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Abstract

Small-conductance Ca2+-activated K+ (SK) currents are important in the repolarization of normal 

atrial (but not ventricular) cardiomyocytes. However, recent studies showed that the SK currents 

are upregulated in failing ventricular cardiomyocytes, along with increased SK channel protein 

expression and enhanced sensitivity to intracellular Ca2+. The SK channel activation may be either 

antiarrhythmic or proarrhythmic, depending on the underlying clinical situations. While the SK 

channel is a new target of antiarrhythmic therapy, drug safety is still one of the major concerns.
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Introduction

Heart failure (HF) is associated with increased risk of sudden cardiac death (SCD), which 

accounts for up to 50% of death in patients with HF (Tomaselli and Zipes, 2004). The 

mechanisms of ventricular tachyarrhythmias in HF are complicated, involving anatomic 

remodeling, impaired conduction system, ion channel alteration, Ca2+ homeostasis, changes 

in neurohumoral signaling and genetic factors. The hallmark of electrophysiological 

remodeling is prolonged action potential duration (APD). Downregulation of most major K+ 

currents, increasing of late Na+ current and alteration of Ca2+ homeostasis contribute to 

prolongation of APD (Aiba and Tomaselli, 2010). Failing hearts are prone to electrical 

storm. Acute shortening of APD after termination of ventricular fibrillation (VF) with 

persistently elevated intracellular Ca2+ (Cai) leads to development of late phase 3 early 

afterdepolarizations (EADs), which is also known to promote immediate recurrence of atrial 
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fibrillation (AF) in isolated canine atrium (Burashnikov and Antzelevitch, 2003). Ogawa et 

al (Ogawa et al., 2009) subsequently documented acute but reversible APD shortening after 

defibrillation during episodes of electrical storm in failing rabbit hearts. The mechanisms of 

electrical storm in the rabbit model of HF remained unclear until Chua et al (Chua et al., 

2011) discovered that upregulation of apamin-sensitive small-conductance Ca2+-activated 

K+ (SK) current (IKAS) in failing hearts was responsible for the post-shock APD shortening 

(Figure 1). Apamin, a specific SK channel blocker (Adelman et al., 2012), prevented acute 

shortening of APD and recurrent spontaneous VF. These findings showed that SK currents 

were important in the electrical storm in this rabbit model of HF.

The discovery of SK channels

The research of apamin, a polypeptide bee venom, led to the identification of SK channels 

(Adelman et al., 2012). It has been found that lethal dose of apamin results in tonic 

convulsion and respiratory failure through its neurologic toxic effects. The SK channels 

were not well known until Kohler et al cloned the genes and detected the abundant 

expression of the mRNAs in the rat brain, heart, and other organs (Kohler et al., 1996). 

Electrophysiological study further showed that the SK channels are the only target of 

apamin (Adelman et al., 2012; Yu et al., 2014). In neuronal cells, the SK channels account 

for the slow component of afterhyperpolarization, which regulates neuronal discharges. SK 

channels contribute to repolarization of action potential in atrial cardiomyocytes and 

diseased ventricular cells (Bonilla et al., 2014; Chang et al., 2013a; Chua et al., 2011; Lee et 

al., 2013; Xu et al., 2003). The activation of SK channels also plays important roles in the 

function of a range of other tissues, such as the endothelium, intestine and urinary bladder 

(Feher et al., 2014; Hougaard et al., 2009; Ro et al., 2001). The SK channel family consists 

of 3 major subtypes: SK1, SK2 and SK3. In normal hearts, SK1 and SK2 are expressed 

predominantly in atria, and SK3 is expressed in both atria and ventricles (Tuteja et al., 

2005). Among these 3 subtypes, SK2 is the most sensitive to apamin (EC50 ~ 40 pM), SK1 

is the least sensitive (EC50 ~ 10 nM), and SK3 has intermediate sensitivity (EC50 ~ 1 nM) 

(Adelman et al., 2012). Apamin is a highly selective SK channel blocker and does not affect 

human cardiac Na+, L-type Ca2+ and major K+ currents (Yu et al., 2014). In addition to 

apamin, many other compounds also inhibit SK channels, including tamapin, UCL-1684, 

UCL-1848, NS8593, d-tubocurarine, dequalinium, etc (Weatherall et al., 2010). Tamapin 

and UCL-1684 have been shown to selectively block SK channels (Fanger et al., 2001; 

Pedarzani et al., 2002). The selectivity of other compounds has not yet been thoroughly 

investigated.

The role of SK channels in cardiomyocyte repolarization

In cardiomyocytes, trans-sarcolemmal Ca2+ influx through L-type Ca2+ channels, Ca2+ 

release from sarcoplasmic reticulum (SR), or combination of both, regulates the gating of 

SK channels (Lu et al., 2007; Terentyev et al., 2013). SK channels are coupled to L-type 

Ca2+ channels, and Ca2+ influx through L-type Ca2+ channels directly activates SK channels 

(Lu et al., 2007; Maingret et al., 2008). Ca2+-induced Ca2+ release (CICR) also triggers the 

activation of SK channels (Terentyev et al., 2013). The gating is endowed by the interaction 

between the pore-forming subunits and calmodulin. The Cai concentration required for half-
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maximal activation of SK channels is around 300–700 nM. SK channels are activated during 

the systolic phase when the Cai increases, and thereby the activation of SK channels 

repolarizes cardiomyocytes and shortens APD. Longer APD leads to longer Ca2+ wave and 

enhances activation of SK channels (Chang et al., 2013b), which helps shorten the APD. 

This mechanism is a negative feedback system and helps prevent excessive prolongation of 

action potential.

Recently, Terentyev et al reported that SR Ca2+ release is also necessary for SK channel 

activation (Terentyev et al., 2013). A spontaneous SR Ca2+ release wave activates SK 

currents, which contribute to repolarization during action potentials and attenuate delayed 

afterdepolarizations (DADs) driven by spontaneous Ca2+ waves. Thus, SK upregulation in 

HF may have an anti-arrhythmic effect by reducing triggered activity.

While SK channel proteins are present in both the atria and ventricles, the magnitudes of the 

SK currents are not uniformly expressed throughout the heart. Before the cloning of SK 

channels, Giles et al noted that rabbit atrial myocytes expressed more Ca2+-activated K+ 

currents than ventricular myocytes (Giles and Imaizumi, 1988). After the identification of 

SK channels, Xu et al (Xu et al., 2003) showed that apamin prolonged APD in atrial 

cardiomyocytes but had little effects in ventricular cells. The expression of SK channel 

protein and mRNA in atrial tissues is more pronounced than that in ventricular ones (Tuteja 

et al., 2005; Xu et al., 2003). Therefore, specific SK blockade, such as apamin (Yu et al., 

2014), was once thought to be atrial selective. SK channel modulation might be an ideal 

solution to manage atrial tachyarrhythmia because the ion channel blocking effects on 

ventricular cardiomyocytes were thought to be minimal. These observations led to 

significant enthusiasm of developing SK channel blockers for the management of atrial 

arrhythmias.

Multiple studies confirmed the importance of SK channels in atrial arrhythmogenesis. Li et 

al (Li et al., 2009) demonstrated more frequent EADs and enhanced inducibility of AF in 

SK2 knock-out mice than in wild type mice. Hsueh et al (Hsueh et al., 2013) also reported 

that SK channel blockers increased inducibility of atrial arrhythmia. The proarrhythmic 

mechanisms of SK channel blockade might be due to the prolonged APD and more 

pronounced APD heterogeneity, which facilitates wave breaks. On the other hand, Diness et 

al (Diness et al., 2010) demonstrated that SK channel blockers prevented and terminated AF 

in the guinea pigs, rats and rabbit models. They also noted that SK channel blockade 

lengthened atrial effective refractory period without affecting QT interval. The results were 

compatible with previous findings that SK channel blockers affected only the APD of atrial 

but not ventricular cardiomyocytes. Ozgen et al (Ozgen et al., 2007) showed that atrial burst 

pacing led to SK2 trafficking to the cell membrane, which shortened APD in pulmonary 

vein cells. These studies suggest that SK channel blockade might be both proarrhythmic and 

antiarrhythmic in the atria, depending on the experimental models and study protocols. In 

humans, genome-wide association studies of lone AF patients showed a significant 

association to AF on chromosome 1q21 (rs13376333), which is intronic to KCNN3 (SK3) 

(Ellinor et al., 2012; Ellinor et al., 2010). Overexpression of the KCNN3 in mice causes an 

increased risk of sudden death associated with bradyarrhythmias and heart block, possibly 

due to atrioventricular (AV) nodal dysfunction (Mahida et al., 2014). Those mice also are 

Chang and Chen Page 3

Trends Cardiovasc Med. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more susceptible to pacing-induced atrial arrhythmias. However, the exact mechanisms by 

which lone AF was associated with rs13376333 remain unclear.

Differential expression of SK channels in normal and diseased ventricles

In contrast to the reports that showed SK channels are important in the repolarization of 

atrial myocytes, the importance of SK channels in the repolarization of ventricular cells has 

been debated. Xu et al (Xu et al., 2003) showed that APD prolongation induced by apamin 

was much more pronounced in the atria than in the ventricles. Nagy et al (Nagy et al., 2009) 

showed that apamin did not alter APD in either normal atrial or ventricular cardiomyocytes 

of the dog, rat and human. Patch clamp study also showed that apamin had no effect on K+ 

currents in the rat and dog ventricular cells, although both the rat and dog ventricular tissues 

abundantly expressed SK2 channel protein. The reason SK channel blockers neither 

inhibited K+ currents nor altered APD in normal ventricular cardiomyocytes in spite of an 

abundant presence of the SK channel proteins is still a mystery (Nagy et al., 2009; Tuteja et 

al., 2005; Xu et al., 2003). To investigate the importance of SK channels in normal and 

failing ventricles, Chua et al (Chua et al., 2011) performed optical mapping studies in 

Langendorff perfused rabbit ventricles and showed that apamin had little effects on APD in 

normal ventricles. However, significant APD prolongation occurred in failing ventricles. In 

addition, apamin prolonged APD and eliminated post-shock recurrent spontaneous VF in 

failing rabbit hearts. The increased Ca2+ sensitivity of SK currents was proposed to be one 

of the mechanisms. Chang et al (Chang et al., 2013a) further showed upregulation of SK 

currents in failing human ventricles. Both enhanced Ca2+ sensitivity and increased SK2 

channel protein contributed to the upregulation of IKAS. The authors also showed 

heterogeneous upregulation of IKAS: the epicardial and the endocardial myocytes expressed 

greater current density than the mid-myocardial cells. The heterogeneity might also 

contribute to the arrhythmogenecity in failing hearts. More recently, Bonilla et al and Ni et 

al confirmed these observations by showing that apamin significantly prolonged APD in 

failing human and canine ventricular cardiomyocytes, along with increased expression of 

SK channel protein in failing ventricles (Bonilla et al., 2014; Ni et al., 2013). The authors 

further demonstrated that there was a trend for more ventricular SK protein expression and 

greater APD prolongation in dogs with 4 months than with 1 month of HF. However, in 

contrast to APD prolongation in normal atrial myocytes, SK blockade did not affect APD in 

either human or canine failing atrial cells. The results raised a concern of pharmacological 

SK blockade for the treatment of atrial arrhythmias. SK channel inhibition for atrial 

arrhythmias could be ineffective in patients with HF; moreover, it has potential risk of pro-

arrhythmic effects in the failing ventricles.

Besides HF, chronic myocardial infarction (MI) also upregulates SK currents (Lee et al., 

2013). In that study, the authors showed that apamin prolonged APD more in chronic MI 

rabbit ventricles than in controls, and that the effects of APD prolongation were magnified 

by rapid heart rates. Heterogeneous IKAS upregulation contributed to the greater APD 

prolongation in the peri-infarct zone. In addition to chronic MI, Stowe et al (Stowe et al., 

2013) showed that activation of SK channels protected hearts against acute ischemia-

reperfusion injury and SK channel blockers antagonized the protection. However, the 

activation of SK channels might also contribute to development of ventricular 
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tachyarrhythmias during acute myocardial infarction (AMI). Gui et al (Gui et al., 2013) 

showed that pretreatment of SK channel blockers significantly prolonged APD and 

prevented ventricular tachyarrhythmias in AMI animals.

In addition to cardiomyocytes, coronary arteries and cardiac stellate ganglia also express SK 

channels, and regulation of SK channels may also play significant roles in 

arrhythmogenesis. Endothelial SK channel activation leads to hyperpolarization, and 

contributes to the conducted dilatation of coronary arteries. Dysfunction of SK channels in 

endothelial cells, such as that occurs during aging, may contribute to impaired myocardial 

flow reserve (Feher et al., 2014). The SK channels in cardiac stellate ganglia are associated 

with sympathetic outflow. Shen et al (Shen et al., 2011) demonstrated that low-level vagus 

nerve stimulation reduced cardiac stellate ganglion activity and paroxysmal AF. The 

mechanism of the reduced stellate ganglion activity might be attributable in part to the 

upregulation of SK2 channels in the stellate ganglion (Shen et al., 2013).

The effects of SK channels activation and inhibition on arrhythmogenesis 

in failing hearts

SK channel activation may have both antiarrhythmic and proarrhythmic effects, depending 

on the underlying clinical situations. Apamin reduces APD heterogeneity and prevented 

post-shock spontaneous VF (Chua et al., 2011; Hsieh et al., 2013); on the other hand, 

apamin also prolongs APD, increases incidence of early afterdepolarizations (EADs) and 

induces torsades de pointes (TdP) ventricular tachyarrhythmia (Figure 2) in failing hearts 

(Chang et al., 2013b). Baseline heart rate of the animal models is probably an important 

factor whether apamin is anti-arrhythmic and pro-arrhythmic in failing ventricles (table 1): 

at rapid heart rate (sinus or paced rhythm in intact hearts), apamin prevents acute shortening 

of APD and recurrent spontaneous VF; at slow heart rate (AV block in intact hearts or paced 

rhythm in isolated cardiomyocytes), apamin further prolongs APD and induces EADs. The 

phenomenon can be explained by the U curve effect of apamin on APD: apamin prolongs 

APD more prominently at either very short or at very long pacing cycle lengths in failing 

ventricles (Figure 3) (Hsieh et al., 2013). At very short pacing cycle lengths, SK channels 

are activated by elevated Cai while at very long pacing cycle lengths, long Cai transient 

duration with persistent trans-sarcolemmal Ca2+ influx through L-type Ca2+ channels may 

also facilitate activation of SK channels. The effects are compatible with many clinical anti-

arrhythmic agents that prolong atrial and ventricular effective refractory period and reduce 

tachyarrhythmias, but patients pay the price of prolonged QT interval and increased risk of 

TdP. The phenomenon may also explain previous conflicting reports about SK channel 

blockers in managing atrial tachyarrhythmias. The inhibition of SK channels in ex vivo or in 

vivo models with normal sinus rate appeared to be anti-arrhythmic; however, SK channel 

inhibition was proarrhythmic in AV block, SK knock-out models, isolated left atrial models 

or isolated cardiomyocytes paced at slow rates.
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Pharmacologic therapy for ventricular arrhythmias with SK channel 

modulation

Little information is available on the efficacy and safety of SK channel modulation in the 

treatment of ventricular arrhythmias in humans. Studies in a rabbit model of HF showed that 

SK channel blockade by apamin can lengthen the postshock APD and prevent recurrent VF 

(Chua et al., 2011). SK channel blockade can also be used to suppress ventricular 

tachyarrhythmias in a rat model of acute myocardial ischemia (Gui et al., 2013). 

Amiodarone is a commonly used antiarrhythmic drug in suppressing recurrent ventricular 

arrhythmias in humans (Kowey et al., 1995). Because amiodarone is an effective SK 

channel blocker (Turker et al., 2013), it is possible that the SK channel blocking action has 

contributed to the acute antiarrhythmic effects of amiodarone therapy. However, chronic 

therapy with SK channel blockers has significant proarrhythmic potential in patients with 

impaired ventricular function, ischemic heart diseases or bradycardia. In addition to safety 

concerns, the SK channel blockers may not be effective in treating atrial arrhythmias 

associated with HF. A recent study showed that the atrial myocyte action potentials were 

unchanged by SK current blockade in a canine model of HF (Bonilla et al., 2014). Induction 

of bradycardia is another concern of chronic SK channel therapy. Bradycardia is known to 

facilitate the development of EADs and TdP in failing rabbit ventricles with atrioventricular 

block (Chang et al., 2013b). Sinus node and AV node express SK channels (Chandler et al., 

2009; Zhang et al., 2008). Therefore, inhibition of SK channels may lead to sinus 

bradycardia and AV nodal block (Li et al., 2009) and further facilitate the development of 

EADs and TdP arrhythmias. SK channel therapy also has potential neuromuscular toxic 

effects. Because apamin can cross the blood brain barrier and leads to convulsion 

(Habermann, 1984), it is not a candidate for anti-arrhythmic therapy in humans. A cardiac 

specific SK channel blocker is needed to test the antiarrhythmic efficacy and safety of SK 

channel blockers. An alternative approach is indirect modulation of the SK channels rather 

than targeting SK channels themselves. Ni et al (Ni et al., 2013) showed that treating HF rats 

with bisoprolol downregulated the expression of SK1 and SK3 channels. Bisoprolol also 

effectively downregulated IKAS density as well as the sensitivity of IKAS to Cai. Marshall et 

al (Marshall et al., 2012) showed that chronic β-blocker treatment reduces atrial Ito and IK1 

without reducing the expression of associated ion channel subunits. It is possible that 

observed changes in SK channel expression seen with bisoprolol are part of a class response 

to β-blocker therapy. The off-target effects of bisoprolol on the SK channels may play a role 

in regulating ventricular repolarization in HF.

Prospects of SK channel research in ventricular arrhythmias

SK channel modulation is potentially useful in treating electrical storm or ventricular 

tachyarrhythmia induced by acute myocardial ischemia. Cardioselective SK channel 

activators or blockers are needed to test the efficacy and safety of the SK channel blockade. 

The subcellular mechanisms of SK channel regulation in ventricular cardiomyocytes in 

diseased hearts are still unclear and further investigation is required. SK channel research 

may also have significant implication in drug safety. Apamin is proarrhythmic in failing 

rabbit ventricles by prolonging the APD, which in turn promotes EAD, triggered activity 
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and TdP ventricular arrhythmia. Drugs that inhibit SK channels may reduce the 

repolarization reserve in patients with HF or MI, resulting in reduced safety. Because drug 

safety is a major public health concern (Pollard et al., 2010), better understanding of the SK 

current blocking effects of commonly used drugs should be an important field of research.
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Figure 1. 
Effects of apamin (1μmol/L) on APD80 and the differences between Ca2+ transient duration 

(CaiTD80) and APD80 in failing and normal rabbit hearts. Optical traces (top) of Vm (black 

line) and Cai (red line) were recorded from site marked by an asterisk in APD80 map 

(bottom). A. Failing heart. Top subpanel shows epicardial optical traces of Vm and Cai and 

APD80 map during sinus rhythm (SRm) before pacing-induced VF (left). Top right shows 

beats 1 and 2 had acute shortening of APD in the immediate post-shock period, resulting in 

the Cai elevation during late phase 3 and phase 4. Bottom right shows the corresponding 

APD80 maps, and the maps of the difference between CaiTD80 and APD80 in beats 1 and 2. 

After apamin (bottom subpanel), the postshock beats 1 and 2 had longer APD80 than those at 

baseline. The CaiTD80 was similar to that in A, and the differences between CaiTD80 and 

APD80 in beats 1 and 2 were reduced. B. Normal heart. As compared with the baseline, 

there were little changes of APD and CaiTD after defibrillation when the tissues were 

pretreated with apamin. Arrow indicates defibrillation. PI VF, pacing-induced VF; SRm 
indicates sinus rhythm. From Chua et al (Chua et al., 2011), with permission.
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Figure 2. 
Apamin effect on QT interval and arrhythmias in failing rabbit hearts. A. Representative 

pseudoECG (pECG) traces of QT interval in a failing heart with complete atrioventricular 

(AV) block before and after 100 nmol/l apamin. B. Paired dot plot shows QTc at baseline 

and in the presence of apamin 100 nmol/L. There was significant prolongation of QTc. C. 
Representative traces at baseline and in the presence of apamin. Top panel, complete AV 

block developed during AV node cryoablation. Second panel, no polymorphic ventricular 

tachycardia was recorded at baseline. However, several episodes of spontaneous TdP 

polymorphic ventricular arrhythmia developed in the presence of apamin (bottom panels). 

From Chang et al (Chang et al., 2013b), with permission.
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Figure 3. 
Effect of apamin on the percentage of action potential duration (APD) prolongation in 

normal and failing rabbit ventricles. A. APD80 before (blue line) and after (red line) apamin 

infusion, and the percentage of APD80 prolongation at pacing cycle length (PCL) 350, 300, 

200, 180, and 160 ms in a normal and a HF ventricle. B. PCL and the percentage of APD80 

prolongation by apamin in all normal and HF ventricles. Note that the differences between 

HF and normal ventricles were significant only at very long (350–300 ms) and short (170–

160 ms). PCLs (asterisks), but not with intermediate (280–180 ms) PCLs. From Hsieh et al 

(Hsieh et al., 2013), with permission.
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Table 1

The effects of SK channel blockade in the ventricle

Model Medication Baseline rhythm Result Reference

Normal mouse cardiomyocytes Apamin Paced rhythm Little effect Xu et al., 2003

Normal human cardiomyocytes Apamin Paced rhythm No effect Nagy et al., 
2009

Rabbit HF Apamin Sinus rhythm Prolonged APD and prevents acute APD 
shortening, Anti-arrhythmic: Prevent 
spontaneous VF

Chua et al., 2011

Human HF cardiomyocytes Apamin Paced rhythm Prolonged APD Chang et al., 
2013

Rabbit HF Apamin Sinus rhythm Prolonged APD
Anti-arrhythmic: Reduced APD 
heterogeneity

Hsieh et al., 
2013

Rabbit HF Apamin AV block Prolonged APD
Pro-arrhythmic: Increased
EADs and TdP

Chang et al., 
2013b

Rabbit Chronic MI Apamin Sinus rhythm Prolonged APD and prevents acute APD 
shortening

Lee et al., 2013

Rat Acute MI Apamin, UCL1684 Sinus rhythm Anti-arrhythmic: APD prolongation Gui et al., 2013

Canine HF cardiomyocytes; 
Human HF cardiomyocytes

Apamin Paced rhythm Prolonged APD
Pro-arrhythmic: Increased
EADs

Bonilla et al., 
2014

APD, action potential duration; AV, atrioventricular; EAD, early afterdepolarization; HF, heart failure; MI, myocardial infarction; TdP, torsades de 
pointes; VF, ventricular fibrillation.
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