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Abstract

Background—Hepatocyte transplantation is a potential therapy for certain diseases of the liver, 

including hepatic failure. However, there is a limited supply of human livers as a source of cells 

and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number 

available for transplantation. Hepatocytes from other species, e.g., the pig, have therefore emerged 

as a potential alternative source. We searched the literature through the end of 2014 to assess the 

current status of experimental research into hepatocyte xenotransplantation.

Literature search and results—The literature search identified 51 reports of in vivo cross-

species transplantation of hepatocytes in a variety of experimental models. Most studies 

investigated the transplantation of human (n=23) or pig (n=19) hepatocytes. No studies explored 

hepatocytes from genetically-engineered pigs. The spleen was the most common site of 

transplantation (n=23), followed by the liver (through the portal vein [n=6]) and peritoneal cavity 

(n=19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a 

species barrier.

Conclusions—The data provided by this literature search strengthen the hypothesis that 

xenotransplantation of hepatocytes is feasible and potentially successful as a clinical therapy for 

certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes 

isolated from genetically-engineered pig livers may address some of the immunological problems 

of xenotransplantation.
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Introduction

Orthotopic liver allotransplantation is currently the treatment of choice for patients with end-

stage liver disease. However, it is limited by a shortage of deceased human donors, which 

may result in a suitable allograft not being available when needed for a patient .with acute 

liver failure (ALF) or acute decompensation of chronic liver disease. Hepatocyte 

transplantation (Tx) is a potential alternative to whole liver Tx in the treatment of ALF or 

some liver-based metabolic disorders (1–23). Scaled-up isolation methods are available to 

isolate almost the entire hepatocyte population from human and pig livers (24–26). 

However, most healthy livers from deceased donors are prioritized for liver Tx, and so 

human hepatocytes that are healthy and functional are even more difficult to obtain than 

whole livers (11). Therefore, other species as sources of hepatocytes are being investigated, 

as discussed previously by others (27,28).

Pig hepatocyte xenoTx has several potential advantages (27,28), though evidence for some 

of these is limited :- (i) There could be an unlimited cell supply. (ii) Pigs have some 

metabolic similarities to humans (29–31). (iii) As the vascular endothelium of the liver is not 

transplanted, this may possibly reduce the risks of acute vascular rejection (32), though this 

is by no means certain. Our own preliminary studies indicate that there is less Gal 

expression and less human antibody binding to pig hepatocytes than to vascular endothelium 

(Ezzelarab M, et al, unpublished). There is also some evidence that hepatocytes show 

resistance to complement-mediated injury (33). (iv) Genetically-modified pigs should 

provide hepatocytes that to some extent are protected from the human humoral and cellular 

immune responses (34–36). (v) Conventional immunosuppressive therapy may possibly be 

sufficient to control rejection (37–39). (vi) Pig hepatocytes may be resistant to human 

viruses, such as the hepatitis and human immunodeficiency (HIV) viruses (40,41).

Before clinical trials of hepatocyte xenoTx are undertaken, evidence needs to be provided 

from animal studies that hepatocyte Tx across species barriers is likely to be successful. 

How long do hepatocytes from one species survive and function in another? Can adverse 

effects be anticipated?

We have reviewed the available literature on experimental hepatocyte xenoTx. We were 

unable to identify any report on clinical hepatocyte xenoTx. We did not review the literature 

on hepatocyte alloTx, which has been reviewed by others (5,6,42).

Literature Search

In the 35 years from January 1980 to December 2014, we identified 51 reports of in vivo 

hepatocyte Tx across species barriers (Table 1). We were unable to identify any studies 

before 1980. There was peak experimental activity in the period 2007–2014 (Figure 1).
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The majority of studies involved human (n=23) or pig (n=19) hepatocytes transplanted into 

a variety of other species (Figure 2). Rat (n=4), rabbit (n=4), and monkey (n=1) hepatocytes 

have also been transplanted. The most common recipient species were the mouse (n=24) and 

rat (n=22) (Table 1). Most commonly, the spleen (n=23) was the site of Tx, with the liver 

(via the portal vein, n=6) and peritoneal cavity (n=19) also being used. Details of all 51 

experimental studies are provided in Tables 2–6.

Results and Discussion

Hepatocyte alloTx has been carried out in an effort to correct an inborn error of metabolism 

(3,5,6,8–13,18–20,43–50) or to provide support in patients with hepatic failure 

(2,4,5,11,14,51,52). In view of the persistent shortage of hepatocytes from deceased human 

donors, if hepatocyte Tx is going to play a significant therapeutic role, an alternative source 

of hepatocytes will be required.

The pig could fulfill this need, but there are few data on whether pig hepatocytes will 

survive in humans and, if so, whether they will be able to carry out the functions of human 

hepatocytes. The latter question will be particularly important if pig hepatocytes are 

transplanted in an effort to correct a metabolic disease in which replacement of a specific 

enzyme or hormone is required, e.g., glycogen storage disease, Crigler-Najjar syndrome 

type 1 (Table 7) (5,43,44,48,50), rather than when only detoxifying functions are required.

In the study by Nagata et al (37), between 1–2 billion wild-type (genetically-unmodified) 

pig hepatocytes (in a 1% alginate matrix) were injected directly into the parenchyma of the 

spleens of three cynomolgus monkeys (weighing 5–9kg), who received relatively intensive, 

but clinically-applicable, conventional immunosuppressive therapy. Our own very 

preliminary data suggest that conventional immunosuppressive therapy (based on 

calcineurin inhibition), unless very intensive, may be insufficient to prevent an adaptive 

immune response against even genetically-engineered pig hepatocytes in nonhuman 

primates (Iwase H, et al. unpublished), and therefore immunosuppressive regimens (based 

on T cell costimulation blockade) proven to be successful in pig vascularized solid organ Tx 

(53–56) may be required.

In Nagata’s study, graft function was determined by the measurement of porcine albumin. A 

peak of porcine albumin was detected in the blood within the first month. Following a single 

injection, the pig hepatocytes functioned for between 25 days (limited by death of the 

monkey from a cytomegalovirus infection) and >80 days. Following reTx on two occasions 

in one of the monkeys, porcine albumin was detected for >253 days (died from 

complications associated with replacement of a central venous catheter). Of considerable 

interest and relevance to future clinical trials was the observation that, although hepatocyte 

Tx was associated with a slight increase in anti-galactose-α1,3-galactose (Gal) IgG 

(considered to be within the normal range), there was no detectable increase in anti-nonGal 

antibody levels, suggesting that the Tx of hepatocytes from pigs genetically modified to 

delete expression of Gal (α1,3-galactosyltransferase gene-knockout pigs) might induce a 

minimal humoral immune response.
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The considerable experience of encapsulated pig islet xenoTx, which includes several small 

clinical trials (57), suggests that encapsulation is not yet fully successful in protecting islets 

from the primate immune response, and therefore is unlikely to be fully successful in 

protecting pig hepatocytes. However, several groups have demonstrated some protection by 

hepatocyte encapsulation (58–64).

Currently, there appears to be no experience of the Tx of hepatocytes from genetically-

engineered pigs into other species, though data from other models of xenoTx strongly 

suggest that hepatocytes from these pigs will provide a greater likelihood of success 

compared with those from wild-type pigs [reviewed in (65,66). We would suggest that, for 

Tx into humans, hepatocytes from genetically-engineered pigs in which both Gal and N-

glycolylneuraminic acid (NeuGc) expression is absent (67), and which express at least one 

human complement-regulatory protein, will be advantageous to graft survival. If pig-to-

nonhuman primate hepatocyte Tx is observed to be identified with a thrombotic reaction, 

then possibly the additional expression of a human coagulation-regulatory protein might be 

valuable. If hepatocytes are found to phagocytose human red blood cells and/or platelets 

(which we believe is unlikely), then steps may need to be taken to genetically engineer the 

pig to prevent this (discussed in 68).

Whether pig hepatocytes will carry out all of the functions required to maintain homeostasis 

in humans remains uncertain (31, 69–72). In a review of physiologic compatibilities 

between human and pig organ systems, Ibrahim et al drew attention to the 65% structural 

similarity between human and pig albumin (69). Porcine clotting factors (II, V, VII, X, XII) 

have been studied (73,74) and have been shown to trigger the human coagulation system 

(75–77). Other metabolic aspects, including the elimination of drugs by porcine hepatocytes, 

were discussed by Ibrahim et al (69).

There is a little evidence from orthotopic pig liver Tx in nonhuman primates that pig 

hepatocyte function will at least provide some factors required by primates, but this 

evidence is very limited (30,65,78,79). Ekser and his colleagues demonstrated that in 

baboon recipients of livers from genetically-engineered pigs, although follow-up was for 

less than one week, many parameters of hepatic function, including coagulation, remained in 

the near-normal range. Western blot demonstrated that pig proteins (albumin, fibrinogen, 

haptoglobin, and plasminogen) were produced by the pig liver, and production of several 

coagulation factors was also confirmed. Apart from the experience of Nagata et al (37), 

there is no evidence in the pig-to-nonhuman model of hepatocyte Tx.

Extracorporeal pig liver perfusion with human blood has generally been for such short 

periods of time (hours) that few conclusions can be drawn. However, decreased levels of 

vitamin K-dependent clotting factors (VII and X) were documented to be produced by the 

pig liver (80–82). There is also some evidence that pig hepatocytes can remove bilirubin 

from human blood (81,83). Although unlikely, there is also a risk that pig hepatocytes will 

phagocytose human erythrocytes (84–88) and/or platelets (86,89–93); it is unlikely this will 

occur in the absence of vascular endothelial cells and Kupffer cells.
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It is therefore difficult to come to any realistic conclusion on the efficacy of pig hepatocytes 

to provide the necessary metabolic functions that will be required after their Tx into humans.

A recent study by Komori et al (94), however, provides some encouragement. This group 

reported that adult pig hepatocytes yielded a 100-fold higher serum albumin level in 

immunodeficient mice than adult human hepatocytes (which in turn yielded a 1,000-fold 

higher level than fetal human hepatocytes). However, these findings differ from previous 

reports which showed either no significant difference in albumin production between human 

and pig (95) or lower levels of albumin in pigs than in humans (although total serum protein 

levels were equivalent). Function of pig hepatocytes transplanted into humans might also be 

affected by such factors as whether the recipient has hepatitis (96).

Clinical hepatocyte alloTx has demonstrated modestly encouraging results in the treatment 

of various inherited metabolic diseases, e.g., glycogen storage disease (44,48,50), Crigler-

Najjar syndrome (43,50), ornithine transcarbamylase deficiency (50), and tyrosinemia type 1 

(50).

The small survey reported here illustrates that there are data indicating that the Tx of 

hepatocytes can result in successful engraftment in widely-disparate species. For example, 

the Tx of human hepatocytes into the spleens of SCID or ALF mice, or into the portal vein 

of pigs with ALF, can provide life-supporting hepatic function and/or improvement in 

recipient survival (Table 2). Pig hepatocytes have been demonstrated to proliferate after 

implantation into extrahepatic sites in SCID mice or ALF rats (Table 4), and have also 

functioned for >8 months in a monkey receiving only conventional immunosuppressive 

therapy (37) (Table 3). Pig hepatocytes demonstrate some metabolic similarities to human 

hepatocytes (29–31). Rabbit hepatocytes have functioned in rats with ALF, and rat 

hepatocytes have engrafted and survived in ALF mice, allowing transient or definitive 

improvement of liver failure (Table 6).

However, in view of differences in metabolic function and immune responses between the 

various species combinations that have formed the experimental models, it is hard to draw 

conclusions relating to clinical pig-to-human hepatocyte Tx from most of the studies. 

Indeed, there has been only one study in the clinically-relevant pig-to-nonhuman model 

(37).

The minimum number of hepatocytes required to provide meaningful improvement in 

hepatic function in another species remains uncertain. The fewest human hepatocytes 

required to improve ALF in a xenoTx model has to date been reported to be 5×105, and the 

fewest pig and rat hepatocytes has been 2×106 and 1–2×105, respectively. The study by 

Nagata et al in the pig-to-monkey model suggested that the injection of approximately 1.5–

2.5×108/kg hepatocytes might be sufficient to have a clinical impact (37).

In summary, experimental experience to date provides optimism that pig hepatocytes 

transplanted into rat, mouse, and monkey are likely to engraft and function without 

excessive immunosuppressive therapy being required. However, any conclusion about the 

success of clinical pig hepatocyte Tx is clearly premature with respect to both metabolic 

function and immune response. Besides excluding vascular structures from the transplant 
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product, which should reduce the possibility of antibody-mediated xenogeneic rejection, 

hepatocytes isolated from genetically-engineered pigs may address other immunological 

concerns. The number of hepatocytes that will be necessary for the outcome to be of clinical 

relevance, e.g., correction of hepatic failure or correction of an inborn error of metabolism, 

remains uncertain.
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Figure 1. 
Number of publications on hepatocyte xenotransplantation, 1980–2014.
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Figure 2. 
Source species of hepatocytes in studies of xenotransplantation, 1980–2014
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Table 1

Experimental hepatocyte xenotransplantation, 1994–2014: hepatocyte source species, recipient species, and 

number of published studies

Source Species Recipient Species Number of Studies

Human Mouse 15

Rat 5

Pig 3

Monkey Mouse 1

Pig Rat 13

Mouse 4

Monkey 1

Rabbit 1

Rat Mouse 4

Rabbit Rat 4

TOTAL 51
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Table 2

Studies of human hepatocyte transplantation in other species

Recipient species Route of administration Number of 
hepatocytes 
transplanted

Conclusions Reference

Rat Intraperitoneal 1.5×107 Cryopreserved hepatocytes remain 
liver function

Moscioni 1989 (97)

Rat Intraperitoneal 2×107 Encapsulated hepatocytes survived and 
produced albumin

Wen 1998 (98)

Rat Intraperitoneal 2×107 A 2-week course of cyclosporine 
resulted in graft function for 60 days

Wen 2000 (99)

Mouse (SCID/uPA) Portal vein 5×105 Engrafted and partially repopulated 
liver

Dandri 2001(100)

Pig (pancreatec tomized) Portal vein 3 ×107 Insulin-producing hepatocyte line 
controlled diabetes

Okitsu 2004 (101)

Mouse (SCID/uPA) Spleen 5.0 to 7.5×106 Hepatocytes functioned Tateno 2004 (102)

Mouse (SCID/uPA) Spleen 1×106 Hepatocytes repopulated the liver and 
preserved normal function

Meuleman 2005 (103)

Mouse ( ALF) Intraperitoneal 50×106 Hepatocytes functioned Mai 2005 (61)

Pig (ALF) Portal vein 1 × 106 Immortalized hepatocytes significantly 
prolonged the survival of ALF pigs

Totsugawa 2007 (104)

Mouse (SCID/uPA) Spleen 7.5 or 10×105 Growth hormone enhanced 
proliferation of hepatocytes in 
SCID/uPA mice

Masumoto 2007 (105)

Mouse (SCID/ALF) Spleen 1×106 Immortalized hepatocytes improved 
survival of ALF mouse

Tsuruga 2008 (106)

Rat (F344 nude) Portal vein 5×106 Created immunodeficient rats that are 
suitable for hepatocyte Tx

Igarashi 2008 (107)

Mouse (SCID/uPA) Spleen 1×106 Mouse NK cells played a critical role 
in the rejection of hepatocytes

Kawahara 2010 (108)

Mouse (ALF) Intraperitoneal 40×106 Encapsulated immortalized 
hepatocytes improved survival

Sgroi 2011 (62)

Mouse (ALF) Intraperitoneal 3×106–6×106 Hepatocytes survived Link 2012 (63)

Rat (F344 nude) Portal vein 1 × 106 Hepatocytes engrafted Tachibana 2013 (109)

Fetal pigs and piglets In utero and percutaneous 1×107 in utero 
(fetal pigs) and 
5×107 

percutaneous 
(piglets)

In utero Tx allowed for stable 
engraftment

Fisher 2013 (110)

Mouse (uPA/SCID) Spleen 2.5×105 Hepatocytes functioned Tateno 2013 (111)

Mouse (nude) Subcutaneous 2.5×106 Overexpression of RhoC can enhance 
the tumorigenicity of HL7702 cells

Xie 2013 (112)

Mouse (uPA/NOG) Intraperitoneal 2×106 Hepatocytes survived and expanded Gutti 2013 (113)

Mouse (uPA/SCID) Spleen 1×106 Hepatocytes functioned Ohtsuki 2014 (114)

Mouse (TK-NOG ) Intraperitoneal 1×106 Human albumin produced Kim 2014 (115)

Mouse (nude/ALF) Spleen 1×106 Hepatocytes increased survival Vidal 2014 (116)

Abbreviations:

SCID/uPA mouse: The severe combined immunodeficiency/albumin linked-urokinase type plasminogen activator (SCID/Alb-uPA) human liver 
chimeric mouse model
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F344 nude rat: F344 nude rats devoid of T cells were irradiated with X-rays and injected with bone marrow cells from SCID mice

ALF: Acute liver failure

uPA/NOG mice: Severe combined immunodeficiency/IL-2Rgc null (NOG) mice carry two copies of the mouse albumin promoter-driven 
urokinase-type plasminogen activator transgene.

RhoC: Ras homologous C (RhoC)

HL7702 cell: The HL7702 cell line was stably transfected with a RhoC expression vector and then subjected to cell proliferation, differentiation, 
colony formation, migration and invasion assays

TK-NOG mice: herpes simplex virus type 1 thymidine kinase [TK] transgene expressed within the liver of a highly immunodeficient mouse strain 
[NOG
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Table 3

Studies of monkey hepatocyte transplantation in other species

Recipient species Route of administration Number of hepatocytes 
transplanted

Conclusions Reference

Mouse (SCID) Spleen 1×106 V5-treated hepatocytes improved 
survival

Tanaka 2006 (117)

V5: anti-apoptotic pentapeptide, composed of Val-Pro-Met-Leu-Lys, has been demonstrated to suppress apoptosis in several types of human cells.
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Table 4

Studies of pig hepatocyte transplantation in other species

Recipient species Route of administration Number of hepatocytes 
transplanted

Conclusions Reference

Rat (ALF) Intraperitoneal 4×107 Hepatocytes prolonged survival Makowka 1980a (118)

Rat (ALF) Intraperitoneal 4×107 Presensitization did not affect 
survival

Makowka 1980b (119)

Rat (ALF) Intraperitoneal 4×107 Hepatocytes prolonged survival Makowka 1981 (120)

Rat (ALF) Spleen 1×108 Cryopreserved hepatocytes 
supported hepatic function

Papalois 1997 (121)

Rabbit (Watanabe) Portal vein 1–2×108 Lowered serum cholesterol by 30–
60% for >100 days

Gunsalus 1997 (122)

Rat Subcutaneous 1×107 Hepatocytes survived Elçin 1999 (123)78)

Rat (cirrhotic) Spleen 1×107 Hepatocytes functioned Stefan 1999 (124)

Rat (ALF) Intraperitoneal 6×106 After 95% hepatectomy, 
cryopreserved encapsulated 
hepatocytes improved survival

Sarkis 2000 (125)

Rat Intraperitoneal 45×106/capsul e×3 capsules Encapsulated hepatocytes remained 
functional for >15 days

Benoist 2001 (58)

Rat (ALF) Intraperitoneal 6×107 Macroencapsulated hepatocytes 
prevented death

Sarkis 2001 (126)

Mouse (Balb/c) Spleen 2×106 Hepatocytes synthesized albumin Nishitai 2002 (127)

Rat (cirrhotic) Spleen 5×106 Hepatocytes prolonged survival Nagata 2003 (128)

Mouse (SCID) Spleen 1×106 Freshly isolated hepatocytes had 
better viability than cultured, 
preserved or cryopreserved 
hepatocytes

Nishitai 2005 (129)

Cynomolgus monkey Spleen 2×106 With conventional 
immunosuppressive therapy, 
hepatocytes functioned for 253 
days

Nagata 2007 (37)

Rat Intraperitoneal 30–40×106 cells/mL ×1.8ml Cryopreserved hepatocytes retained 
biological activity without 
immunosuppressive therapy

Baldini 2008 (59)

Mouse (ALF) Intraperitoneal 1×107cells/ml Encapsulated hepatocytes sustained 
hepatic function

Mei 2009 (60)

Rat (DPPIV- deficient) Intraperitoneal 1×107 Hepatic irradiation advantageous Yamanouchi 2009 (130)

Mouse (SCID) Spleen 1×106 Hepatocytes cultured in SAPNFs 
corrected ALF and prolonged 
survival

Yamamoto 2010 (131)

Rat (ALF) Spleen 3×107 Immortalized hepatocytes 
improved hepatic function and 
prolonged survival

Pan 2010 (132)

SAPNF: self-assembling peptide nanofiber (SAPNF) to provide a provisional three-dimensional (3-D) support to interact with cells to control their 
function in vivo.

DPPIV: dipeptidyl peptidase IV.
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Table 5

Studies of rabbit hepatocyte transplantation in other species

Recipient species Route of administration Number of 
hepatocytes 
transplanted

Conclusions Reference

Rat (ALF) Intraperitoneal 4×107 Hepatocytes prolonged survival Makowka 1980a (118)

Rat (ALF) Intraperitoneal 4×107 Presensitization did not affect survival Makowka 1980b (119)

Rat (ALF) Spleen 1×108 Hepatocyte graft survival was improved by 
daclizumab

Papagoras 2007 (133)

Rat (ALF) Spleen 1×108 Rapamycin offered no survival advantage Lytras 2010 (134)
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Table 6

Studies of rat hepatocyte transplantation in other species

Recipient species Route of administration Number of 
hepatocytes 
transplanted

Conclusions Reference

Mouse Spleen/ intravenous/subcutaneous 1×106 Intravenous or intrasplenic Tx was 
followed by a significantly lower 
DTH response than subcutaneous Tx

Tanabe 1994 (135)

Mouse (Alb- uPA) Spleen 1–2×105 Livers were reconstituted with rat 
hepatocytes

Rhim 1995 (136)

Mouse (ALF) Spleen 0.5×106 Hepatocyte survival was maintained 
by weekly Jo2 administration

Vidal 2008 (137)

Mouse (uPA/SCID) Spleen 5.0–7.5×106 Hepatocytes maintained their 
viability

Hata 2013 (138)

Alb-uPA mice: albumin-urokinase (Alb-uPA) transgenic mice

DTH: The delayed type hypersensitivity

Jo2: specific anti-mouse Fas monoclonal antibody
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Table 7

Hepatic metabolic disorders that potentially could be treated by hepatocyte xenotransplantation

α1-antitrypsin deficiency

Arginino-succinate lyase deficiency

Bile acid synthesis disorders

Crigler-Najjar syndrome

Galactosemia

Glycogen storage disease type I (Van Gierke’s disease)

Glycogen storage disease type IV (Debrancher enzyme deficiency)

Hemochromatosis

Hereditary fructose intolerance

Hereditary tyrosinemia type I

Inherited Factor VII deficiency

Ornithine transcarbamylase deficiency

Peroxisomal biogenesis disease

Progressive familial intrahepatic cholestasis types 1, 2, and 3

Urea cycle disorders

Wilson’s disease
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