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Meta-Analysis and Potential Role of Preexisting Heterosubtypic
Cellular Immunity Based on Variations in Disease Severity Outcomes
for Influenza Live Viral Challenges in Humans

Olga Pleguezuelos, Stuart Robinson, Ana Fernandez, Gregory A. Stoloff, Wilson Caparrés-Wanderley

SEEK, Central Point, London, United Kingdom

Influenza live viral challenges in humans are valuable models for testing the efficacy of vaccines and antiviral agents. Volunteers
are treated with an investigational agent, and their clinical outcomes postchallenge are compared to those of placebo-treated
volunteers. Despite using a common protocol, similar recruitment criteria, and similar doses of the same challenge strain, we
noticed differences in disease severity outcomes between the placebo groups from different studies. We investigated whether
these differences were significant and, if so, whether any pattern and its possible causes could be identified. We compared the
clinical outcomes postchallenge in placebo groups from five clinical studies carried out between 2008 and 2013. Correlations
between the prechallenge heterosubtypic cellular response (gamma interferon [IFN-v]) and postchallenge clinical outcomes
were also investigated in one study. Placebo groups from studies carried out between 2009 and 2010 attained significantly re-
duced (P < 0.05) symptom scores postchallenge compared to those of placebo groups from studies carried out in either 2008 or
2013. Also, in a 2010 study, the frequency of high-influenza heterosubtypic cellular responders prevaccination was significantly
lower in the test group (FLU-v) than that in the placebo group (P = 0.04). Moreover, the increased preexisting heterosubtypic
cellular response of the placebo group correlated with reductions in symptom score and viral shedding postchallenge (P =
0.023). Only postvaccination did the test group display an equivalent correlation. The last influenza pandemic coincided with a
significant reduction in disease severity outcomes. This reduction also appears to correlate with increased preexisting influenza
heterosubtypic cellular responses. (This study is registered at ClinicalTrials.gov under registration number NCT01226758.)

I nfluenza live viral challenges in humans are valuable models for
testing the efficacy of vaccines and antiviral agents. Their basis is
simple: a group of volunteers is treated with an investigational
agent, and their clinical outcomes postchallenge are compared to
those of a group of placebo-treated volunteers. Their logistics, in
contrast, are complex.

Influenza infection elicits a range of immune responses. One
such response is the production of strain-specific neutralizing an-
tibodies that confer immunity against infection by the same strain
(1). As a result, a key volunteer exclusion criterion in challenge
studies is the detection of preexisting neutralizing antibodies
(hemagglutination inhibition [HAI], >10) to the challenge strain.
Another such response is the generation of antiviral cellular im-
mune responses. Despite existing evidence as to their protective
role during infection (2-4), preexisting cellular immune re-
sponses to the challenge strain are not normally assessed dur-
ing volunteer recruitment.

We have developed a novel vaccine (FLU-v) that elicits broad
influenza heterosubtypic cellular responses without inducing any
significant antibody response (5-7). In humans, FLU-v was found
to be safe and well tolerated and, in a live viral challenge study, to
induce a vaccine-specific cellular response whose magnitude cor-
related with reductions in symptom score and viral shedding (7).
No such correlations were seen in the placebo group, but we did
notice that both viral shedding and symptom score postchallenge
were much lower (50%) in our placebo group than those in the
placebo group from a previous study. To establish the significance
of these differences, we compared the placebo group outcomes of
several other influenza live viral challenge studies. All these stud-
ies, although involving different placebo agents, were carried out
by the same clinical group (Retroscreen Ltd.), using the same re-
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cruitment criteria, viral strain and dose, and method for deter-
mining postchallenge clinical and virological outcomes. This
meta-analysis revealed an “experiment of nature” that we believe
provides interesting insights in the potential of the cellular im-
mune system for controlling influenza virus infection.

MATERIALS AND METHODS

Clinical trial data used for meta-analysis. The reported postchallenge
clinical outcomes for the placebo group of four reported indepen-
dent clinical trials (3, 7-9) and one previously unreported study (Retro-
screen Ltd., personal communication) were used for the meta-analysis.
The placebo agents used in the studies were different, but all the studies
were carried out by the same clinical group (Retroscreen Ltd.) and were
conducted according to a common challenge protocol (Fig. 1) that used
the same well-defined recruitment criteria, viral challenge strain (A/Wis-
consin/67/2005, H3N2), and procedures for the assessment of disease
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RECRUITMENT CRITERIA
Individuals aged 18-45

Absence of abnormal clinical findings (e.g. physical examination, medical history, laboratory results, etc)

No history of Influenza-like iliness for the 12 months prior to enrollment
No prior Influenza vaccination for at least 1 year
HAI<10 to challenge virus
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FLU-v study Retroscreen Wilkinson et al Lillie et al Ramos et al
2010 FLU-v 2010 Placebo 2008 Placebo 2008 Placebo 2009 Placebo 2013 Placebo
- line + ISA-51
_ B Saline +1SA-5 NONE NONE NONE saline
Intervention 51 (adjuvant) (adjuvant)
N =16 N =16 N=12 N=4 N=12 N =31
safety & ANALYSED ANALYSED ANALYSED ANALYSED ANALYSED ANALYSED
Immunogenicity N =16 N =16 N=12 N=4 N=12 N=31
1 1 1 1 1 1
Withdrawn consent / N=1 N=3 N=O N=O N=1 N=O
Excluded
1 1 1 1 1 1
Challenge (intranasal)
1 ml of ~10° TCID50 of influenza A/Wisconsin/67/2005 (H3N2)
FLU-v study Retroscreen Wilkinson et al Lillie et al Ramos et al
2010 FLU-v 2010 Placebo 2008 Placebo 2008 Placebo 2009 Placebo 2013 Placebo
Symptom Score & Viral
. N=15 N=13 N=12 N=4 N=11 N=31
Shedding

FIG 1 Consort profile. Shown are the trial profile and baseline demographic data for enrolled volunteers in all five studies analyzed. The reported median age
of the volunteers in the studies ranged from 24 to 30 years. Where this information is provided, studies are reported to have been carried out between August and
November. The section in gray refers to data not incorporated in the meta-analysis of the placebo groups but used for the comparison of cellular immunity

described later in the paper.

severity and viral shedding. The exact details for each study are provided
in the reports listed above, but they are also briefly summarized below.

Recruitment criteria and study procedures. Healthy male subjects
age 18 to ~45 years with no clinically significant abnormal findings (i.e.,
physical examination, medical history, or laboratory results) and no med-
ical history of influenza-like illness in the prior 12 months were assessed
for enrollment. Only those with an HAT of =10 for the influenza challenge
strain were enrolled.

Following recruitment and treatment (placebo or test agent), volun-
teers were challenged on day 0 by nasal instillation with 1 ml of solution
containing approximately 10°2> 50% tissue infective dose per ml of live
A/Wisconsin/67/2005 (H3N2) (tissue culture grown). From days 5 to 7,
the volunteers received antiviral treatment (e.g., oseltamivir) before being
released from quarantine on day 7.

Physical examinations and clinical laboratory tests were performed at
screening, pre- and posttreatment (both prechallenge), and daily from
day —2 prechallenge to day 7 postchallenge. A final assessment was carried
out around day 28 postchallenge. Volunteer self-recorded observations
pre- and postchallenge and the scripted symptom questionnaires were
assessed by clinical staff.

Symptom scoring and virology and HAI tests. The symptom score
was determined using a standardized scoring system (3, 10) based on
subject self-assessment and examination by a clinician. A range of param-
eters (e.g., runny or stuffy nose, sneezing, sore throat, earache, malaise,
cough, shortness of breath, headache, and muscle/joint ache) were as-
sessed and scored from 0 (absent) to 3 (severe).

Viral shedding in the nasopharyngeal samples was determined by a
50% tissue culture infective dose (TCIDs,) assay, as described in the
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WHO Manual for the Laboratory Diagnosis and Virological Surveillance
of Influenza (11). Briefly, serial 10-fold dilutions of virus-containing daily
postchallenge nasal lavage samples were inoculated into 96-well microti-
ter plates seeded with Madin-Darby canine kidney (MDCK) cells. Cyto-
pathic effects in individual wells were determined after 5 to 6 days of
incubation at 37°C. Viral shedding was defined as a viral culture titer of
>1.5log;, TCID;,/ml.

Hemagglutinin (HA)-specific antibody titers against the challenge vi-
rus in volunteer serum samples were determined by HAI assay using
chicken erythrocytes, as described in the WHO Manual for the Laboratory
Diagnosis and Virological Surveillance of Influenza (11).

Regulatory approval and ethical considerations. All studies included
in the meta-analysis were reported as conducted in accordance with good
clinical practice, the Declaration of Helsinki (1964 and 2008), and all
regulatory requirements.

As we are also reporting previously undisclosed experimental data, we
confirm that our FLU-v study (7) was approved by the Plymouth Inde-
pendent Ethics Committee under REC reference number 10/IEC04/1.
The trial was registered under European Clinical Trials database
(EudraCT) identifier 2009-014716-35 and registered at ClinicalTrials.gov
under registration no. NCT01226758. Written informed consent was ob-
tained from all participants.

Vaccine description. FLU-v is a sterile equimolar mixture of four
polypeptides encoding immunoreactive conserved regions within the in-
fluenza virus (5-7). These sequences were synthetically manufactured
(Bachem AG, Bubendorf, Switzerland) in accordance with current good
manufacturing practice: M1, DLEALMEWLKTRPILSPLTKGILGFVFT
LTVP (32 amino acids [aa]); NPA, DLIFLARSALILRGSVAHKSC (21 aa);
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NPB, PGIADIEDLTLLARSMVVVR (20 aa); and M2, IIGILHLILWILDR
LFFKCIYRLF (24 aa).

FLU-v was administered subcutaneously in a 1.0-ml volume as a single
500-g dose in saline emulsified (1:1) with adjuvant ISA-51 (Seppic,
France). The placebo was saline emulsified with ISA-51. The adjuvant is
composed of a light mineral oil and a surfactant system designed to make
a water-in-oil emulsion. Functionally, ISA-51 is not known to preferen-
tially favor the induction of Th1-like responses (12).

Heterosubtypic cellular immunity-cytokine ELISA. Blood was har-
vested prechallenge on days —21 (i.e., prevaccination) and —2 (i.e., 19
days postvaccination), and peripheral blood mononuclear cells (PBMCs)
were isolated and frozen. Thawed PBMCs were seeded at 2 X 10° cells/well
(96-well plate) in RPMI 1640 (Sigma, United Kingdom), supplemented
with 25 mM HEPES, penicillin (100 units/ml), streptomycin (100 pg/ml),
10% fetal calf serum (FCS), and one of the following test antigens: 1 p.g/ml
concanavalin A (ConA) (Sigma), 1 pg/ml bovine serum albumin (BSA)
(Sigma), or live influenza A/Swine/Iowa/15/30 (HIN1) (multiplicity of
infection, 10). Virus (egg grown) was obtained from the National Institute
for Biological Standards and Control (NIBSC) as low-endotoxin prepa-
rations suitable for in vitro cellular analysis. Each antigen was tested in
triplicate. After 24 h of incubation at 37°Cand 5% CO,, gamma interferon
(IFN-vy) production in the cell supernatant for each of the test antigens
was determined using a validated enzyme-linked immunosorbent assay
(ELISA) (human IFN-vy kit 555142; BD, United Kingdom). The response
levels were calculated as picograms per milliliter of IFN-y produced
against a standard provided with the assay kit. The minimum level of
detection for the assay is 9 pg/ml IFN-vy.

Strong heterosubtypic cellular responses were defined as those in
which an IFN-vy response of an individual to the influenza A/Swine/Iowa/
15/30 (HIN1) virus was =4-fold higher than the IFN-y response of the
individual to the negative control (i.e., BSA plus medium).

Statistical analysis. Intergroup differences in total mean symptom
score and viral shedding were determined by single-factor analysis of vari-
ance (ANOVA). Pairwise differences between the studies were deter-
mined by t test (2-way), with an adjustment of significance for multiple
pairwise comparisons made using the Tukey-Kramer honestly significant
difference (HSD) method. Heterosubtypic responder frequencies were
analyzed by the Friedman exact test, while correlations between clinical
outcomes and heterosubtypic cellular response levels were determined
using the Spearman rank correlation test.

RESULTS

Mean total symptom score postchallenge and interstudy vari-
ability. We previously reported (7) how in an influenza live viral
challenge study carried out in 2010, vaccination with FLU-v in-
duced an IFN-y response to the vaccine, the magnitude of which
correlated with reductions in both viral titer (P = 0.01) and total
symptom score (P = 0.02). No such correlation was seen in the
placebo group. Although we saw no significant differences in
mean total symptom score postchallenge between the FLU-v and
placebo group, we did notice a significant reduction in mean total
symptom score postchallenge in our 2010 placebo group com-
pared to that of the placebo group of a previous unreported study
carried out by Retroscreen in 2008 (Retroscreen Ltd., personal
communication) (mean * standard deviation [SD] total symp-
tom score, 11.4 = 13.0 versus 37.1 = 27.5 for our placebo versus
2008 placebo; P = 0.006).

This significant difference in outcomes was surprising to us,
because, although the natures of the placebo agent were different
in the two trials, the historical 2008 placebo data set (n = 12) had
been obtained by the same clinical group (Retroscreen Ltd.), using
the same recruitment criteria, viral strain and dose, and method
for determining the symptom score. More importantly, the out-
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comes of this 2008 placebo group constituted the baseline data
used to calculate the sample size required to meet the endpoints of
our trial.

This difference in outcomes also raised the question of whether
our observation was unique or whether significant differences in
outcome were a common observation in live viral challenge stud-
ies. To address this question, we compared the outcome of both
our 2010 placebo group and the 2008 Retroscreen (Retroscreen
Ltd., personal communication) placebo group against those re-
ported for placebo groups in other published studies carried out in
2008 (3), 2009 (9), and 2013 (8). These studies were performed
according to the same common standard protocol (Fig. 1), re-
cruitment criteria, and procedures used in the 2010 and 2008 pla-
cebo groups.

Statistical analysis (ANOVA) of these five studies (Table 1)
revealed a significant difference (P = 0.004) in the mean total
symptom score of the placebo groups. Subsequent pairwise com-
parisons (t test with Tukey-Kramer’s HSD adjustment for signif-
icance) revealed that the mean total symptom score for the pla-
cebo group in the 2008 Wilkinson et al. study (3) was significantly
higher than that seen in our 2010 placebo group (mean = SD,
60.8 = 10.7 versus 11.4 = 13.0, respectively; P = 0.000), but not
different from that in the 2008 Retroscreen (Retroscreen Ltd., per-
sonal communication) placebo group (mean = SD, 60.8 = 10.7
versus 37.1 * 27.5, respectively; P > 0.050). In contrast, the mean
total symptom score for the placebo group in the 2009 Lillie et al.
study (9) was significantly lower than that seen in both the 2008
Retroscreen (Retroscreen Ltd., personal communication) placebo
group (mean * SD, 15.3 * 15.1 versus 37.1 = 27.5, respectively;
P =0.030) and the 2008 Wilkinson et al. (3) placebo (mean * SD,
15.3 £ 15.1 versus 60.8 = 10.7, respectively; P = 0.000) but not
different from that in our 2010 placebo group (mean * SD, 15.3 =
15.1 versus 11.4 = 13.0, respectively; P > 0.050). A final compar-
ison of these four different placebo groups with the placebo group
in the 2013 Ramos et al. study (8) (mean * SD, 55.5 * 54.8)
reveals that mean total symptom score in this study is not different
from that seen in either the 2008 Wilkinson et al. placebo group
(3) or the 2008 Retroscreen (Retroscreen Ltd., personal commu-
nication) placebo group (P > 0.050 for both), but it is significantly
higher than that seen in both the 2009 Lillie et al. (9) placebo
group (P = 0.022) and our 2010 placebo group (P = 0.007). These
results indicate that following influenza live viral challenge, the
mean total symptom scores in placebo group volunteers were sig-
nificantly lower in 2009 to 2010 than they were in either 2008 or
2013.

Mean total viral shedding postchallenge and interstudy vari-
ability. We then proceeded to test whether the observed differ-
ences in mean total symptom score across the studies were also
reflected in the mean total viral shedding measurements. Total
viral shedding data were not reported in the Wilkinson et al. study
(3), and hence, we did not include this study in the analysis. None-
theless, a comparison of the remaining four studies revealed a
significant difference (P = 0.040) in mean total viral shedding.

Subsequent pairwise analysis revealed that, as shown in Table
1, mean total viral shedding in the 2008 Retroscreen (Retroscreen
Ltd., personal communication) placebo group (mean * SD,
10.1 = 2.9) was significantly higher than in the 2009 Lillie et al. (9)
placebo group (mean *= SD, 3.3 £ 4.3; P = 0.012), our 2010
placebo group (mean * SD, 4.0 * 4.4; P = 0.022) and the Ramos
2013 (8) placebo group (mean * SD, 3.2 & 4.5; P = 0.006).
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TABLE 1 Summary of descriptive statistics for the postchallenge outcomes in all analyzed studies?

Result for placebo group in®:

Retroscreen 2008

Wilkinson et al. 2008

Lillie et al. 2009 FLU-v study 2010 Ramos et al. 2013

Data by outcome (n=12) (n=4) (n=11) (n=13) (n = 31)
Total symptom score”

Avg 37.1 60.8 15.3 11.4 55.5

SD 27.5 10.7 15.1 13.0 54.8

Median 50.0 57.5 8.0 8.0 39.0

Minimum 0.0 52.0 0.0 0.0 0.0

Maximum 74.0 76.0 38.0 44.0 190.0
Pairwise comparison t test (P value)

Retroscreen 2008

Wilkinson et al. 2008 >0.050

Lillie et al. 2009 0.030 0.000

FLU-v study 2010 0.006 0.000 >0.050

Ramos et al. 2013 >0.050 >0.050 0.022 0.007
Infection rate (%) 66.7 100.0 45.5 61.5 48.4
Total viral shedding

Avg 10.1 NA® 3.3 4.0 3.2

SD 2.9 NA 4.3 4.4 4.5

Median 10.6 NA 0.0 2.8 0.0

Minimum 6.5 NA 0.0 0.0 0.0

Maximum 12.5 NA 10.8 12.5 14.3
Pairwise comparison t test (viral

shedding) (P value)

Retroscreen 2008

Wilkinson et al. 2008 NA

Lillie et al. 2009 0.012 NA

FLU-v study 2010 0.022 NA >0.050

Ramos et al. 2013 0.006 NA >0.050 >0.05

“ The references for the studies are Retroscreen 2008, personal communication; Wilkinson et al. 2008, 3; Lillie et al. 2009, 9; FLU-v 2010, 7; and Ramos et al. 2013, 8.
¥ Total symptom score is the sum of all measured symptoms scores for an individual from day 1 to day 7 following challenge with influenza A/Wisconsin/67/2005 (H3N2). The

ANOVA P value was 0.004.

¢ The infection rates are the percentage of challenged volunteers with at least one daily nasal sample positive for influenza A/Wisconsin/67/2005 (H3N2) postchallenge.
“ Total viral shedding represents the sum of all measured viral shedding for an individual from day 1 to day 5 postchallenge with influenza A/Wisconsin/67/2005 (H3N2). Viral
shedding on days 6 and 7 postchallenge was not considered, as under the clinical protocol used, all individuals receive antiviral treatment (e.g., oseltamivir) on those days. The

ANOVA P value was 0.040.
¢ NA, no data are available.

Heterosubtypic immunity. In an attempt to determine the
possible reasons for the differences among the groups, we first
analyzed the infection rate for each of the studies. Infection rate
was defined as the percentage of volunteers with at least one pos-
itive result by TCIDs, between days 1 and 5 after influenza live
viral challenge. As shown in Table 1, and despite the wide range of
values, no statistical differences (P > 0.05) were found in the in-
fection rates across the different studies: the 2008 Wilkinson et al.
(3) placebo group (100%), the 2008 Retroscreen (Retroscreen
Ltd., personal communication) placebo group (66.6%), the 2009
Lillie et al. (9) placebo group (45.5%), our 2010 placebo group
(61.5%), and the 2013 Ramos (8) placebo group (48.4%).

The similarity in infection rates across the studies suggests that
the mechanism responsible for the differences in outcomes is most
likely a postinfection mechanism. If correct, this would exclude
neutralizing-antibody responses but not cellular immune re-
sponses. Unfortunately, cellular responses to the challenge virus
were not assessed in any of these studies, either pre- or postchal-
lenge. Moreover, if any cellular responses were measured, the an-
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tigen (e.g., virus or vaccine) and the method of analysis (e.g.,
ELISA or enzyme-linked immunosorbent spot assay [ELISPOT])
used were all different, thus rendering any direct comparison im-
possible.

As stated earlier, we previously established (7) that cellular re-
sponses to a vaccine correlated with reductions in both viral load
and symptom score. Since the period of reduced total mean symp-
tom scores and viral shedding (2009 to 2010) identified from our
earlier meta-analysis coincided with the dates of the last influenza
pandemic, we decided to test if in our study, strong preexisting
heterosubtypic cellular responses to a HINI1 swine influenza
strain were common and, if so, whether their intensity negatively
correlated with symptom score and viral shedding. Ideally, we
would have preferred to use the pandemic influenza A/California/
7/2009 (H1N1) strain, but the WHO recommends the use of bio-
safety level 2 plus (BSL-2 plus) facilities with biosafety level 3
(BSL-3) practices with this strain (13). As these facilities are not
available to us, we settled for a BSL-2 swine strain, A/Swine/Iowa/
15/30 (HIN1).
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TABLE 2 Heterosubtypic cellular immune responses pre- and postvaccination in 2010 FLU-v study

Fold increase in A/Swine/Iowa/15/30 IFN-vy response compared to negative control for group®:

Placebo (n = 7) FLU-v (n = 8)
Value by vaccination time Prevaccination Postvaccination Prevaccination Postvaccination
Median 7.0 10.3 3.4 5.2
Minimum 1.3 3.2 1.3 1.1
Maximum 13.0 12.1 31.8 33.5

“ Values are represented as the fold increase in IFN-y response to A/Swine/Towa/15/30 (HIN1) compared to the negative control. The mean * SD IFN-y (pg/ml) responses to the
negative control pre- and postvaccination for both groups are 99.2 * 25.7 versus 80.6 * 12.9 pg/ml, respectively. The IFN-y (pg/ml) response to the positive control (ConA) pre-

and postvaccination for both groups are 311 = 85 versus 378 * 35 pg/ml, respectively.

In our 2010 study, we dosed and challenged a total of 28 vol-
unteers. However, for this post hoc analysis, frozen PBMC samples
were available from only 15 volunteers (seven from the placebo
group and eight from the FLU-v group). We found (Table 2)
strong prevaccination IFN-vy responses to the recall A/Swine/
Towa/15/30 (HIN1) virus (i.e., =4-fold increase in the IFN-y re-
sponse to negative control) in all but one of the placebo-treated
volunteers (median, 7.0-fold increase). In contrast, in the vacci-
nated (FLU-v) group, a strong prevaccination IFN-vy response to
the recall A/Swine/Iowa/15/30 (HIN1) virus (median, 3.4-fold
increase) was found in only one volunteer. Postvaccination, the
frequencies of strong IFN-+y responders became similar in the two
groups (5 versus 4 in the placebo versus FLU-v group, respec-
tively), but the overall level of IFN-vy response to the recall swine
virus remained higher in the placebo group (median, 10.3 versus
5.2 in the placebo versus FLU-v group, respectively).

A correlation analysis revealed a significant negative correla-
tion in the placebo group between the intensity of the heterosub-
typic IFN-vy response to the A/Swine/lowa/15/30 (HIN1) virus
and both the mean total symptom score (r = —0.771, P = 0.036;
Fig. 2A) and the mean total viral shedding (r = —0.768, P = 0.022;
Fig. 2B). In the FLU-v group, no significant correlations were seen
prevaccination (P > 0.05), but a significant negative correlation
was established postvaccination between the intensity of the het-
erosubtypic IFN-vy response to the A/Swine/Iowa/15/30 (HIN1)
virus and the mean total symptom score (r = —0.667, P = 0.035;
Fig. 2C).

DISCUSSION

Influenza infection elicits a range of natural antibody and cellular
immune responses to the virus. Some of these responses are spe-
cific to the infecting viral strain (homosubtypic responses), while
others are cross-reactive to other viral strains (heterosubtypic re-
sponses). Among the homosubtypic responses, neutralizing anti-
bodies directed to the hemagglutinin (HA) and neuraminidase
(NA) antigens are of particular interest. Infection by one influenza
strain elicits neutralizing HA/NA antibody responses that confer
immunity against infection by the same strain (1). For >50 years,
influenza public health programs worldwide have built upon this
observation by using vaccines that induce homosubtypic HA/NA
neutralizing-antibody responses. Heterosubtypic responses, de-
spite increasing evidence of their potential protective role during
infection at both the antibody level (14-16) and the cellular level
(2—4), have not yet been successfully exploited in the clinic.
Notwithstanding their universal use, HA/NA-based vaccines
suffer from major shortcomings. As new variants of the virus
emerge every year, the new circulating viral strains must be first
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identified before new formulations of the vaccine are prepared
every year, which in turn means that every year, the population
must be revaccinated (17). A clear need remains for a vaccine that
can address these shortcomings.

Live viral challenge studies in humans are valuable models for
the development of effective therapies (e.g., vaccines and antivi-
rals) against influenza virus. They allow the efficacy of a candidate
treatment to be assessed by comparing disease severity outcomes
postchallenge between volunteer groups treated with either the
candidate therapy or a placebo.

Recognizing the importance of neutralizing-antibody re-
sponses in influenza protection, the identification of preexisting
neutralizing-antibody titers (i.e., HAI, >10) to the challenge
strain is a key universal exclusion criterion during volunteer re-
cruitment in live viral challenge studies (3, 7-9). In contrast, nei-
ther preexisting heterosubtypic immune responses (antibody or
cellular) nor preexisting homosubtypic cellular responses to the
challenge strain are regularly assessed during volunteer recruit-
ment.

In 2010, we carried out a live viral challenge study in humans
using a novel vaccine (FLU-v) designed to elicit cellular immune
responses against influenza virus. Despite induction of a FLU-v-
specific IFN-y response (6, 7) that correlated with reductions in
viral shedding and symptom score (7), no significant differences
in clinical outcome were seen between the placebo and FLU-v
groups. However, we did identify a clear and significant reduction
in both viral shedding and symptom score in our 2010 placebo
group compared to a placebo group from a study carried out by
Retroscreen in 2008 (Retroscreen Ltd., personal communication).
This 2008 placebo group is significant because its outcomes con-
stituted the baseline data used to calculate the sample size needed
to meet the endpoints of our 2010 trial.

As a certain degree of variability is expected in all biological
systems, we decided to investigate how consistent viral shedding
and symptom score outcomes were across five live viral challenge
studies carried out between 2008 and 2013. Meta-analysis of his-
torical data is extensively used in clinical research (18-23) and,
under certain stringent rules, is even allowed by both the FDA and
the European Medicines Agency (EMEA) to assess the efficacy of a
treatment (24, 25). These rules state that all the data analyzed must
come from clinical trials that used the same eligibility criteria,
measured comparable variables, and were carried out by the same
clinical investigators. Since all five clinical studies considered in
our meta-analysis were carried out by the same clinical group
(Retroscreen Ltd.), using the same well-defined recruitment cri-
teria, were performed according to a common challenge protocol
that used similar doses of the same viral strain (A/Wisconsin/67/
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2005 [H3N2]), and assessed the same parameters (i.e., symptom
score and viral shedding), we were confident of the validity of our
approach. Of course, the natures of the placebo in these five studies
were different, but since we and Retroscreen Ltd. agreed to use his-
torical data from the 2008 placebo group to determine the required
sample size of our 2010 study, we believe this decision was consistent
with and supports our multistudy comparative approach.

The meta-analysis revealed that of the five studies analyzed, the
two studies carried out between 2009 and 2010 (7, 9) achieved
total mean symptom scores postchallenge that were significantly
lower (~50%) than those seen in studies carried out in either 2008
(3) or 2013 (8). Viral shedding was also significantly higher in the
2008 studies than in the 2009 and 2010 studies, and, in contrast to
symptom score, it was also higher than that in the 2013 study.

An accurate determination of the mechanism(s) responsible
for these differences was not possible, as the immune/pharmaco-
logical effector mechanisms assessed were different for each study.
However, because (i) infection rates (determined as the percent-
age of challenged volunteers that develop a positive TCIDs, be-
tween days 1 and 5 postchallenge) across all five studies were not
statistically different, (ii) neutralizing antibodies act primarily at
the preinfection stage, and (iii) all volunteers had HAT titers to the
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challenge strain of =10, we do not believe that the observed inter-
study differences were caused by differences in the HAI titers of
the volunteers.

An assessment of cellular responses among the studies was not
possible. Preexisting cellular responses to the challenge virus are
not regularly assessed in these studies and, when cellular responses
are measured, the antigens (e.g., virus or vaccine) and the methods
of analysis (e.g., ELISA or ELISPOT) used are different, thus ren-
dering any direct comparison impossible. Nonetheless, three ob-
servations lead us to consider the possibility that differences in the
preexisting influenza heterosubtypic cellular responses may be at
least partially responsible for the observed interstudy differences
in placebo group outcomes postchallenge. First, the two studies
showing significant reductions in mean total symptom scores
were those carried in 2009 and 2010. These dates coincide with the
last influenza pandemic. Second, we (7) and others (3, 4) have
shown significant negative correlations between the intensity of
the cellular response and measurements of influenza disease se-
verity. Third, the reduction in viral shedding, but not in either
symptom score or rate of infection, in the 2013 study compared to
that in the 2008 placebo group suggests that a postinfection mech-
anism controls viral replication.
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Although a lack of data prevented us from comparing the role
of heterosubtypic cellular responses across the five studies consid-
ered, we believed that some relevant evidence could still be ob-
tained through additional testing of PBMC samples from our 2010
study. Unfortunately, we did not have a complete sample set for
this post hoc analysis and hence, we accept that the small size of the
sample (15 individuals) further limits the power of this analysis.
Nonetheless, we found significant correlations between the preex-
isting IFN-vy responses to influenza A/Swine/Iowa/15/30 (HIN1)
and reductions in both total mean symptom score and total mean
viral shedding in the placebo group.

An additional and surprising finding of our analysis was that
the frequency of preexisting high-IFN-y responders to A/Swine/
Towa/15/30 (HIN1) was much higher in the placebo group than
that in the vaccine (FLU-v) group. Moreover, although no signif-
icant correlation between the IFN-vy response to the influenza
A/Swine/Towa/15/30 (HINT1) strain and reduction in viral shed-
ding was seen prevaccination in the FLU-v group, this correlation
became evident postvaccination. Of course, we have no evidence
that the pattern of heterosubtypic cellular responses (i.e., to
A/Swine/lowa/15/30 [H1N1]) is the same as that of the homosub-
typic cellular responses (i.e., to the challenge strain A/Wisconsin/
67/2005 [H3N2]). However, we maintain that it is not unreason-
able to expect it to be so.

We have no explanation as to how, despite the randomization
and double-blind nature of the study, our placebo group ended up
with a higher number of volunteers with strong heterosubtypic
cellular responses than our FLU-v group. The recruitment criteria
and randomization in our study were not different from those of
the other studies included in our meta-analysis. A post hoc analysis
of preexisting HAI responses in our volunteers to the actual 2009-
2010 pandemic strain (A/California/7/2009 [HIN1]) did not re-
veal any positive individual in either the placebo or the FLU-v
group (data not shown). Nonetheless, we cannot completely rule
out a difference in the exposure rate to the virus between the two
groups. A report by Presanis et al. (26) suggests that the rate of
asymptomatic infection in England during the pandemic (June
2009 to February 2010) was as high as 65%. With the benefit of
hindsight, and since our study took place shortly after the end of
the pandemig, it is our opinion that the list of exclusion criteria
used (i.e., history of influenza-like illness over the previous 12
months and HAI of >10) was ill suited to prevent the recruitment
of asymptomatically infected individuals.

Increased levels of influenza heterosubtypic cellular responses
in the population after the pandemic might also help explain the
particular results of the placebo group in the 2013 Ramos (8)
study. McMichael et al. (27) showed that T-cell responses to in-
fluenza virus are detectable years after initial natural exposure,
although their number declines rapidly with time. As T-cell re-
sponses are widely acknowledged to play a key antiviral role, it is
possible that exposure to the challenge virus may have caused the
expansion of a small pool of memory influenza virus heterosub-
typic T-cell clones. The expansion of this small population may
not have been sufficient to significantly reduce symptom severity
(total symptom score), but it may have been able to have a nega-
tive effect on the rate of viral proliferation (total viral shedding).

In summary, we believe our results provide evidence of an
unplanned “experiment of nature” that adds to the existing body
of evidence on the ability of heterosubtypic cellular immunity to
reduce influenza disease severity in humans (2—4). As such, it sup-
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ports our efforts, and those of other groups, in developing vac-
cines that elicit heterosubtypic cellular immune responses against
influenza virus. As to whether it constitutes sufficient evidence to
justify the consistent screening of volunteers for preexisting cellu-
lar immunity to the challenge strain during recruitment, we leave
that decision to any researcher planning to use influenza live viral
challenge models in humans in the future.
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