we compiled two gene sets: one is associated with human decidualization and the other
one is associated with mouse decidualization. To ensure accurate and complete recording, each
gene was checked manually and additional references were provided if possible. A flow chart
illustrating the text mining procedure is shown in Fig 1A.

Gene ontology (GO) analysis
GO enrichment analysis was performed by using BiNGO 2.3 with the GOslim dataset [20]. To
test for enrichment, a hypergeometric test was conducted followed by Benjamini and Hochberg

Fig 1. Systematic identification of genes associated with decidualization in humans andmice through text mining. (A) Overview of the text mining
process. (B) The cumulative number of publications on decidualization. The PubMed database was used to identify publications related to decidualization
from 1980-Jan to 2014-Aug. (C) Venn diagram comparing the gene sets associated with decidualization in humans and mice, respectively.

doi:10.1371/journal.pone.0134585.g001
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multiple test correction. The adjusted p-value< 0.05 was used as the significance threshold to
identify enriched categories.

Pathway analysis
To rank the importance of pathways involved in decidualization, we calculated enrichment p-
values followed by Benjamini and Hochberg multiple test correction through DAVID online
tools 6.7 [21]. The significance threshold was set at 0.05. To visualize the JAK-STAT pathway,
decidualization-related genes mapped to this pathway were retrieved. Gene dependencies were
determined using the R package KEGGSOAP [22]. The pathway was rendered in Cytoscape
[23].

Construction of protein-protein interaction (PPI) network
The decidualization-related genes were cross-referenced with PINA2 database [24]. The
PINA2 database provides integrated and up-to-date protein-protein interactions available in
IntAct [25], BioGRID [26], MINT [27], DIP [28], HPRD [29] and MIPS [29]. To query the
PINA2 database, species was restricted to human and mouse. Interactions determined by both
low throughput and high throughput experiments were included. The PPI network was illus-
trated in Cytoscape with the nodes representing genes and edges representing their interac-
tions. Topological parameters were analyzed by NetworkAnalyzer [30]. The edges in the
network were treated as undirected. The degree of a node was the number of its directly con-
necting neighbors in the network. Genes were prioritized by the decidualization impact factor
(DIF), which is defined as degree times the number of publications for each gene. The thresh-
old of DIF was the mean plus two standard deviations.

Results

Identification of genes associated with decidualization using text mining
We run a key word search in the PubMed database for articles related to decidualization and
obtained 7,185 entries as a result (from 1980-Jan to 2014-Aug). Abstracts of these articles were
downloaded and processed through a text mining pipeline shown in Fig 1A. All articles were
classified into two categories according to species names mentioned in the texts: those studying
human decidualization and those studying mouse decidualization. Cumulative distribution
analysis indicated that the number of articles published on decidualization is growing linearly
in recent years: on average, 151 articles per year on human decidualization and 55 articles per
year on mouse decidualization (Fig 1B). From these articles, we extracted genes via text min-
ing. In the end, we compiled a complete list of decidualization-related genes, 286 genes for
human decidualization and 287 genes for mouse decidualization (S1 Table). Cross-species
comparison revealed that 111 genes were shared by both humans and mice (Fig 1C).

Gene ontology (GO) analysis
All 462 decidualization-related genes (286 genes for humans and 287 genes for mice) were
functionally categorized based on gene ontology (GO) annotation terms using BiNGO soft-
ware. Enrichment analysis revealed that a total of 17 GO terms exhibited significance as over-
represented terms (p< 0.05). In the biological process category, 7 GO terms, namely cell
communication, response to stimulus, development, cell death, cell motility, cell differentiation
and metabolic process, were found to be significantly enriched. GO terms related to extracellu-
lar region, cell surface and membrane were significantly enriched under the cellular component
category. Enriched GO terms in the molecular function category were transcription regulator
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activity, antioxidant activity, hydrolase activity, binding, receptor activity, signal transducer
activity and protein binding. The hierarchical organization of these GO terms is shown in
Fig 2A, together with the significance of enrichment indicated by different colors.

To assess the overall functional similarities and differences of decidualization between
humans and mice, we tested the species-specific gene sets for enrichment of GO terms (Fig
2B). We found that the majority of GO terms enriched in species-specific gene sets were com-
mon to each other. However, several GO terms were uniquely enriched. The most notably
enriched GO terms unique to mice were nucleic acid metabolic process and biosynthetic pro-
cess in the biological process category and transcription regulator activity and nucleic acid
binding in the molecular function category. As for humans, the most notably unique GO terms
were hydrolase activity and antioxidant activity in the molecular function category.

Pathway analysis
In addition to GO analysis, we also performed pathway analysis by using DAVID online tools.
Unlike GO, which only contains gene lists for different functional categories, pathway database
also stores the information of gene dependencies in each pathway. In the present study, all
decidualization-related genes were mapped to KEGG pathways. A total of 5 pathways, namely
Jak-STAT signaling pathway, ErbB signaling pathway, focal adhesion, apoptosis and MAPK
signaling pathway, were significantly enriched in both human and mouse gene sets (p< 0.05)
(Fig 3A). The enrichment of VEGF signaling pathway, renin-angiotensin system, Toll-like
receptor signaling pathway and GnRH signaling pathway was unique to the human gene
set, whereas TGF-beta signaling pathway, p53 signaling pathway, Wnt signaling pathway,

Fig 2. Gene ontology (GO) enrichment analysis of decidualization-related genes. (A) The union of human and mouse gene sets were analyzed using
BiNGO software. Significantly enriched GOslim categories were highlighted with different colors representing different levels of significance. The size of each
circle is correlated to the number of genes. (B) Comparative GO enrichment analysis for species-specific gene sets arranged in the biological process
category (BP), the cellular component category (CC) and the molecular function category (MF), respectively. The analysis was applied to human and mouse
gene sets, as well as 4 additional gene sets generated by set operations (union, intersection and difference) between them. The columns represent different
gene sets, while the rows represent statistically significant GO terms.

doi:10.1371/journal.pone.0134585.g002

Analysis of the Molecular Mechanism Underlying Decidualization

PLOS ONE | DOI:10.1371/journal.pone.0134585 July 29, 2015 5 / 12



Hedgehog signaling pathway and cell cycle was enriched only in the mouse gene set (Fig 3A).
Based on enrichment p-values, the most highly overrepresented pathway went to the LIF--
STAT pathway. In this pathway, we identified 18 genes, of which 6 are specific to humans, 4
are specific to mice, and 8 are shared by both (Fig 3B). The LIF-STAT pathway is known to
play an important role during decidualization in both humans [31] and mice [32–34].

Gene prioritization by protein-protein interaction (PPI) network analysis
A genome-wide protein-protein interaction (PPI) network was constructed by merging up-to-
date protein-protein interactions available in IntAct [25], BioGRID [26], MINT [27], DIP [28],
HPRD [35] and MIPS [29]. The network related to decidualization was generated by mapping
decidualization-related genes to the genome-wide PPI network. The decidualization network
consisted of 344 nodes connected via 1,541 edges (Fig 4A). Topological analysis showed that
the network follows a power-law distribution (Fig 4B) and therefore is a scale-free small world
network [36]. Networks of this type have the particular feature that some nodes are highly
connected compared with others. The highly connected nodes, also known as hub genes,
represent functionally important genes in the network. Taking the number of publications into
consideration, we prioritized genes by the decidualization impact factor (DIF), which is defined
as degree times the number of publications for each gene. Using a defined threshold value
of 193, we identified 12 genes (Fig 4C). Interestingly, all these genes (PGR, EGFR, AKT1,
STAT3, SRC, PRL, TP53, VIM, IL1B, CTNNB1 and FN1), except FOXO1 which was specific
to human, were shared by both humans and mice, suggesting that the core gene network
underlying decidualization is conserved between species.

Discussion
In the present study, we attempted to compile a complete list of genes involved in decidualiza-
tion. In recent years, high-throughput transcriptomic and proteomic approaches make it
possible for studying the expression levels of thousands of genes and proteins simultaneously.

Fig 3. Pathway enrichment analysis of decidualization-related genes. (A) The figure shows the significantly enriched pathways identified by using
DAVID online tools. The bars represent the enrichment p-value at logarithmic scale. (B) Visualization of the LIF-STAT signaling pathway. Nodes represent
genes. The node color indicates the status of the gene as specific to human (red), specific to mouse (green), or shared by both (blue). Edges represent gene
dependences derived from KEGG pathway database. Genes without a direct interaction with others are not included. This graph is generated using the
Cytoscape software.

doi:10.1371/journal.pone.0134585.g003
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Global gene or protein expression changes upon decidulization have been determined by inde-
pendent groups [37–41]. However, little consistency is observed in these studies. In general,
due to high technical variability and high dimensional size, the results of high-throughput data
are not highly reliable. Moreover, the different choices of platforms and statistical criteria make
it even more difficult to compare between studies [42]. On the other hand, a wealth of informa-
tion remains hidden within published research articles using conventional gene-by-gene
methods. Recently, the text mining methodology has been implemented, providing a necessary
means to retrieve these data in an automated way [16]. Here we performed a text mining analy-
sis of decidualization-related genes. We identified 286 genes for human decidualization and
287 genes for mouse decidualization, respectively. Considering the large body of literature we
analyzed, our result may have reasonably good coverage of all decidualization-related genes.

Regardless of species, we found that 462 genes were associated with decidualization. Of all
these genes, only 24 genes are down-regulated during decidualization, indicating that existing
studies are mainly focused on up-regulated genes. Interestingly, PGR and HOXA10 are among
the down-regulated genes, although they are absolutely needed for decidualization. The most
reliable evidence that a gene is involved in decidualization relies on gene knockout in mice.
However, so far there are only 39 genes reported to cause impaired decidualization in gene
knockout experiments (shown in S1 Table with references). Due to the small population,
these genes may be highly biased and unsuitable to study the general mechanism of deciduali-
zation. Alternatively, in this study we identified genes that are expressed or functional in
the decidual tissues. Based on GO analysis, a total of 17 terms were significantly enriched,

Fig 4. Gene prioritization by protein-protein interaction (PPI) network analysis. (A) The structure of the PPI network of decidualization-related genes.
Nodes are color-coded (red, human-specific; green, mouse-specific; blue, shared by both) and the diameter of each node is proportional to its decidualization
impact factor (DIF) value. (B) Degree distribution of the PPI network. The degree distribution follows a power law distribution. (C) Bar plot showing the DIF
values for all selected genes with DIF values exceeding the mean plus two standard deviations.

doi:10.1371/journal.pone.0134585.g004
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including biological processes involved in cell communication, response to stimulus, develop-
ment, cell death, cell motility, cell differentiation and metabolic process, cellular components
related to extracellular region, cell surface and membrane, and molecular functions associated
with transcription regulator activity, antioxidant activity, hydrolase activity, binding, receptor
activity, signal transducer activity and protein binding. Additionally, our study also revealed 14
enriched pathways. Of particular interest was the LIF-STAT pathway, in which 18 genes were
identified (6 are specific to humans, 4 are specific to mice, and 8 are shared by both). LIF null
female mice are infertile due to implantation failure [43]. Knockout of STAT3 in mice leads to
embryonic lethality [44]. Conditional ablation of STAT3 in mouse uterus impairs uterine
receptivity and decidualization [32–34]. In cultured human endometrial stromal cells, LIF and
STAT3 have been shown to be important regulators of decidualization [31]. Taken together,
we conclude that LIF-STAT pathway plays a consensus role during decidualization in both
humans and mice, although species-specific fine-tuning of certain components may exist.

The mouse model serves as an important experimental system for biomedical science. To
date, various studies have found similarities between humans and mice at the molecular level
[45–47]. In the present study, we examined the similarities and differences in decidualization
between these two species. At the gene level, among the 286 genes that were associated with
human decidualization, 111 genes or 38.8% were also discovered to be associated with the
same process in mice. Based on enrichment test, the majority of enriched GO terms were
shared between the two species, suggesting that functional categories are more conserved than
individual genes. We speculate that a similar set of functional categories may be required by
decidualization in humans and mice, but each functional category can be implemented by
alternative genes in these two species. This may explain why only a small portion of consensus
is needed at the gene level. Nevertheless, we did observe that several GO terms were uniquely
enriched in humans or mice. The most notably enriched GO terms unique to mice were nucleic
acid metabolic process and biosynthetic process in the biological process category and tran-
scription regulator activity and nucleic acid binding in the molecular function category. As for
humans, the most notably unique GO terms were hydrolase activity and antioxidant activity in
the molecular function category. These data suggest that decidualization in humans and mice
is not congruent in some aspects and such differences should be considered in the context of
clinical translation.

Enrichment analysis treats GO and pathway terms as segregated entities, ignoring the effect
of shared genes. In addition, only a portion of genes in genome are assigned to GO or pathway
terms due to incomplete curation. Alternatively, protein-protein interaction (PPI) network,
which offers a better coverage of the whole genome, is able to provide important clues about
gene functions. In the present study, we constructed a decidualization-related gene network by
using protein-protein interaction data available in IntAct [25], BioGRID [26], MINT [27], DIP
[28], HPRD [35] and MIPS [29]. This network consisted of 344 nodes connected via 1,541
edges. We prioritized genes in this network by the decidualization impact factor (DIF), which
is defined as degree times the number of publications for each gene. Using a defined threshold
value of 193, we identified 12 genes. Interestingly, all these genes (PGR, EGFR, AKT1, STAT3,
SRC, PRL, TP53, VIM, IL1B, CTNNB1 and FN1), except FOXO1 which was specific to
human, were shared by both humans and mice, suggesting that the core gene network underly-
ing decidualization is conserved between species. As expected, progesterone receptor gene
(PGR) turned out the most important gene in the network. Undoubtedly, decidualization is a
progesterone-dependent process and progesterone exerts its effects via its nuclear receptor
PGR [48, 49]. Besides PGR, we also indentified another 3 transcription factors, TP53, STAT3
and FOXO1. It has been well established that mouse and human fibroblasts can be repro-
grammed to undifferentiated pluripotent stem cells with a combination of 4 transcription
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factors (Oct4, Sox2, Klf4 and Myc) [50]. Recent studies have shown that transcription factors
could also reprogram somatic cell into another type of defined somatic cells without the undif-
ferentiated state. For example, a combination of only 3 transcription factors, Ascl1, Brn2 and
Myt1l, can efficiently convert mouse embryonic and postnatal fibroblasts into functional neu-
rons [51]. A combination of 3 transcription factors (Ngn3, Pdx1 and Mafa) is able to repro-
gram pancreatic exocrine cells into insulin-secreting β-cells [52]. Fibroblasts can be directly
reprogrammed into functional cardiomyocytes by 3 defined transcription factors, Gata4,
Mef2c, and Tbx5 [53]. It has also been demonstrated that enforced expression of a single tran-
scription factor (Foxn1) is sufficient to reprogram fibroblasts into functional thymic epithelial
cells [54]. Based on these well-documented examples, we hypothesize that combinatorial
expression of decidua-specific transcription factors could directly convert fibroblasts into
decidual cells in the absence of hormones. Once these induced decidual cells (iDCs) are gener-
ated, they might help in understanding the mechanism of decidualization and open the possi-
bility of therapeutic use. In the present study, we prioritized a total of 4 transcription factors
using PPI network analysis. In theory, these transcription factors are drivers of molecular and
morphological changes during decidualization, therefore providing an ideal starting pool of
candidate transcription factors for generating iDCs.

In summary, we have reported here the first systematic analysis of the molecular mechanism
underlying decidualization in humans and mice using a text mining approach. We examined
the similarities and differences between these two species at the gene, gene ontology, pathway
and network levels. Our study provides a valuable resource for in-depth understanding of the
molecular mechanism underlying decidulization.
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