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SUMMARY

The electrocardiogram (ECG) is one of the most significant outputs of a computational model of 

cardiac electrophysiology because it relates the numerical results to clinical data and is a universal 

tool for diagnosing heart diseases. One key feature of the ECG is the T-wave, which is caused by 

longitudinal and transmural heterogeneity of the action potential duration (APD). Thus, in order to 

model a correct wave of repolarization, different cell properties resulting in different APDs must 

be assigned across the ventricular wall and longitudinally from apex-to-base. To achieve this 

requirement, a regional parametrization of the heart is necessary. We propose a robust approach to 

obtain the transmural and longitudinal segmentation in a general heart geometry, without relying 

on ad hoc procedures. Our approach is based on auxiliary harmonic lifting analyses, already used 

in the literature to generate myocardial fiber orientations. Specifically, the solution of a sequence 

of Laplace boundary value problems allows parametrically controlled segmentation of both heart 

ventricles. The flexibility and simplicity of the proposed method is demonstrated through several 

representative examples, varying the locations and extents of the epicardial, midwall and 

endocardial layers. Effects of the control parameters on the T-wave morphology are illustrated via 

computed ECGs.
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1. INTRODUCTION

Numerical models of the heart electrophysiology (EP) are increasingly used to better 

understand the mechanisms governing the functioning of the heart in both healthy and 

failing, e.g., arrhythmic, conditions. The proposed models require to be validated by 
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computing the Electrocardiogram (ECG), which is the most common clinical diagnostic tool 

to assess the electrical activity of the heart. During every beat, an electrical signal 

propagates through the myocardium. Its ensemble timing and strength can be evaluated at 

different positions (i.e., ECG lead positions) through an ECG recording. Each wave in the 

ECG (Fig. 1) captures a particular electrical event, which occurs during a heart beat. Normal 

atrial depolarization is described by the P wave. The QRS segment characterizes the 

depolarization of the left and right ventricles. The T-wave (wave of repolarization) is related 

to the repolarization of the ventricles. In particular, the morphology of the T-wave plays a 

key role in identifying cardiac diseases and, as such, should be modeled accurately. For 

example, hyperkalemia is related to peaked symmetric T-waves [1], hypokalemia leads to 

flattened T-waves [2], ST segment elevation may indicate ischemia [3] or other pathological 

conditions [4], and T-wave alternans is related to the risk of ventricular arrhythmia [5].

Several studies have focused on understanding the physiological causes of the T-wave in the 

ECG. Higuchi and Nakaya [6] investigated experimentally the origin of upright and negative 

T-waves by recording a unipolar epicardial ECG while changing the APD through 

modification of the temperature of the epicardial surface. They inferred that the amplitude of 

the T-wave increased with increasing transmural (Endo to Epi) APD gradient. Subsequent 

studies (e.g., [7]) supported their findings and identified the central role of transmural and 

apex-to-base APD gradients in governing the T-wave morphology. Specifically, the T-wave 

is caused by the fact that the first cells to depolarize are the last to repolarize. This relation is 

known as the Franz relationship [7].

The origin of the T-wave morphology has also been modeled and studied numerically. 

Given its importance in diagnosing and understanding heart diseases, a large number of 

numerical T-wave related studies have been published in the literature (e.g., [8, 9, 10, 11, 

12], to cite only a few) and in the following we provide only a few examples, representative 

of different modeling strategies. A first approach (e.g., [13]) to model upright T-waves is 

based on the aforementioned Franz relationship and consists in assigning the repolarization 

starting time at a given location according to the time at which depolarization occurs at the 

same location. This approach does not require a heart segmentation into transmural and 

apex-to-base regions but is phenomenological in nature; it does not link regional differences 

in action potential to the underlying physiological mechanisms at the cell level. A similar 

approach consists in assigning the repolarization starting times on the endocardial and 

epicardial surfaces based on experimental data [14]. The surface repolarization times are 

then linearly interpolated to define the length of the action potential plateau across the 

myocardial wall. This method shares the same drawback — no causal effect between cell 

physiology and T-wave morphology — suffered by the strategies based on the Franz 

relation. Consequently, these approaches can neither investigate the distribution of 

physiological ion channel properties that produce the T-wave, nor predict changes in the T-

wave morphology caused by an altered state of the myocardial cells (e.g., changes in ion 

channels). As such, they cannot be used to study heart diseases or drugs that affect the T-

wave morphology.

A different approach consists in modeling the physiological origin of the T-wave by 

assigning different EP to myocardial cells in separate transmural and apex-to-base regions. 
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Following this approach, Okada et al. [15] modified the APD gradients by changing the 

potassium currents of the myocardial cells through the myocardial wall and from apex-to-

base. Similarly Weiss et al. [16] study the origin of the T-wave by varying the maximum 

conductance of the potassium (IKs and Ito) and sodium-calcium exchange (INaCa) currents 

through the myocardial wall and from apex-to- base. By accounting for multi-scale 

mechanisms, from myocardial cell ion channel models to electrical conduction in the full 

heart ventricles, these approaches can explain changes in the ECG T-wave mechanistically 

and relate them to an altered or diseased state of the myocardial cells.

This second type of approach requires an objective strategy to assign variations in cell 

model parameters across the heart wall and from apex-to-base. A simple and effective 

option consists of segmenting the myocardium into transmural and apex-to-base regions and 

assigning different cell model parameters to each of them. An apex-to-base segmentation 

may be easily obtained based on the position of the myocardial cells along the heart 

longitudinal axis. A transmural segmentation is equally straightforward if the heart model is 

based on a simplified geometry and the ventricles are modeled using truncated ellipsoids 

fitted to MRI data (e.g., [17]). In this case, the distance between the epicardial and 

endocardial surfaces is well defined and may be used to compute the transmural layers. 

However, anatomically accurate heart geometries are required for numerical simulations 

aimed at modeling the detailed EP of the heart. In this latter case, although the epicardial 

and endocardial surfaces are in general not smooth or analytically defined, the distance from 

either the endocardial or the epicardial surfaces may still be computed using the single 

distance map from a triangulation of the surface as presented by Baerentzen and Aanaes 

[18]. This approach was used by Chabiniok et al. [19] to compute the distance of a point 

from the epicardial and endocardial surfaces and accordingly assign fiber orientation. 

Nevertheless, since in anatomically accurate heart models the epicardial and endocardial 

surfaces are not parallel, transmural regions are not rigorously defined based purely on the 

distance from one or both of these surfaces.

These approaches notwithstanding, there has not been proposed a clear, systematic strategy 

to subdivide physiologically accurate biventricular heart geometries in transmural and apex-

to-base regions necessary to assign different APD gradients and to obtain a correct T-wave. 

Herein we propose a systematic solution to this problem and study its robustness by 

investigating the effect of different transmural segmentations on the resulting T-wave. We 

based our algorithm on an auxiliary steady state diffusion boundary value problem following 

a technique previously employed to generate myocardial fiber orientations [20, 21, 22]. We 

show how the combination of multiple Laplace boundary value problems allow careful 

control of the ventricular segmentation into Epi/M(ventricular midwall)/Endo and Apex/Mid 

(or mid-ventricular)/Base layers. The resulting segmentation, in conjunction with 

physiologically accurate ionic cell models defining the APD gradients, results in a 

physiologically correct T-wave. Since this modeling approach incorporates the spatial 

variation in cell ion channels responsible for the T-wave morphology, it can be used to study 

heart disease or drugs affecting the T-wave.

In the remainder of the paper, we first provide a brief overview of the model employed to 

solve the heart EP and of the ionic cell models used to vary the APD in each transmural 
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region. The boundary value problem and the algorithms used to segment the heart are 

described next. Following the computation of the myocardial segmentation, we assign varied 

ionic cell model parameters to each of the regions and compute the corresponding ECG, 

which exhibits the correct T-wave morphology. A discussion of the segmentation method 

presented and its possible extensions concludes the manuscript.

2. ANATOMICAL AND ELECTROPHYSIOLOGY MODEL

The heart segmentation resulting from our algorithm is used and tested inside a 

computational scheme developed to model heart EP [23]. Here we provide a brief overview 

of this computational scheme, which is necessary to compute the ECG from a segmented 

heart domain.

The heart EP is described using a monodomain reaction-diffusion partial differential 

equation, which is coupled with a set of ordinary differential equations (ODEs) governing 

cell-level ionic currents based on the Hodgkin-Huxley framework [24]. We solve the 

governing equations using operator splitting [25] and the finite element method as 

previously presented in Krishnamoorthi et al. [26]. The equations governing the heart EP are 

solved on an anatomically accurate rabbit heart geometry model, which includes MRI-based 

microstructural fiber/sheet orientations and a Purkinje conduction system, as described by 

Krishnamoorthi et al. [23] (Fig. 2, left).

Animal handling and care related to the acquisition of the rabbit heart geometry and 

microstructure were performed according to the recommendations of the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals and the Institutional Animal 

Care and Use Committee at the University of California, Los Angeles (UCLA). The animal 

protocol for ex vivo tissue evaluation (Protocol #2008-161-12) was approved by the UCLA 

Chancellors Animal Research Committee.

Our finite element model consists of 901,852 nodes and 828,532 elements with mesh size 

equal to 200 μm. This mesh size was previously verified in [26, 23] and guarantees the 

correct numerical solution of the EP governing equations. According to the microstructure 

information, we assign diffusion coefficients equal to 0.001 cm2/ms, 0.0005 cm2/ms, and 

0.00025 cm2/ms in the fiber, cross fiber, and fiber sheet normal direction, respectively. The 

conductivity σ is then computed as σ = χCmD, where χ = 6 × 103cm−1 is the membrane 

surface/volume ratio, and Cm = 1μF/cm2 is the membrane capacitance. Therefore, the fastest, 

medium and slowest conductivities are related by a 4:2:1 proportionality. The resulting 

tissue conductivity is anisotropic since at every point in the model the tissue microstructure, 

i.e., the fibers orientation, varies and with it the conductivity coefficients and directions.

In our model, the system of ODEs describing the cell ionic gating channels is the Mahajan et 

al. [27] cell model, which meets important validation criteria such as reproducing a 

physiologically correct action potential, calcium transient, and action potential (AP) 

restitution curve. Conduction is initiated by a stimulus current at the atrioventricular node, 

from which it propagates to the myocardial tissue through the Purkinje muscle junctions 

(PMJs). Before modeling the propagation of the electrical stimulus, we prepace the single 

cell models (9 myocardial cell models and the Purkinje cell model) for 1000 beats. After 
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1000 cycles at constant pacing we verify that the action potential, Calcium and 

Sodiumtransients have reached the steady state regime. Using the same pacing interval (400 

ms in the analyses presented herein) we carry out the full heart simulations initialized with 

the prepaced cell models. Employing this initialization procedure we observe that the 

changes in the ECG in subsequent beats are minimal. Nevertheless, to ensure that a steady 

state regime has been reached, in the following analyses we disregard the first two beats and 

report the subsequent beats.

We seek to separate the myocardium into Epi, M and Endo cells, and Apical, Mid-

ventricular, and Basal subdomains. The cell model properties in these regions were modified 

according to trends observed in the literature [28, 29, 30]. Specifically, we alter the model 

conductance Gks of the slow component of the delayed rectifier potassium current Iks. 

Transmurally, we also alter the conductance Gto of the transient outward potassium current 

Ito, which contributes to both the duration and the shape of the action potential. This current 

has not been shown to vary significantly from apex-to-base. We report in Table I the 

calibrated values of Gks and Gto. The resulting action potentials in the different regions of 

the myocardium exhibit significant differences in duration, primarily due to variation in the 

repolarization phase (Fig. 2, right). Here we will consider both the apex-to-base and 

transmural cell properties gradients simultaneously and focus on presenting a segmentation 

algorithm, and discuss its validity and robustness to describe the T-wave. Other studies have 

considered only one of these gradients and the resulting effect on the T-wave, e.g., we show 

the T-wave due to either of these gradients in isolation in the supplementary material of 

[23].

3. SEGMENTATION OF BIVENTRICULAR MODEL

A biventricular model may be subdivided in the apex-to-base direction on a simple 

geometric basis. Through a rigid body rotation, the longitudinal heart axis may be aligned 

with a Cartesian axis. Without loss of generality, we refer to this axis as the z-axis. The 

model may then be subdivided in the apex-to-base direction according to the z coordinate. 

For simplicity we segmented the heart into three longitudinal segments of equal height. This 

amounts to a step of one-dimensional interpolation along the z-axis. A z coordinate for the 

Apex-Mid boundary (zapex), and another for the Mid-Base boundary (zbase with zbase > zapex) 

are sufficient for longitudinal segmentation (Algorithm 4). We point out that a finer apex-to-

base segmentation is a straightforward extension of the three region model presented here 

and may be appealing as more accurate experimental data becomes available to describe the 

apex-to-base EP variations at the cellular level. In the present context, given the available 

experimental data and the purpose of presenting the segmentation algorithm, we use three 

apex-to-base regions and proceed to describe the more complex transmural segmentation.

Given the irregular geometry of the endocardial and epicardial surfaces, transmural 

segmentation is not amenable to such a simplistic geometric definition. Interpolation along 

the “transmural direction” is not unambiguously defined. As an alternative to distance map 

definitions [18, 19], we propose a method based on Laplace interpolation [20, 21] and 

harmonic lifting [22]. In this approach the relative distance from the endocardial and the 

epicardial surfaces may be computed according to the field distribution resulting from the 
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solution of a steady state diffusion (Laplace) equation in an homogeneous isotropic material. 

Specifically, on the given domain Ω, we solve the Laplace equation

(1a)

with field values prescribed on the epicardial, and left and right endocardial surfaces, 

denoted generally as ∂Ωi,

(1b)

and zero-flux Neumann boundary conditions prescribed on the base of the heart,

(1c)

defined as the complement of the epi- and endocardial surfaces, ∂Ω = {∪i∂Ωi} ∪ ∂ΩN. The 

resulting field φ(x) interpolates smoothly between the values prescribed on neighboring 

surfaces ∂Ωi. For instance, in the simple case of a domain between two large parallel plate 

boundaries at x = ±a with prescribed values φ0 on ∂Ω0 = {x|x = −a} and φ1 on ∂Ω1 = {x|x = 

a}, the solution of Eqn. (1) far from the lateral boundaries ∂ΩN will be 

, a linear interpolation between φ0 and φ1. The fractional 

distance from the surfaces can then be computed as di = |φ(x) − φi|/Δφ, with Δφ = |φ1 − φ0|. 

This holds as a robust estimate of distance even in complex geometries with irregular 

surfaces.

By this approach, a single steady state diffusion problem can be solved to subdivide a 

domain delimited by two singly-connected surfaces ∂Ω0,1. By assigning boundary values 

φ0,1, the distance from the surfaces to any point x ∈ Ω is estimated as proportional to the 

difference between the field φ(x) and φ0,1. However, the epi- and endocardium are not two 

singly-connected surfaces. The septum divides the left (LV) and right (RV) ventricles and, 

in order to obtain the transmural segmentation needed to assign the cell model properties, we 

need to interpolate between three singly-connected surfaces: the epicardial surface, the RV 

endocardial surface and the LV endocardial surface. Although in this case one diffusion 

boundary value problem is insufficient, we can compute the transmural LV and RV 

segmentation by solving multiple diffusion problems, with each focusing on a particular pair 

of surfaces. We identify in the following three separate strategies (Algorithms 1–3) 

involving two and three subsequent diffusion analyses (Eqn. 2–4). The outlined algorithms 

illustrate the method and its flexibility.

In the diffusion analyses solved on the heart domain in order to obtain the ventricles 

segmentation, we impose two Dirichlet boundary conditions, φ0 and φ1, on the epicardial 

and RV/LV endocardial surfaces and, without loss of generality, we assume hereafter that 

Δφ ≡ φ1 − φ0 > 0.
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In a first diffusion analysis (A) we impose φ = φ0 on the endocardial surfaces and φ = φ1 on 

the epicardial surface,

(2)

A second diffusion analysis (B) is performed imposing φ = φ0 on the RV endocardial 

surface and φ = φ1 on the epicardial and LV endocardial surfaces,

(3)

A third analysis (C) mirrors the second analysis by switching the boundary conditions 

applied on the RV and LV endocardial surfaces, i.e., φ = φ0 on the LV endocardial surface 

and φ = φ1 on the epicardial and RV endocardial surfaces,

(4)

The field distributions resulting from these analyses, plotted in Fig. 3 for boundary 

conditions φ0 = −1 and φ1 = 1, show a smooth interpolation of φ between the ∂Ω0 and ∂Ω1 

boundaries. Accordingly φ(x) provide a measure of the relative distance from the epi- and 

endocardial surfaces. The heart segmentation obtainable in each separate diffusion analysis 

may be visualized by computing field isovalue surfaces, which determine the interface (i.e., 

the threshold) between adjacent layers. We can parametrize the isovalue by a scalar α ∈ [0, 

1] representing a unitless coordinate interpolating between φ0 and φ1,

If, for example, a transmural segmentation in three equal layers is desired, the isosurfaces 

for  and , i.e., with isovalues  and  can be identified as the 

interfaces between regions (Fig. 3).

Our strategy is to construct a transmural segmentation of the heart by computing unions and 

intersections of regions separated by particular isosurfaces in analyses A–C. We denote by 

pepi, pM, and pendo the fractions of the wall to be assigned to the Epi, M, and Endo regions. 

The coordinate α coincides approximatively with the fraction of the wall that is on the ∂Ω0 

side of the isosurface. Because ∂Ω0 boundary always includes one or more of the 
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endocardial surfaces, we can identify α = pendo as the coordinate of the isosurface separating 

the Endo and M regions. By similar logic, since ∂Ω1 always includes the epicardial surface, 

we can identify α = 1 − pepi as the coordinate of the Epi-M interface. We segment the 

ventricles by thresholding φ(x) in the regions between isosurfaces. The isovalue of the 

candidate Endo-M interface is denoted as

and that of the Epi-M interface as

Based on φ− and φ+, we threshold φ(x) to obtain the following three regions in each 

diffusion analysis A–C (● denotes analysis A, B or C in the following)

(5)

Application of Eqn. (5) shows (Fig. 4) that analysis A can can be used to identify the Epi, M 

and Endo regions everywhere except in the septum where the field is uniform and equal to 

φ0. In analyses B and C, the different boundary conditions in the left and right Endo surfaces 

create a clean interpolation across the septal region, which can be used to subdivide it into 

Endo and M regions. These results make clear that the Epi, M and Endo regions can be 

defined from the union and/or intersection of the Ω+, Ω−, Ω± domains from analyses A, B, 

and C. There are a variety of possible definitions using set arithmetic. Here, as illustrative 

examples, we consider three particular options, Algorithms 1–3, specified below.

Algorithm 1

Transmural segmentation based on 2 diffusion analyses (A,B)

Ωepi : = ΩA
+

≡ {x : ϕA(x) > ϕ+}

ΩM : = (ΩA
- ∩ ΩB

± ) ∪ ΩA
±

≡ {x : (ϕA(x) < ϕ- ∧ ϕ- < ϕB(x) < ϕ+) ∨ ϕ- < ϕA(x) < ϕ+}

Ωendo : = ΩA
- ∩ (ΩB

- ∪ ΩB
+ )

≡ {x : ϕA(x) < ϕ- ∧ (ϕB(x) < ϕ- ∨ ϕB(x) > ϕ+)}
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Algorithm 2

Transmural segmentation based on 3 diffusion analyses

Ωepi : = ΩA
+

≡ {x : ϕA(x) > ϕ+}

ΩM : = (ΩA
- ∪ ΩA

±) ∩ (ΩB
± ∪ ΩB

+ ) ∩ (ΩC
± ∪ ΩC

+ )

≡ {x : ϕA(x) < ϕ+ ∧ ϕB(x) > ϕ- ∧ ϕC(x) > ϕ-}

Ωendo : = (ΩA
- ∩ ΩA

±) ∩ (ΩB
- ∪ ΩC

- )

≡ {x : ϕA(x) < ϕ+ ∧ (ϕB(x) < ϕ- ∨ ϕC(x) < ϕ-)}

Algorithms 1 through 3 can be easily interpreted with the help of Fig. 4. For Algorithm 1, 

the epicardial region coincides with the red portion computed in analysis A. The M cell 

region is defined as the union of the gray region in analysis A and the intersection between 

the blue region in analysis A and the gray region in analysis B. Lastly, the endocardial 

region is the intersection between the blue region obtained in analysis A and the red and 

blue regions obtained in analysis B. Algorithms 2 and 3 can be visualized in the same way.

Algorithm 3

Transmural segmentation based on 2 diffusion analyses (B,C)

Ωepi : = ΩB
+ ∩ ΩC

+

≡ {x : ϕB(x) > ϕ+ ∧ ϕC(x) > ϕ+}

ΩM : = ΩB
± ∪ ΩC

±

≡ {x : ϕ- < ϕB(x) < ϕ+ ∨ ϕ- < ϕC(x) < ϕ+}

Ωendo : = ΩB
- ∪ ΩC

-

≡ {x : ϕB(x) < ϕ- ∨ ϕC(x) < ϕ-}

Algorithm 4

Apex-to-base segmentation based on position along the longitudinal z axis

Ωapex: = {x: z(x) ≤ zapex}

Ωmid: = {x: zapex < z(x) < zbase}

Ωbase: = {x: z(x) ≥ zbase}

A longitudinal section of the final transmural and apex-to-base segmentations based on the 

presented algorithms is shown in Fig. 5. Since in our formulation [23] the ionic variables 

governing the cell AP reside at the nodes of the heart finite element mesh, we use the 
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outlined algorithms to subdivide the nodes based on their coordinate x. Equivalently, we can 

subdivide the finite elements of the heart mesh based, for instance, on their barycentric 

coordinate. The Epi, M and Endo regions and the Apical, Mid and Basal regions are labeled 

using an identification number from 1 to 9 according to Table II.

All the algorithms presented in the foregoing (Algorithms 1–3) result in valid transmural 

heart segmentations, which differ only subtly from each other. The largest difference 

between any two of the presented algorithms amounts to 4.2% of the total nodes receiving a 

different ID and, consequently, different cell properties and APD. In the following section 

we quantify the effect of these differences by computing the electrocardiogram for each of 

the transmural heart segmentations.

In our applications, we solved the simple steady state diffusion problems employing the 

finite element method, which is often also the method of choice for cardiac EP analyses. 

Other computational schemes commonly used to model cardiac EP, such as the finite 

difference method, may be employed as well in a straightforward way to solve the Laplace 

equation on the heart domain. The availability of common computational schemes to solve 

the basic equations and the simplicity of the proposed approach render it readily applicable.

4. ELECTROCARDIOGRAMS AND APDS RESULTING FROM THE 

PROPOSED CELL SEGMENTATIONS

We proceed to show that the heart segmentation obtained with the presented method can be 

successfully used to assign cell property gradients and to produce a physiologically correct 

T-wave in the ECG. Furthermore, we investigate how sensitive the T-wave is to changes in 

the parameters governing the segmentation algorithms.

Toward this objective, we combine the heart segmentation obtained in Section 3 with the 

heart and cell models described in Section 2. In particular, the 9 heart regions used in the 

simulation are obtained with Algorithm 1 and correspond to equally spaced apex-to-base 

(  and with H being the heart total length along the longitudinal z axis) 

and equal-width transmural (pendo = pM = pepi = 1/3) segmentation. This segmentation 

corresponds to the section shown in Fig. (5,1). According to Section 2 and the previous 

work of Krishnamoorthi et al. [23], cell properties resulting in different APDs are assigned 

to the cells in the 9 heart regions. We simulate four heart beats with pacing cycle length 

equal to 400ms and report the third and fourth heart beat. Disregarding the first two heart 

beats and preliminary single cell prepacing as described in Section 2, guarantees that a 

steady state solution has been reached in our model. For comparison, the same simulation 

and corresponding ECG were computed using an identical heart model but without cell APD 

heterogeneity; i.e., uniform cell properties (in this example we chose the Mid and M cell 

properties) were assigned to all the nodes in the finite element mesh. The voltage field time 

history is subsequently used to compute the ECG output from a bipolar lead according to 

[31]:
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(6)

where R(x) denotes the distance from a point in the heart domain Ω to the lead position and 

D(x) is the diffusion tensor at point x. We observe that a scaling factor is necessary to 

convert the ECG signal computed using Eqn. 6 in voltage units. However, this scaling factor 

does not affect in any way the morphology of the ECG signal and therefore, in the 

following, we report directly the normalized voltage computed through Eqn. 6.

The six-lead ECG resulting from the model including the apex-to-base and transmural APD 

gradients contains a physiologically accurate T-wave morphology (Fig. 7b) whereas the T-

wave is absent from the ECG obtained using the homogeneous heart model (Fig. 7a). This 

comparison illustrates the applicability of the method presented herein for including 

heterogeneous cell properties and, consequently, to obtain a physiologically correct ECG.

We have also included the APD map obtained during the fourth simulated beat (Fig. 8) to 

analyze more in details the effect of cell properties gradients on APD gradients. We observe 

that the APD gradients are smooth across the myocardium in both the transmural and apex-

to base directions despite the distinct cell properties boundaries imposed using the 

segmentation algorithm. Gradual APD changes are due to the smoothing effect associated 

with voltage diffusion during each heart beat.

In order to assess the sensitivity of the ECG to the segmentation, we recompute the ECG by 

using the transmural segmentations obtained with Algorithms 2 and 3. We have already 

established (Section 3 and Fig. 6) that less than 5% of the total number of nodes are placed 

in different regions by the three presented algorithms and most differences reside where the 

septum is connected to the rest of the RV/LV ventricular wall. These very limited 

differences are not reflected in the ECG, i.e., the ECGs (not reported here) computed using 

the model obtained with Algorithms 2 and 3 are indistinguishable from the ECG based on 

Algorithm 1 (Fig. 7b). This result shows that any of the presented algorithms can be used to 

construct a heart model without affecting the resulting ECG. For subsequent sensitivity 

analyses we proceed with Algorithm 1.

In the simulations just presented we used equally spaced apex-to-base 

( ) and equal-width transmural (pendo = pM = pepi = 1/3) segmentation. 

This appears as a reasonable choice since more detailed data are lacking in the literature 

regarding the thickness of the different myocardial cell regions. For example, significant 

uncertainty is reported in the literature about the position and extension of the M cells (e.g., 

see Table 1 in [32]). In this regard, we investigate how sensitive the T-wave is to different 

widths of the M layer. In particular, in two subsequent analyses, we define a thicker (pM = 

3/5) and a thinner (pM = 1/5) M layer. The epicardial and endocardial layers are assumed 

equal with pendo = pepi = 1/5 and pendo = pepi = 2/5 in the two analyses, respectively (Fig. 9).

The six-lead ECG is not affected significantly by the changes in the transmural 

segmentation. Specifically, the QRS complex remains unchanged and the T-wave preserves 

its physiologically correct morphology in all cases (Fig. 10). The largest difference is 
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obtained when comparing the equal-width transmural segmentation (pM = 1/3) and the 

thicker M layer (pM = 3/5) models. A wide M layer results in a slightly smaller and delayed 

T-wave (Fig. 10, left). In contrast, a thinner M layer (pM = 1/5) leads to a slightly taller and 

earlier T-wave (Fig. 10, right), even if, in this latter case, the differences with respect to the 

equal-width transmural segmentation model are very small.

We can observe here that the values of pepi, pmid, and pendo provide convenient parametric 

control over the transmural segmentation. In the present model, modest adjustment of these 

parameters yielded noticeable but not dramatic change in the ECGs. This result proves the 

robustness of the method with respect to parameters that are not well defined in the 

literature. Moreover, as more accurate physiological data for transmural heterogeneity 

become available, the proposed method can easily incorporate the additional information 

and accordingly modify the ventricular segmentation to further explore the effects of 

repolarization dispersion.

5. DISCUSSION

The simulations presented show the applicability and robustness of the proposed 

segmentation method to define heart regions with different cell properties and obtain the 

correct T-wave morphology. The resulting T-wave is directly linked to the cell APD 

gradients and therefore changes in the cell physiology due to heart diseases may be studied 

and related to changes in the ECG. Moreover, the method presented is applicable to any 

heart model and does not rely on geometrical simplifications. In an anatomically accurate 

heart geometry acquired, for instance, through MRI, the transmural layers cannot be defined 

simply based on a fixed distance measured from either the endocardial or the epicardial 

surfaces since they are not parallel and the thickness of the myocardial wall varies 

continuously. To illustrate this, an example of an ad hoc segmentation is shown in Fig. (11, 

right), in which the transmural layers are defined based on a fixed distance from the 

endocardial and epicardial walls. The resulting segmentation is not appropriate in the apical 

and right ventricle walls where M cells are almost missing due to the reduced myocardium 

thickness in those regions.

Ad hoc approaches also require some additional strategy to modify the layout of the 

transmural layers. In contrast, the segmentation algorithms presented in Section 3 can be 

modified in a straightforward way to produce a different transmural segmentation. As an 

example, we lay out three modifications in which we obtain:

• a thicker endocardial layer in the left ventricle - Fig. (12, left);

• a thicker endocardial layer in the right ventricle - Fig. (12, center);

• four layers in the external myocardial wall and two layers in the septal region - Fig. 

(12, right).

These are obtained with only minor modifications to, for instance, Algorithms 1 and 3. In 

the modified algorithms we introduce the additional threshold values

• φL = (1 − pL) φ0 + pLφ1;
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•
 and , where k = B, C refers 

to the diffusion analysis in which the field φ is computed.

A thicker left endocardial layer is obtained using  whereas 

corresponds to a thicker right endocardial layer. The modifications to the algorithms listed in 

Section 3 are presented in Algorithms 5–7.

Algorithm 5

Modification of Algorithm 3 to obtain thicker LV endocardial layer using diffusion analyses 

B and C

Ωepi : = ΩC
+ ∩ ΩB

+

≡ {x : ϕC(x) > ϕ+
C ∧ ϕB(x) > ϕ+

B}

ΩM : = ΩC
± ∪ (ΩC

+ ∩ ΩB
± )

≡ {x : ϕ-
C < ϕC(x) < ϕ+

C ∨ (ϕC(x) > ϕ+
C ∧ ϕ-

B < ϕB(x) < ϕ+
B)}

Ωendo : = ΩC
- ∪ (ΩC

- ∩ ΩB
- )

≡ {x : ϕC(x) < ϕ-
C ∨ (ϕC(x) > ϕ+

C ∧ ϕB(x) < ϕ-
B)}

Algorithm 6

Modification of Algorithm 3 to obtain thicker RV endocardial layer using diffusion analyses 

B and C

Ωepi : = ΩB
+ ∩ ΩC

+

≡ {x : ϕB(x) > ϕ+
B ∧ ϕC(x) > ϕ+

C}

ΩM : = ΩB
± ∪ (ΩB

+ ∩ ΩC
± )

≡ {x : ϕ-
B < ϕB(x) < ϕ+

B ∨ (ϕB(x) > ϕ+
B ∧ ϕ-

C < ϕC(x) < ϕ+
C)}

Ωendo : = ΩB
- ∪ (ΩB

- ∩ ΩC
- )

≡ {x : ϕB(x) < ϕ-
B ∨ (ϕB(x) > ϕ+

B ∧ ϕC(x) < ϕ-
C)}
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Algorithm 7

Modification of Algorithm 1 to obtain a 4 layers segmentation using diffusion analyses A 

and B

Ωepi : = ΩA
+

≡ {x : ϕA(x) > ϕ+
A}

ΩMext
: = ΩA

±ext

≡ {x : ϕL
A < ϕA(x) < ϕ+

A}

ΩMint
: = (ΩA

- ∩ ΩB
± ) ∪ ΩA

±int

≡ {x : (ϕA(x) < ϕ-
A ∧ ϕ-

B < ϕB(x) < ϕ+
B) ∨ ϕ-

A < ϕA(x) < ϕL
A}

Ωendo : = ΩA
- ∩ (ΩB

- ∪ ΩB
+ )

≡ {x : ϕA(x) < ϕ-
A ∧ (ϕB(x) < ϕ-

B ∨ ϕB(x) > ϕ+
B)}

We conclude by pointing out that the significance of a general method to subdivide the heart 

goes behind obtaining the physiologically correct T-wave and predicting its changes caused 

by an altered state of the myocardial cells during heart diseases. For example, a flexible 

segmentation method may be used in analyses with the objective of identifying the 

mechanical properties of the heart, which may be spatially inhomogeneous. In order to 

reduce the number of unknowns and therefore the complexity of the model, different 

mechanical properties may be assigned to discrete heart regions rather than varied 

continuously through the myocardium (e.g., [33]). The method presented herein may be 

used to subdivide the heart model in transmural and apex-to-base regions in which different 

material properties can be identified. Moreover, our method may also be combined with 

other regional segmentations of the heart. For instance the AHA heart regions [34] may be 

further subdivided in the transmural direction according to the method presented.

Lastly, it is important to highlight some of the method limitations. For instance, the 

algorithms presented herein do not allow to segment the papillary muscles in different 

transmural layers. The papillary muscles are located in the interior of the ventricles and 

therefore their surface is only exposed to the field φ0, i.e., no transmural gradient is created 

through the papillary muscles and the corresponding locally homogeneous field φ cannot be 

used to determine transmural layers in the papillary muscles. This limitation appears small if 

the presented method is used to assign transmural cell property gradients with the aim of 

computing the corresponding T-wave, but may be important in other particular applications.
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Figure 1. 
Idealized ECG signal with marked P,Q,R,S and T-waves.
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Figure 2. 
Ventricular finite element mesh (left) with embedded Purkinje system (blue), and action 

potentials in different heart regions (pacing cycle length equal to 400 ms) showing 

repolarization heterogeneity (right).
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Figure 3. 
Top: Longitudinal sections of the field distributions for analyses A–C. A: ∂Ω0 = ∂Ωendo 

(Eqn. 2); B:  (Eqn. 3); C:  (Eqn. 4); Bottom: isosurfaces φ = (1 − 

α) φ0 + αφ1 obtained in analyses A, B, and C for α = 1/3 (blue), 1/2 (gray) and 2/3 (red).
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Figure 4. 
Longitudinal sections of the transmural heart segmentation obtained separately in diffusion 

analyses A, B, and C using pendo = pM = pepi = 1/3.
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Figure 5. 
Longitudinal sections of the ventricles segmentations: each region is labeled from 1 to 9 

according to the heart location to which it belongs (Table II). Transmural and apex-to-base 

ventricular segmentation obtained with Algorithm 1 (left), Algorithm 2 (center), and 

Algorithm 3 (right).
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Figure 6. 
Heart regions receiving different IDs with the three presented segmentation algorithms. 

From left to right: differences between Algorithms 1 and 2 (≈ 2.0% of total nodes), 

differences between Algorithms 1 and 3 (≈ 4.2% of total nodes), differences between 

Algorithms 2 and 3 (≈ 2.2% of total nodes). As shown, the differences are localized to the 

region where the septum is connected to the RV/LV ventricular wall.
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Figure 7. 
ECG generated using homogeneous (left) and heterogeneous (right) cell properties. The 

ECG computed using cell property gradients shows physiologically accurate T-wave 

morphology, i.e., the T-wave is upright in all six leads and presents the correct progression 

and slower rising than descending phase.
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Figure 8. 
APD distribution obtained using an heterogeneous transmural and apex-to-base cell model 

distribution. Even tough the boundaries between adjacent cell regions with different ionic 

constants may be sharp — especially in the apex-to-base direction — at steady state the 

APD varies smoothly through the myocardium due to diffusion.
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Figure 9. 
Representative sections of the heart segmentations obtained by imposing equal-width 

transmural layers (left - for comparison), wider M layer and equally thinner endocardial and 

epicardial layers (center), thinner M layer and equally wider endocardial and epicardial 

layers (right).
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Figure 10. 
Comparison between the T-waves obtained using equal-width transmural segmentation and 

wider (left)/thinner (right) M layer.
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Figure 11. 
Comparison between heart segmentations obtained with Algorithm 1 (left) and ad hoc 

segmentation (right).
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Figure 12. 
Example sections of different transmural segmentations obtainable with simple 

modifications of the proposed algorithms: (left) wider LV endocardium layer with 

 and ; (center) wider RV endocardium layer with 

 and ; and (right) four equal layers in the external 

free walls plus two Endo layers in the septal region with  and 

.
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Table I

Potassium currents conductances in the nine transmural and apex-to-base regions.

Cell position Gto [mS/μF] Gks [mS/μF] APD90 [ms]

Epi - Apex 0.110 0.263 158

Epi - Mid 0.110 0.194 168

Epi - Base 0.110 0.139 179

M - Apex 0.110 0.103 189

M - Mid 0.110 0.072 202

M - Base 0.110 0.049 217

Endo - Apex 0.094 0.136 182

Endo - Mid 0.094 0.097 195

Endo - Base 0.094 0.069 208
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Table II

Region identification numbers for apex-to-base and transmural segmentation.

Apex Mid Base

Epi 9 8 7

M 6 5 4

Endo 3 2 1

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 August 01.


