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SUMMARY

We examine carefully the numerical accuracy and computational efficiency of alternative 

formulations of the finite-element solution procedure for the mono-domain equations of cardiac 

electrophysiology (EP), focusing on the interaction of spatial quadrature implementations with 

operator splitting, examining both nodal and Gauss quadrature methods, and implementations that 

mix nodal storage of state variables with Gauss quadrature. We evaluate the performance of all 

possible combinations of “lumped” approximations of consistent capacitance and mass matrices. 

Most generally we find that quadrature schemes and lumped approximations that produce 

decoupled nodal ionic equations allow for the greatest computational efficiency, this being 

afforded through the use of asynchronous adaptive time-stepping of the ionic state-variable ODEs. 

We identify two lumped approximation schemes that exhibit superior accuracy, rivaling that of the 

most expensive variationally consistent implementations. Finally we illustrate some of the 

physiological consequences of discretization error in EP simulation relevant to cardiac arrhythmia 

and fibrillation. These results suggest caution with the use of semi-automated free-form tetrahedral 

and hexahedral meshing algorithms available in most commercially available meshing software, 

which produce non-uniform meshes having a large distribution of element sizes.

1. INTRODUCTION

The electrophysiology (EP) of cardiac tissue is commonly modeled as the solution of a 

reaction-diffusion boundary value problem [1, 2] governing the diffusion of electrical 

potential driven by local ionic currents produced at the single-cell level by the gating of ion 

channels. Among the numerical methods employed to approximate these analytically 

intractable equations, the finite element method (FEM) [e.g., 3–6] has become commonly 

favored, primarily because it allows to capture the curved geometry of the heart in a 

straightforward way. Also, because FEM is also the method of choice for solid mechanics, it 

has been noted that the framework provides a straightforward way to develop coupled 

simulations of electrophysiology and contractile mechanics of the heart [7].

The cardiac reaction-diffusion equations are of multiscale nature, with variations occurring 

at both scales associated with both the tissue and individual cells, both in time and space. 

The simplest discretization schemes — e.g., forward-Euler time-stepping with uniform mesh 
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spacing — require extreme computational cost to attain stability and accuracy, making it 

difficult to achieve reasonable solution times for realistic problem domains and analysis 

durations even on the world’s largest computers. This has motivated tremendous efforts to 

find ways to speed up calculations.

Empirical studies seem to indicate that the spatial limitations on accuracy for cardiac EP 

simulation are determined fundamentally by the characteristic width of the pseudo wave 

front, a length scale that emerges from the ratio of the electrical conduction velocity to the 

rise time of the cardiac action potential. Recommendations for maximum element sizes 

range from 0.01 cm [8] to 0.02 cm [3, 9].† Convergence studies informing these guidelines 

generally rely on regular simulation domains and simple electrical activation patterns. The 

effects of discretization error for non-uniform physiological activation sequences in whole-

heart simulation domains are less well studied.

Strategies that have been employed to address the multiscale features of the cardiac EP 

problem can be decomposed into roughly two categories: spatial discretization, and temporal 

discretization. Recognizing that the key length scale is associated with the rise of the action 

potential, some researchers have developed approaches to adaptively refine in both space 

and time [8, 10, 11]. While these temporally adaptive refinement schemes do reduce 

computational cost, they do so at the expense of greatly increased algorithmic and 

implementation complexity. A much simpler approach designed to save computational effort 

is to simulate on non-uniform finite element meshes specially tailored to resolve anatomical 

detail. For example, specialized automatic mesh generation techniques have been developed 

for the cardiac EP problem [4, 12], wherein a coarser mesh of regular node spacing in the 

tissue interior is automatically refined near boundary surfaces to capture anatomical 

features, generating meshes with element sizes that can differ as much as an order of 

magnitude. While this is rigorously justified in the context of solid mechanics, where 

computational error is provably greatest near boundaries of complex geometry where stress 

gradients are largest, such mathematical guarantees are not generally available in the case of 

electrophysiology.

Perhaps the simplest strategy for adapting to the temporal multiscale character of the 

problem is operator splitting, which separates the slow diffusion process from the fast ionic 

process [3, 13, 14]. The key benefit of this separation is that it isolates the integration of 

cardiac action potentials into a spatially-uncoupled system. Because the fastest time-scales 

of the problem are associated with the action potential, both adaptive time-stepping and 

more sophisticated local implicit schemes specific to the cardiac ODEs [15] can be used on a 

point-by-point basis to greatly reduce computational cost.

While the ODEs characterizing the ionic model can be solved in principle using any ODE 

solver, the choice for time-discretization is strongly influenced also by how the cell model 

ODEs are coupled back to the diffusion PDEs [9]. In particular, the ionic ODE state 

variables and currents can be defined and computed either at the nodes of the finite element 

†These requirements refer to the use of physiologically accurate ionic cell models; phenomenological models such as the FitzHugh-
Nagumo model allow for larger spatial/temporal step size [6]. The more realistic ionic models produce spatio-temporal variations at a 
much broader range of length and time scales, making whole heart modeling all the more challenging.
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mesh or alternatively at the Gauss quadrature points in the interior of the elements. For 

schemes using operator splitting [2, 10, 13] because the ionic current is only needed at the 

nodes, all ionic state variables can be stored as nodal variables, and the ionic ODEs can be 

solved as uncoupled nodal equations. However, in a more general scenario where both 

reaction and diffusion terms are discretized by finite element interpolation, [16–19], ionic 

currents need to be computed at the quadrature points of the mesh. There is a question of 

which variables are defined at the nodes and interpolated to quadrature points. The use of 

interpolation scheme can lead to significantly different numerical results in cardiac 

electrophysiology modeling in particular the conduction velocity of the electrical wave. 

Pathmanathan, et al. [9] define all state variables (voltage, ionic concentrations, gating 

variables, etc.) as nodal quantities, and consider two approaches for obtaining currents at the 

quadrature points.

a. Ionic current interpolation (ICI): Interpolate the ionic currents from the nodes 

inside the element and

b. State variable interpolation (SVI): Interpolate the state variables of the cell model 

into the interior of the element and compute ionic current using these interpolated 

values.

SVI is the most accurate, but is associated with a high computational cost and increased 

storage requirements, whereas ICI is relatively inexpensive, but less accurate. On the other 

hand, observing that spatial gradients of ionic state variables (concentrations, gating 

variables) are not needed, Göktepe, et al. [6, 7, 20] avoid the need for interpolation by 

storing these internal variables at the quadrature points. So far no direct comparison has 

been made between these nodal-variable and internal-variable approaches.

It is noteworthy that operator splitting is the only approach that provides explicit spatial 

decoupling of the ionic ODEs and state variables. Hence, it is the only technique that allows 

for “embarrassingly parallel” adaptive time-stepping. However, the common drawback cited 

for operator splitting is the difficulty of ensuring numerical stability of the resulting scheme 

[21]. Moreover, to achieve numerical accuracy comparable to that of the most accurate 

interpolating schemes (SVI, [9]), operator-splitting approaches have so far required finer 

mesh sizes.

The goals and results of this paper follow a two-part structure. First, we aim to understand 

the effects on numerical accuracy and computational efficiency of operator-splitting 

formulations produced by storing ionic state variables either at the nodes or at internal 

quadrature points, and specifically to discover whether the efficiency of adaptive operator 

splitting may be combined with the enhanced accuracy provided by interpolation techniques 

such as SVI and ICI. Toward this first goal we introduce operator splitting as a post-

discretiztion solution technique, and show how this approach produces several options for 

incorporation alternative interpolation techniques introduced by Pathmanathan, et al. [9]. In 

particular, we study the effects of so called “matrix lumping” techniques on numerical 

convergence of formulations using operator splitting. We test the different formulations on a 

benchmark problem recently proposed by Niederer, et al. [22], and quantitatively compare 

the convergence rates using a 3D cable geometry. The second aim of this paper is to expose 

Krishnamoorthi et al. Page 3

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some of the physiological consequences of excessive numerical discretization error. The 

standard tests of numerical accuracy for cardiac EP simulation in the literature tend to focus 

on convergence of activation times and conduction velocities in simple cable like geometries 

with uniform meshes. However it remains unclear what the practical impact of insufficient 

refinement is in physiologically realistic domains, which often require a distribution of 

element sizes, and always produce nontrivial activation sequences. Therefore we close the 

paper by examining some physiological artifacts produced by discretization error in 

nonuniform meshes when simulating planar wave propagation and spiral wave break up in 

2D domains.

2. FEM FORMULATIONS OF CARDIAC EP

Here we develop in detail the weak form and finite element discretization of the 

monodomain equations [1] of cardiac EP. Although we ultimately wish to employ a split of 

the reaction and diffusion terms in these equations for the sake of numerical implementation, 

we develop the formulation in coupled form and apply the split to the discretized equations 

to allow for a more direct comparison of split and coupled implementations.

2.1. Governing Equations

Let Ω ∈ ℝ3 denote the region occupied by the cardiac tissue. We model the transmembrane 

voltage V (x, t) as governed by the monodomain equations

(1a)

(1b)

where σ is the conductivity tensor, Cm is the capacitance across the membrane, χ is the 

surface area to volume ratio and  is the stimulus current. u are set of cell-level variables 

whose dynamic behavior is governed by the ODEs given by f and they couple back to the 

PDE through the ionic current . The single-cell ionic current is commonly modeled using 

the Hodgkin-Huxley framework [1], describing the electrical activation potential of an 

excitable cell according to the solution of a set of nonlinear ODEs. The identities of the ionic 

variables describing the gating of specific channels, as well as the choice of specific 

functional forms for f(u, V), are determined empirically according to careful experimental 

measurements of channel properties using patch-clamp techniques. For the sake of 

computational efficiency, the ionic response is sometimes modeled using crude 

phenomenological models like the two-variable Fitz-Hugh Nagumo model which exhibit the 

general characteristics of an excitable cell but fail to reproduce the physiologically important 

features such as the sharp increase in voltage during the depolarization phase. There also 

exist more realistic models, such as Luo-Rudy-II [23] and the UCLA model [24], which are 

preferred for computational and physiologically accurate simulations.
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Let the boundary of the domain be denoted ∂Ω, with outward unit normal n(x, t). The 

potential is assumed to satisfy a no-flux boundary condition on ∂Ω,

(2)

where

denotes the spatial partial derivative, and summation is implied in the repetition of indices. 

To generate the weak form of the boundary value problem formed by eqns. (1) and (2), we 

form the weighted residual for some admissible weight function ψ, and integrate by parts 

using the divergence theorem to obtain,

(3)

Due to the no flux boundary condition the surface integral vanishes. Furthermore, as is 

customary we can combine the stimulus and the ionic currents into a single current term  = 

 − χ , yielding the weak form as

(4)

∀ ψ admissible.

2.2. Finite Element Discretization

The domain is discretized into a set of subdomains (finite elements). In a standard 

isoparametric formalism, position within each element is parameterized by a set of 

curvilinear or natural coordinates . The positions and voltage are interpolated among 

nodal values using piecewise polynomial shape functions Na(sα),

(5)

(6)
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(7)

where xia denotes the ith coordinate of the node a and Va denotes the voltage at nodes a. The 

test functions are also expanded in the basis provided by these shape functions

where ψa are arbitrary nodal weights. Substituting these relations into the weak form of eqn. 

(4) produces

(8)

Since ψa are arbitrary, their coefficients must then also be zero

(9a)

or

(9b)

where

(10)

(11)

(12)

(13)

Here Ia is interpreted as the consistent nodal transmembrane current at node a, Cab are the 

components of the capacitance matrix, and σab are the components of the conductance 

matrix. The components of the conductance matrix require gradients of the shape functions. 

The spatial gradients of the shape functions are then computed by the chain rule as
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(14)

2.3. Numerical Quadrature and Matrix Lumping

In the semi-discrete finite element equations (9–13), spatial integration is performed over the 

entire domain, by global assembly of individual element integrals. In the standard form of 

numerical integration, evaluation of the integrand is done at the Gauss-Legendre quadrature 

points inside every element. We will refer to this as Gauss integration. Let  and ŵp, p = 1, 

…, Q be the quadrature points and weights, such that

Also, denote J ≡ det[Jiα], such that dv = Jd3s. The nodal ionic current computed by Gauss 

quadrature is

(15a)

and the capacitance and conductivity matrices are

(15b)

(15c)

where

are the effective quadrature weights for material and spatial integrals. Because the 

capacitance and conductivity matrices involve integrals of polynomial shape functions, 

Gauss quadrature of sufficiently high order provide exact results. However for the consistent 

nodal ionic currents, we expect results to generally depend on how the local current  is 

computed at the quadrature points.

2.3.1. Internal State Variables at Gauss Points—In the case where ionic variables 

are defined as internal variables, stored directly at the quadrature points, as in [6, 7, 20], then 

the evaluation of eqn. (15a) is unambiguous. Explicitly, the current at a Gauss point sp is 
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computed using the internal variables up stored at that Gauss point, and voltage interpolated 

at Gauss point as per eqn. (6),

Because the interpolated voltage depends on surrounding nodal values via eqn. (6), it is clear 

that in this approach integration of the local internal ODEs is coupled to that of the global 

PDEs. Specifically, this makes it difficult to construct time-stepping schemes for the internal 

variables with time steps independent of that of the global nodal voltages.

2.3.2. Nodal State Variables—The alternative is to define ionic state variables as nodal 

variables, ua. To evaluate current at Gauss points, Pathmanathan, et al. [9] classified the 

approaches in the previous literature by the following two categories.

State Variable Interpolation: The SVI approach is to interpolate the state variables to the 

Gauss points

and then to evaluate the ionic current using interpolated state variables and voltage as

This interpolation imposes a significant CPU cost (as well as storage demands) to compute 

the additional Gauss-point values of the state variable array u, which can have as many as 40 

or more components for advanced cell models [24].

Ionic Current Interpolation: One alternative to SVI is the ICI approach, which computes 

current densities from the nodal state variables,

and interpolates these to the Gauss points,
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(16)

or

(17)

where

(18)

are referred to as the components of the “mass matrix”

and

is the vector of nodal current densities.

2.3.3. Nodal Quadrature—When state variables are stored along with voltages at the 

finite element nodes, an alternative approach to the SVI and ICI interpolation methods is to 

compute the nodal ionic currents by nodal quadrature. This approach places quadrature 

points at the nodes, with quadrature weight va representing the volume associated with node 

a. By the Kronecker-delta property of the shape functions, Na(xb) = δab, the nodally 

integrated currents become

(19)

where, Ia = (Va, ua) are currents computed from nodal state variables. Nodal quadrature is 

most closely related to ICI, in that both methods compute the consistent nodal currents Ia as 

linear combinations of the currents evaluated based on nodal state variables. In fact, the 

nodal quadrature result can be considered as a special case of the ICI result, in which the 

mass matrix is diagonal, Mab = δabva (no sum). Indeed, this is precisely what one obtains by 

performing a row-sum lumping approximation of the “full” or consistent mass matrix,
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where va = ∫ΩNadv can be interpreted as the volume of node a. As considered by 

Pathmanathan, et al. [25], the ICI approach can be combined with lumping for either the 

mass matrix, the capacitance matrix (Cab = χCmMab), or both, with varying effects on 

accuracy. In particular, lumping of the capacitance matrix is especially convenient when 

explicit time-stepping schemes are used to increment the nodal voltage solution, as it avoids 

the need to solve a linear system. This is particularly attractive when combined with 

operator splitting, as we discuss below.

2.4. Time Discretization Schemes with Operator Splitting

As first applied to the monodomain EP problem by [13], operator splitting techniques 

provide a straightforward way of dealing with multiple temporal scales. If we employ Strang 

splitting, as proposed by [13], which is second-order accurate (provided that the discrete 

time-integration methods for in each operator is also second-order accurate and also the 

applied stimulus is time independent), then the monodomain PDEs of eqn. (1a) are solved 

by alternating time-integration of diffusion and ionic operators

(20)

The split, as indicated by eqn. (20), is commonly applied to the undiscretized differential 

operators. If implemented in this traditional way, the diffusion operator in eqn. (20) will 

need to be discretized in space with finite elements, leading to semi-discrete equations of the 

form,

(21)

On the other hand, in such an implementation the operator split naturally separates the ionic 

equations into spatially decoupled, local, ordinary differential equations. In other words, 

because no spatial gradients appear in the ionic updates in eqn. (23b), those equations do not 

need to be cast into a weak form and discretized with finite element shape functions — 

spatial discretization then trivially entails applying these equations at the finite element 

nodes, i.e.,

(22a)

(22b)

where they can be discretized in time and solved directly.
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Algorithm 1

Qu-Garfinkel Operator Split [13].

 Global time loop

 for step n = 1 … nmax do

i. Initialize V = Vn. Integrate Diffusion operator for half time-step Δt/2:

CV
.

+ σV = 0 → V
n+

1
2

. (23a)

ii.
Initialize . Integrate Ionic operator for full time-step Δt:

CV
. = I(V; u)

du
dt

= f (V ; u)} → V
n+

1
2

∗
. (23b)

iii.
Initialize . Integrate Diffusion PDE for half time-step Δt/2:

CV
.

+ σV = 0 → Vn+1. (23c)

iv. Step forward in time: n ← n + 1.

 end for

Post-discretization Splitting—Here we choose instead to apply the operator split after 

performing the finite element discretization (see Algorithm 1). That is, the operator split is 

applied to the semi-discrete finite element equations (9). For the diffusion terms in the 

equations, the distinction is without a difference — both pre- and post-discretization 

operator splits lead to the same linear system of ODEs in eqn. (21). For the ionic terms in 

the problem, however, if prior to performing the operator split we first apply the spatial 

finite-element discretization to the weak form of the governing equations, the ionic part of 

the split is represented by equations of the form

(24a)

(24b)

In this case, the vector of nodal currents I can be computed by Gauss quadrature with state 

variables stored at quadrature points, or by either SVI or ICI with state variables stored at 

the nodes, as described in the previous section. The ICI approach, moreover, allows for 

multiple variants, by selective lumping of C and/or M. Pathmanathan, et al. [25] considered 

two choices for matrix lumping without operator splitting: in what was termed full lumping, 

the capacitance and mass matrices are both lumped, whereas in half lumping only the 

capacitance matrix is lumped. However, as we discuss below, operator splitting of the ICI-
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formulated equations effectively expands the number of options, allowing for selective 

lumping of three matrices: a capacitance in the diffusion part of the split, and a capacitance 

and mass in the ionic part. As we will demonstrate, inconsistent lumping of the capacitance 

in the two parts of the split can yield surprising improvements in numerical accuracy over 

the standard full and half lumped un-split approaches.

2.5. Matrix Lumping with ICI

Introducing the ICI current definition (17), the operator-split FE equations (21) and (24a) 

take the form

(25a)

(25b)

We consider six distinct variants of the operator splitting algorithm combined with ICI. 

These variants correspond to selective lumping of any of three matrices: C in the diffusion 

update (26), and C and M in the ionic update (24). While selective lumping of these three 

matrices generates 23 = 8 total options, we show that certain combinations are equivalent, 

making for a total of six distinct variants. For the sake of conciseness, we will refer to the 

variants using a compact, three-character labeling convention described in Table I.

Diffusion updates—For the diffusion step in the operator split, the choice to be made is 

whether or not to use the lumped approximation to the capacitance matrix. As is the case in 

structural dynamics, the main motivation for the lumping approximation is to render the 

capacitance a diagonal matrix, so that its inversion becomes trivial. This is mainly desired 

when explicit time-stepping strategies are use. If, for the sake of stability or accuracy (or 

both), implicit time-stepping is performed, requiring the solution of a non-trivial linear 

system, then a diagonal capacitance may have little impact on execution time. It is unclear a 

priori whether a full or lumped capacitance will lead to greater accuracy.

Ionic updates—For the ionic step, any combination of the capacitance and mass matrices 

may be lumped. The four cases are as follows:

LL. With both of the matrices lumped, the ionic update equation becomes

Because va ≠ 0, the ionic equations reduce to the uncoupled form

Clearly the fully lumped ionic solve is equivalent to nodal integration, which is 

tantamount to solving the strong form of the operator split equations (22) directly at the 

nodes. This is the widely used choice [2] owing to two key computational benefits. 

Krishnamoorthi et al. Page 12

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2015 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



First, because the capacitance matrices are diagonal, explicit time stepping for the 

voltage is made very efficient in both the diffusion and ionic solves. Secondly, because 

the ionic step is purely local (i.e., involving only quantities at single nodes) it allows for 

“embarrassingly parallel,” uncoupled time-stepping of the nodal equations, without any 

communication among processors in a distributed computing environment. This makes 

it possible to implement asynchronous adaptive time-stepping schemes, with integration 

of each node’s ionic equations advancing from tn to tn+1 = tn + Δt through a sequence of 

sub-time steps, τk, k = 1, …, K, τK − τ1 = Δt, with Δτ = τk+1 − τk adaptively determined, 

for instance by the rate of change of nodal voltage [13].

Full lumping in the ionic part of the split can be combined with either of two options for 

the diffusion part, a full capacitance (F-LL) or lumped capacitance (L-LL). The latter 

choice, in which all matrices in both parts are lumped, corresponds to what 

Pathmanathan, et al. [25] term full lumping. This is the standard choice used in codes 

that employ explicit time-stepping for the voltage. In the partially lumped (F-LL) 

option, the full capacitance in the diffusion part makes it necessary to use implicit 

schemes for voltage updates. However, because capacitance lumping contributes error 

to the solution[25], we anticipate that this error might be mitigated by using the full 

capacitance in the diffusion part, while retaining a lumped capacitance in the ionic 

update in order to enjoy the advantages of asynchronous adaptive time stepping.

FF. The capacitance and mass in the ionic part are both full. The ionic update equation 

then becomes

But again since M ≠ 0 the ionic equations uncouple to

Thus this scheme turns out to be equivalent to CLML. We see then that two of the eight 

lumping combinations are redundant: F-FF≡F-LL and L-FF≡L-LL. This seemingly 

trivial result has surprising and important implications. It means that when operator 

splitting is employed, full lumping of the ionic part will yield solutions every bit as 

accurate as no lumping at all. This is in stark contrast to the situation without operator 

splitting [25], where full lumping produces significant error. The apparent inconsistency 

suggests that perhaps the source of the error incurred by lumping is tied to the diffusion 

terms in the governing equations. We return to this point subsequently in the discussion 

of numerical studies below.

LF. Lumping of the capacitance but not the mass matrix is akin to the half lumping 

approach described Pathmanathan, et al. [25]. In this case the ionic part becomes
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The ionic solve is no longer interpretable as purely local, node-by-node integration of 

ionic ODEs. The nodal ionic equations are not uncoupled as in the above cases. A 

particularly important consequence of the coupling generated by a full mass matrix is 

that during the ionic solve, the complete set of nodal ODEs, including the state 

variables,

must be integrated synchronously. That is, asynchronous adaptive time stepping 

strategies, such as that of [13], cannot be employed when the ionic mass matrix is full. 

Thus the nodal equations (21) and (24) must be integrated simultaneously at a single 

fixed time step. This, in large part, defeats the main purpose of operator splitting, to 

algorithmically decouple the numerically stiff ODEs from the (non-stiff) parabolic 

PDEs. On the other hand, one remaining advantage to this approach is that it enables 

explicit time-stepping of the voltage, especially when combined with lumping in the 

diffusion part (L-LF), which is essentially a split version of the half lumping scheme in 

[25]. This being the case, we expect accuracy to be improved relative to the fully 

lumped case (L-LL).

FL. This combination represents a sort of inverted half lumping. The ionic equations 

become

The full capacitance now prevents both explicit time stepping of the voltage and 

asynchronous adaptive time stepping of the state variables. Thus we expect less 

computational efficiency from the two schemes stemming from this choice, F-FL and 

L-FL.

Therefore, we have six distinct variants of the ICI scheme, denoted by character codes as 

summarized in Table I. In the following section, we assess the accuracy and convergence 

properties of these six schemes through a series of benchmark numerical studies.

3. BENCHMARK STUDIES

Here we present the results of numerical benchmark studies comparing the assortment of 

computational formulations considered in Section 2.

3.1. Comparison of Gauss Quadrature and Nodal Quadrature

As explained above, finite implementations of the cardiac EP problem can be sorted into two 

categories, based on whether “internal” ionic model variables are stored at (Gauss) 

quadrature points, or at nodes. To assess the differences between these two strategies, we 

simulated unidirectional electrical conduction in a 2D block of dimension 2.5 cm by 0.5 cm, 

meshed using standard 4-node quadrilateral elements with bilinear Lagrange interpolation. A 

stimulus current of 20, 000μA/cc was applied to a region from the left end up to 0.1 cm for 5 
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ms. For both approaches, full-order Gauss quadrature was used to integrate all diffusion 

terms. The consistent ionic nodal force current was calculated in two ways:

Nodal Quadrature Implementation—Ionic state variables were stored as nodal 

quantities ua, and nodal currents were computed as per eqn. (19), with the nodal integration 

weight defined as the nodal volume va = ∫ΩNadv (computed by Gauss quadrature). As 

discussed above, this is also equivalent to the so called “fully lumped” version of the ICI 

formulation.

Gauss Quadrature Implementation—State variables were stored at the Gauss points 

internal to each element, and consistent nodal currents computed according to the definition 

in eqn. (15a).

In both implementations, mass matrices were lumped and the equations integrated in time by 

explicit, forward Euler time-stepping with a single global time step of 0.001 ms, with no 

operator splitting. Mesh sensitivity was studied by varying the mesh size (i.e., element edge 

length) uniformly in both directions. The voltage was observed at a set of x locations (0.6, 

0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 cm) with y = 0.25 cm. To calculate the conduction 

velocity, vh, linear regression was performed on the times at which the voltage crossed −40 

mV at these locations. Figure 1(a) shows the conduction velocity as a function of mesh size 

for these two implementations. To estimate the error in the conduction velocity, values vh 

were compared to the result from a highly refined (Δx = 10μm) 1D finite-difference 

implementation, v* ≈ 52.81 cm/s. A log-log plot of the normalized errors (||vh − v*||/v*) is 

shown in Fig. 1(b). Near straight lines of slope ≈ 2 suggests roughly quadratic convergence.

Apart from the fact that the Gauss-state-variable implementation converges above and the 

Nodal-variable implementation converges from below, the two methods show comparable 

accuracy. In the following, we shift focus squarely onto the later, to consider the 

performance of alternate matrix-lumping options with operator splitting.

3.2. Preferential matrix lumping schemes

To assess the performance of the six distinct matrix lumping options in the split ICI 

formulation, we make use of the benchmark posed by Niederer, et al. [22]. As shown in Fig. 

2 a rectangular block of dimension 2.0 × 0.7 × 0.3 cm defines the domain, with monodomain 

EP modeled by the Ten Tusscher Epicardial model [26]. Following [22] we set the Surface 

area to volume ratio as χ = 1400 cm−1 and the membrane capacitance as Cm = 1μF/cm2. 

Conduction is defined to be transversly isotropic, with the fast-conducting fiber direction set 

along the 2.0 cm edge of the box. The conductivity σ was chosen as 0.1334mS/cm along the 

fastest direction (X axis) and along the other two axis σ was 0.0176mS/cm. A stimulus 

current of 50, 000μA/cc applied for 2 ms to corner 1 of the block over a set of nodes 

contained in a 0.15cm3 cube. A sample mesh with element size 0.02cm is shown in Figure 

2(b).

We use operator splitting to solve the diffusion and ionic parts of the ICI-formulated EP 

equations separately, as developed in Section 2. The diffusion steps i) and iii) of Algorithm 
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1 are solved implicitly using Crank-Nicolson scheme. For instance, the step i) update takes 

the form

(26)

The ionic integration in step ii) is solved using the semi-implicit method introduced by 

Whiteley [16], wherein the new state variables un+1 are solved implicitly using the previous 

value of the voltage  , followed by an explicit voltage update. We break the full time 

step Δt into a number of ionic sub-steps, {τ0 = tn, …, τk = τk−1 + Δτ, …, τK = tn+1}. The 

semi-implicit scheme solves allows relatively larger ionic sub-steps Δt than explicit 

schemes. The implicit solution for the diffusion part is computed by the Conjugate Gradient 

method with a Jacobi preconditioner as implemented in the Trilinos software package [27]. 

Trilinear 8-noded hexahedral elements were integrated with 2nd order (full) Gauss 

Quadrature.

The benchmark problem was solved using each of the six distinct operator-split matrix-

lumping schemes summarized in Table I. In each solution, the times were recorded when the 

voltage reached 0 mV at each of the locations indicated in Figure 2(a). These results for the 

four best-performing schemes are listed in Table III in Appendix A. Results for the L-FL 
and F-FL schemes are not listed because solutions diverged for time steps greater than Δt = 

10−5ms.

The activation times, as plotted along the straight line from P1 to P8 in Fig. 3, show very 

little sensitivity to time step for Δt ≤ 0.05 at all mesh sizes. However, results are sensitive to 

the mesh size. Roughly the data appears to follow two trends. First, for schemes with a 

lumped mass matrix, L-LL and F-LL, activation times tend to decrease as Δx decreases. 

Second, schemes with consistent mass matrices, F-LF and L-LF, yield activation times that 

tend to increase as Δx decreases. Judging by these trends it would appear that the F-LL and 

L-LF schemes are the most accurate for Δx ≤ 200μm. These two variants converge from 

opposite directions, and have values that agree within a few percent for the finest meshes. 

Moreover these two variants give the least mesh sensitivity.

One way to interpret the convergence trends is to recognize the use of a consistent mass 

matrix in the ionic half-steps as equivalent to Laplacian smoothing of the ionic currents. A 

simple example demonstrates that this is the case. Let us consider a 1-D cable of two-noded 

linear Lagrange elements. The mass matrix for each element is given by

(27)

The consistent nodal ionic currents are computed from nodal current densities as I = M . 

After global assembly, this gives
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(28)

The global mass matrix can be decomposed as follows

or

where 1 is the identity matrix, β = Δx2/6, and

is the discretization of the Laplacian operator  ≈ ∇2 . Accordingly the operation I = M 
 represents a Laplacian smoothing of the nodal currents. The ionic integration step in the 

operator split is equivalent to a discretization of the PDE

In other words, the numerical smoothing provided by the consistent mass matrix is 

interpreted as producing some algorithmic diffusion of the ionic currents. It follows that this 

artificial diffusion should augment the physical diffusion in the monodomain equations. An 
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artificial increase in diffusion is consistent with observation conduction velocities increasing 

with mesh size for the full-mass L-LF and F-LF methods.

This interpretation may also help to explain why the L-FL and F-FL methods tend to 

diverge: in each of those cases the use of a consistent capacitance and a lumped mass 

produces the opposite of smoothing — what we might term sharpening. Explicit updates of 

the voltage then take the form Vn = Vn−1 + ΔtC−1ML . Because the consistent capacitance 

has the same structure as the mass, it is also effectively a smoothing operator. Therefore C−1 

acts as a sharpening operator, i.e., having the opposite effect of smoothing the nodal 

currents, presumably destabilizing the numerical solution.

3.3. Wave speed convergence

The results from the benchmark problem from [22] allow for straightforward comparison of 

the ICI operator-split variants with each other and with other published solvers. To more 

systematically study the convergence of our implementations, we have also used them to 

solve for unidirectional wave propagation in a simple 3-D cable, as in Sec. 3.1. In particular 

we compare the two putatively most accurate schemes F-LL and LLF, with the fully 

lumped L-LL scheme most common in the literature and F-LF. A 3D cable of length 2 cm 

was used to study the effect of mesh size on these formulations. One end of the cable was 

stimulated for 5 ms by 50000 μA/cc. The activation times at several different locations in the 

cable (when V = 0mV) were recorded, and the conduction velocity (vh) was computed by 

linear regression. The conduction velocity for a mesh size of 10μm was chosen as the 

converged velocity (v*). Figure 4 shows the comparison between the usual consistent 

lumped formulation and the proposed formulation with preferential lumping. The plot 

confirms that the F-LL and LLF converge more quickly than the standard fully-lumped 

formulation L-LL. The time steps chosen were Δt = 0.1ms and Δτ = 0.01ms. The other key 

feature to take away from this plot is that beyond a mesh size of 200μm the wave speed is 

questionable even with the most accurate schemes. This is of importance while using 

automatic meshers to generate a mesh in a typical 3-D cardiac analysis. While the average 

element size might be less than 200 μm, any elements of size greater than 200μm may 

produce spurious local differences in conduction velocity.

3.4. CPU efficiency

The choice about which formulation to employ hinges not only on accuracy, but also on the 

computational efficiency. To compare CPU times, we tested the two most accurate schemes 

F-LL and L-LF on uniaxial propagation in a 2-D bar 6 × 2 cm, meshed with a uniform 

element size of 200 μm. Nodes lying with 0.2cm of the left end of the bar were applied a 

stimulus current of 50000μA/cc for 5 ms. Nodes lying with 0.2cm of the left end of the bar 

were applied a stimulus current of 50000μA/cc for 5 ms. Conduction velocity was computed 

based on the activation times at at x = 0.5cm and x = 2.0cm. The L-LF scheme requires the 

global assembly of the ionic current vectors I = M  in each sub-step of the ionic 

integration step Δτ. This global coupling of neighboring nodes makes asynchronous 

adaptive sub-stepping of the ionic updates impossible. Therefore this method was performed 

using uniform ionic sub-time steps. For the F-LL scheme on the other hand, a lumped mass 

matrix renders the nodal ionic updates completely decoupled, enabling asynchronous 
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adaptive time stepping as noted above. We tested the method both with uniform ionic sub-

time-steps, and with Δτ adapted for each node independently based on the the value of 

dV/dt, following Qu and Garfinkel [13].

Simulations using several different time steps (Table II) show that conduction velocity tends 

to increase as time steps are reduced. Accuracy appears to be slightly better for F-LL, with 

slightly higher (≈ 4%) conduction velocities than L-LF. CPU times (Table II) for the two 

methods differ by negligible amounts. To rationalize this, we note the two main differences 

between the methods: (i) L-LF requires a global assembly operation in each ionic sub-step 

whereas F-LL does not; and (ii) F-LL requires the solution of a linear system in each 

implicit diffusion sub-step, whereas L-LF does not. With the linear solution computed with 

a preconditioned conjugate gradient solver, both of these operations turn out to be order N in 

the number of nodes. Therefore it may not be surprising that computational costs are roughly 

equal. The one significant difference in performance between the two methods comes from 

employing asynchronous adaptive time-stepping for the ionic solve in F-LL: the final row of 

Table II shows that setting Δτ adaptively between 0.1 and 0.01 ms yields a CPU time 

roughly equal to that of a fixed Δτ = 0.01 ms simulation, but with accuracy closer to that of 

a fixed Δτ = 0.1 ms simulation.

4. PHYSIOLOGICAL CONSEQUENCES OF MESH DEPENDENCE

One of the key observations from the convergence studies above is that for element sizes 

above ≈ 200μm the conduction velocity attained from most of the schemes is highly 

sensitive to mesh size. While for uniform meshes such as used in the above studies this mesh 

dependence produces noticeable quantitative errors, it can lead to even qualitative 

differences when applied to nonuniform meshes, i.e., containing elements with a non-

uniform distribution of element edge lengths, as are commonly generated with automatic 

meshing software [12, 28, 29]. To get a sense for the mesh-dependence of our operator split 

schemes in more complex settings, we here simulate using non-uniform meshes (a) planar 

wave propagation and (b) the breakup of spiral waves as is found in ventricular fibriliation 

[e.g., 30].

4.1. Effect of mesh size on wave speed

Here we consider unidirectional EP propagation in a 2D block 6cm × 2cm, meshed with a 

nonuniform quadrilateral mesh, and integrated with the L-LF scheme. Bilinear quadrilateral 

elements were used with second-order Gauss quadrature. To generate non-uniform meshes, 

the geometry was partitioned into three regions (fig. 5. Two non-uniform meshes were 

considered: a “fine” mesh with element edge lengths on the boundary of 100μm and 200μm, 

and a “coarse” mesh with boundary edge lengths 200μm and 400μm. The distributions of 

element edge lengths (fig. 5) had minimum, average, and maximum edge sizes hmin = 67μm, 

havg = 119μm, and hmax = 256μm for the fine mesh, and hmin = 130μm, havg = 238μm, and 

hmax = 516μm for the coarse mesh.

Conduction was initiated by applying a stimilus current of 50, 000μA/cc to the region within 

0.15cm of the left boundary. The activation sequence plots (fig. 5) show that by t = 37ms the 

wave front is still in the uniform mesh region and remains straight and perpendicular to the 
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lateral boundaries. After the wave enters the non-uniform mesh region, by t = 49ms, the 

wavefront is noticeably curved in the coarser nonuniform mesh. This is a consequence of an 

artificially slower wavespeed in the upper right partition of the mesh bounded by 400μm 

element edges. The artifactual curvature of the wave front becomes increasingly pronounced 

with time, and evident in the snapshots at t = 69ms and t = 100ms. Wave front curvature is 

barely detectable in the finer nonuniform mesh.

We note that the ratio of largest to smallest element edge length in the present example is 

less than 5, and completely within the typical range for automated hexahedral and 

tetrahedral mesh generation procedures that have become common in cardiac modeling [12, 

28, 29]. The distortion of the wavefront produced by the larger elements illustrates that the 

potential for artifactual results is determined more by the largest element size than by the 

average. Based on the convergence studies in the previous sections, we expect that meshes 

with elements larger than 200 μm are likely to produce significant errors in conduction. 

When larger elements are isolated to certain regions, as in the present example, they may 

cause wavefronts to distort and even change direction, despite a smaller average element 

size.

4.2. Spiral break

While simplified bar/slab geometries with uniaxial conduction are appropriate for systematic 

convergence studies, more physiologically relevant simulations commonly involve non-

uniform conduction. A particular example is the simulation of spiral/scroll waves associated 

with cardiac arrhythmia and fibrillation. Here we simulated spiral waves in a 6-cm square 

block of tissue using a conventional “S1–S2” protocol (fig. 6). The initial stimulus (S1) was 

applied uniformly along the left edge of the block for 4ms with a stimulus current of 50, 

000μA/cc. A second stimulus (S2) was applied after a delay of 265ms subsequent to S1, 

over a 1-cm radius circular disc offset from the center of the block by 1cm along the Y axis, 

for 3 ms, also at 50, 000μA/cc. The model was meshed with fully-integrated bilinear 

quadrilateral elements. The ionic currents were defined using the Luo-Rudy-II ionic model 

[23]. Five different cases were considered to study the effect of mesh size of producing 

physiologically acceptable spiral waves (fig. 7): (A) a uniform mesh with 100μm sized 

elements, (B) a uniform mesh 200μm sized elements, (C) a uniform mesh 400μm sized 

elements, (D) a nonuniform mesh with two edges set to 150μm and other two set to 200μm 

sizes elements (hmin = 112μm, havg = 173μm, hmax = 248μm), and (E) a nonuniform mesh 

with two edges set to 200μm and other two set to 400μm sized elements (hmin = 138μm, havg 

= 279μm, hmax = 496μm). The uniform 100μm, 200μm and the nonuniform 150 – 200μm 

show a good agreement in the voltage evolution. However the results from 400μm mesh 

even at T= 19ms shows a non smooth wavefront. The wavefront exhibits the presence of 

corners which is physiologically not acceptable. Also the wave front is not smooth, but 

rather noticeably jagged. A non-smooth wavefront is also obtained from the nonuniform 250 

– 400μm mesh, but is not quite as jagged as in the 400μm mesh. Moreover the nonuniform 

250 –400μm mesh shows a qualitatively different break up pattern from T= 155ms to T= 

185ms: while all the other meshes show two spiral waves, in this mesh the spiral arm in the 

bottom gets extinguished. This is clearly a artifact of discretization error — the spiral 

encounters excitable media but nonetheless dies out instead of continuing to propagate. 
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While the extinguishing of spiral waves is physiologically valid, it is not so in the range of 

phase space corresponding to the specified ionic cell model parameters. This provides an 

example of how such numerical artifacts could prompt errant physiological conclusions.

5. CONCLUSIONS

In this paper we have examined the combined effects of operator splitting and spatial 

integration schemes on the accuracy and efficiency of finite-element solution of the 

reaction-diffusion equations of cardiac electrophysiology. In particular, we have made a 

break from the standard approach of computing “lumped” approximations to the consistent 

capacitance and mass matrices that appear in a variational formulation of the boundary value 

problem. The common argument for “mass lumping” is efficiency — it decouples the nodal 

equations governing time evolution of voltage, thereby allowing for trivial local time-

stepping updates, which are much more CPU-efficient than the solution of coupled linear 

systems with global (but sparse and banded) matrices. Adding to the observations of others 

[25], we have shown that this efficiency can sometimes come at a cost of reduced accuracy. 

However, our convergence studies show that the six distinct choices for preferential lumping 

can produce a wide range of convergence behaviors. Two schemes in particular — the L-LF 
scheme and the F-LL scheme — exhibit excellent accuracy in addition to (or despite) 

increases in efficiency relative to a fully consistent implementation.

In the L-LF scheme, the lumped approximation of capacitance is used in both the diffusion 

and ionic parts of the operator split, and the consistent (full) ionic mass matrix is used in the 

ionic update. The lumping of all capacitance matrices in this scheme, which is akin to what 

Pathmanathan, et al. [25] label “half lumping,” allows for explicit time updates to the 

voltage to be computed trivially, without the need for solving any global linear system. The 

multiplication of nodal current densities by a consistent (“full”) mass matrix can be 

interpreted as producing an additional (artificial) diffusion of ionic currents, which has the 

effect of speeding up wavefronts, causing the conduction velocity to converge from above as 

meshes are refined. Despite the speedups afforded with explicit voltage updates, the “full” 

mass matrix formulation prevents asynchronous, adaptive time-stepping of the ionic part of 

the operator split, one of the key sources of efficiency afforded by operator splitting. 

However, the L-LF scheme does allow for global sub-stepping in the ionic solution step. In 

other words, some efficiency can be gained by doing diffusion updates (Δt) less frequently 

than ionic updates (Δτ < Δt) while still maintaining comparable accuracy.

In contrast, the F-LL scheme employs a consistent (full) capacitance in the diffusion part of 

the operator split, and lumped approximations of both the capacitance and mass matrices in 

the ionic part. Use of the consistent capacitance in the diffusion part can be rationalized a 

posteriori in light of two considerations. First, with ionic sub-stepping (Δt < Δt) employed, 

the diffusion part is solved less frequently; thus any reduction in efficiency in a diffusion 

time step is less consequential than in an ionic time step. But second and more important, 

because explicit time-stepping of the diffusion part places excessive requirements on the 

time step Δt, it is generally more efficient, and comparably accurate to use implicit time-

stepping for the diffusion updates. Thus, lumping of the capacitance has minimal impact on 

efficiency of the solution of the linear system for an implicit (e.g., a Crank-Nicholson) 
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diffusion update. In light of this logic, it seems more productive to search for ways of 

speeding up the ionic part of the operator split. The lumped approximation of both the 

capacitance and mass matrices in the F-LL scheme does this optimally, by completely 

decoupling the nodal equations into local ODE’s. As we showed, this result is equivalent to 

what is achieved either by trading standard Gauss quadrature for nodal quadrature, or by 

performing the operator split to the original strong form of the BVP, thereby requiring 

derivation and spatial discretization of the weak form of only the diffusion part of the 

governing equations. Remarkably, this single modification to the standard “fully lumped” 

approximation of the operator split equations, using a consistent (full) capacitance matrix 

only in the diffusion update, allows us to “have our cake and eat it too.” That is, it yields a 

scheme with accuracy rivaling fully consistent and fully coupled implementations (e.g., ICI 

and SVI in [9, 25]), but capable of enjoying the tremendous computational speed-ups 

afforded by asynchronous adaptive time-stepping of the decoupled nodal ionic equations 

[13].

We examined the accuracy and efficiency of these “preferentially-lumped” operator-split 

formulations through a sequence of benchmark problems, ranging from simple uniaxial 

wavefront propagation to spiral wave breakup. We find that results are generally satisfactory 

for the L-LF and F-LL schemes when element sizes are less than about 200μm. Other 

lumping combinations require meshes of at least twice the element density for acceptable 

accuracy. We demonstrated that particular attention to mesh sensitivity must be given when 

computing with non-uniform meshes, as are the common result of automated segmentation 

and mesh generation software. Not surprisingly, for nonuniform meshes it is the size of the 

largest element (and not the smallest or average) that controls the accuracy of the solution 

and the presence or absence of spurious artifacts. We encountered two key implications of 

these observations for physiological simulation studies. Local gradients in mesh density, 

when allowing element sizes to rise above h ≈ 200μm, can cause artifactual changes in the 

curvature of wavefronts. As demonstrated in the context of re-entry and spiral wave 

breakup, such errors can lead to predictions that are qualitatively incorrect, e.g., spurious 

“corner” formation in wave fronts, or even the extinguishing of waves that should continue 

to propagate. These results underscore the importance of simulating with sufficiently refined 

meshes.
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A. PERFORMANCE OF LUMPING SCHEMES

A complete numerical comparison of the activation times for each lumping schemes at each 

location in the Niederer Benchmark Problem [22] is shown in Table III. For comparison 

with other codes tested by Niederer et al [22], and to show the impact of changing spatial 

resolution on activation wave, and propagation along and across the preferential fiber 

direction, we evaluated activation times in the plane shown first row in Figure 8. Schemes 

F-LF, F-LL and L-LF show minimal variation compared to L-LL. For the schemes L-LL 
and F-LL activation time curves have a common morphology, with the activation wave 

increasing in velocity as the meshes were refined (Figure 9). However schemes F-LF and L-
LF exhibit the opposite, the activation wave decreasing in velocity with meshes refined. The 

change in velocity is less pronounced in F-LL, F-LF and L-LF compared to L-LL.
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Figure 8. 
For a slice plane connecting points P1 and P8 the activation times comparison between four 

different schemes show minimal difference in results between different mesh sizes for F-LF 
and L-LF.

Figure 9. 
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Activation time at point P8 depicted in Figure 8 for every combination of spatial and 

temporal refinement. (a) L-LL, (b) F-LL, (c) F-LF and (d) L-LF.

Table III

Results from solution of Niederer Benchmark Problem [22], using L-LL, F-LL, F-LF, and 

L-LF variants of the ICI formulation with operator splitting.

Δx, Δt P1 P2 P3 P4 P5 P6 P7 P8 C

L-LL

0.1, 0.005 1.46 32.68 9.56 34.69 30.68 47.62 33.49 48.68 22.67

0.1, 0.01 1.46 32.69 9.56 34.69 30.68 47.62 33.49 48.68 22.67

0.1, 0.05 1.46 32.70 9.57 34.72 30.68 47.63 33.54 48.69 22.72

0.2, 0.005 1.46 35.86 12.57 40.69 41.65 59.66 45.63 62.67 29.75

0.2, 0.01 1.46 35.87 12.57 40.69 41.65 59.66 45.23 62.67 29.75

0.2, 0.05 1.46 35.98 12.58 40.69 41.65 59.66 45.63 62.67 29.75

0.5, 0.005 1.46 60.30 29.61 69.95 124.34 139.62 127.63 141.62 69.49

0.5, 0.01 1.46 60.31 29.61 69.96 124.37 139.62 127.63 141.62 69.51

0.5, 0.05 1.46 59.56 29.64 69.65 125.66 141.08 129.59 142.75 66.69

F-LL

0.1, 0.005 1.46 30.77 7.72 32.55 25.63 40.68 26.71 41.66 18.98

0.1, 0.01 1.46 30.79 7.72 32.58 25.63 40.69 26.71 41.68 18.98

0.1, 0.05 1.46 31.69 7.72 32.70 25.68 40.69 26.76 41.69 19.66

0.2, 0.005 1.46 30.69 8.71 31.70 28.68 41.97 30.68 42.77 19.90

0.2, 0.01 1.46 30.70 8.71 31.70 28.68 41.99 30.68 42.78 19.99

0.2, 0.05 1.46 30.71 8.71 31.75 28.68 42.63 30.68 43.57 19.99

0.5, 0.005 1.46 32.66 11.64 33.83 48.60 60.99 50.62 62.13 26.79

0.5, 0.01 1.46 32.65 11.64 33.82 48.59 60.88 50.61 61.95 26.77

0.5, 0.05 1.46 32.66 11.64 33.84 48.56 60.78 50.61 61.85 26.77

F-LF

0.1, 0.005 1.46 29.91 6.75 30.74 21.91 37.57 23.59 37.73 17.83

0.1, 0.01 1.46 29.91 6.75 30.74 22.91 37.57 23.59 37.73 17.83

0.1, 0.05 1.46 30.66 6.76 31.44 22.08 37.69 23.67 37.99 17.87

0.2, 0.005 1.46 27.78 6.68 28.71 19.86 33.71 20.74 33.74 16.69

0.2, 0.01 1.46 27.78 6.68 28.71 19.86 33.69 20.75 33.74 16.69

0.2, 0.05 1.46 28.67 6.68 28.74 19.94 33.72 20.75 34.05 16.74

0.5, 0.005 1.46 23.82 4.70 24.45 17.16 26.00 17.57 26.47 13.41

0.5, 0.01 1.46 23.82 4.70 24.44 17.16 25.98 17.57 26.46 13.41

0.5, 0.05 1.46 23.83 4.70 24.47 17.16 26.02 17.54 26.48 13.42

L-LF

0.1, 0.005 1.46 31.31 7.69 32.62 24.65 39.74 25.69 40.70 18.98

0.1, 0.01 1.46 31.31 7.69 32.62 24.65 39.74 25.69 40.71 18.98

0.1, 0.05 1.46 31.63 7.69 32.68 24.66 40.69 25.69 40.70 19.13
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Δx, Δt P1 P2 P3 P4 P5 P6 P7 P8 C

0.2, 0.005 1.46 30.64 7.51 30.94 22.78 37.43 23.72 37.72 18.58

0.2, 0.01 1.46 30.64 7.51 30.92 22.78 37.35 23.72 37.72 18.58

0.2, 0.05 1.46 30.68 7.51 31.54 22.79 37.35 23.72 37.72 18.58

0.5, 0.005 1.46 27.55 5.48 27.65 20.06 29.57 20.52 29.65 14.83

0.5, 0.01 1.46 27.56 5.48 27.65 19.98 29.56 20.49 29.65 14.83

0.5, 0.05 1.46 27.56 5.48 27.65 19.98 29.56 20.49 29.65 14.83
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Figure 1. 
Variation in conduction velocity due to spatial discretization error. (a) The Gauss integration 

causes the velocity to increase with increasing discretization error while the nodal 

integration has reverse effect. (b) Errors in conduction velocity are computed as the 

normalized difference relative to the value from a highly refined 1D finite-difference 

implementation (Δx = 10μm). Convergence is roughly second order for both methods.
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Figure 2. 
Rectangular domain from benchmark problem posed by Niederer, et al. [22]. (a) Schematic 

showing voltage sampling points. (b) Example mesh of trilinear hexahedral elements with 

uniform edge length of 0.02 cm.
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Figure 3. 
Activation time along the straight line connecting P1 to P8 for various mesh sizes and and 

time steps. (a) L-LL, (b) F-LL, (c) F-LF, and (d) L-LF.
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Figure 4. 
Convergence of different formulations. The plot on the right is plotted using log–log scale. 

All schemes show similar to convergence rates, however L-LL converges from the bottom 

while the other schemes from top and F-LF does not approach the converged value v*.
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Figure 5. 
Figure Comparison of voltage between two non-uniform meshes; finer one with 67μm ≤ x ≤ 

256μm and coarser one with 130μm ≤ x ≤ 515μm. The finer nonuniform mesh (D) shows 

minimal variation in the wavefront compared to the coarser nonuniform mesh (E).
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Figure 6. 
S1 and S2 stimulus locations on the block.
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Figure 7. 
Comparison of spiral wave breakup between five different meshes. Time shown denotes the 

time since the application of S2 stimulus. The finer nonuniform mesh shows minimal 

variation in the wavefront compared to the coarser nonuniform mesh. Uniform mesh (C) and 

nonuniform mesh (E) show physiologically unacceptable artifacts produced by large 

element sizes.
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Algorithm 1

Qu-Garfinkel Operator Split [13].

 Global time loop

 for step n = 1 … nmax do

i. Initialize V = Vn. Integrate Diffusion operator for half time-step Δt/2:

CV
.

+ σV = 0 → V
n+

1
2

. (23a)

ii. Initialize . Integrate Ionic operator for full time-step Δt:

CV
. = I(V; u)

du
dt

= f (V ; u)} → V
n+

1
2

∗
. (23b)

iii.
Initialize . Integrate Diffusion PDE for half time-step Δt/2:

CV
.

+ σV = 0 → Vn+1. (23c)

iv. Step forward in time: n ← n + 1.

 end for
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Table I

Summary of the eight variants of Ionic Current Interpolation combined with operator splitting.

Label
Diffusion Part Ionic Part

C C M

1. F-FF full full full

2. ≡ F-LL full lumped lumped

3. L-FF lumped full full

4. ≡ L-LL lumped lumped lumped

5. F-LF full lumped full

6. L-LF lumped lumped full

7. F-FL full full lumped

8. L-FL lumped full lumped
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Table II

Comparison in CPU time between L-LF and F-LL schemes. Ionic sub-steps are uniform, except for the last 

row, where Δtau; is adapted asynchronously for each node independently following [13].

Method Δt (ms) Δt (ms) Conduction Velocity (m/s) CPU time (s)

0.1 0.1 0.522 16.69

L-LF
0.1 0.05 0.532 27.72

0.1 0.01 0.555 123.76

0.1 0.1 0.536 17.06

F-LL 0.1 0.05 0.549 27.64

0.1 0.01 0.561 131.75

0.1 0.01–0.1* 0.543 18.113

*
Last row, uses adaptive time-stepping, which is possible for F-LL but not for L-LF (see main text).
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