
Endophenotypes for Alcohol Use Disorder: An Update on the 
Field

Jessica E. Salvatore1, Irving I. Gottesman2, and Danielle M. Dick1

1Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 
23298-0126

2Department of Psychology, University of Minnesota, N231 Elliott Hall, 75 East River Road, 
Minneapolis, MN 55455

Abstract

The endophenotype concept was first proposed as a strategy to use (purportedly) genetically 

simpler phenotypes in gene identification studies for psychiatric disorders, and is distinct from the 

closely related concept of intermediate phenotypes. In the area of alcohol use disorder (AUD) 

research, two candidate endophenotypes have produced replicable genetic associations: level of 

response to alcohol and neurophysiology markers (e.g., event-related oscillations and event-related 

potentials). Additional candidate endophenotypes from the cognitive, sensory, and neuroimaging 

literatures show promise, although more evidence is needed to fully evaluate their potential utility. 

Translational approaches to AUD endophenotypes have helped characterize the underlying 

neurobiology and genetics of AUD endophenotypes and identified relevant pharmacological 

interventions. Future research that capitalizes on the polygenic nature of endophenotypes and 

emphasizes endophenotypes that may change across development will enhance the usefulness of 

this concept to understand the genetically-influenced pathways toward AUD.
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Alcohol use disorder (AUD) is genetically complex (i.e., caused by more than one gene) and 

behaviorally heterogeneous. In view of this heterogeneity, it has been suggested that 

“alcoholism cannot be reified but reflects a collection of various symptoms and episodic 

behaviors that collectively make up perhaps as many alcoholisms as there are alcohol 

abusers” [1]. Against this backdrop, identifying replicable genetic associations for AUD has 

been challenging.
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The concept of using endophenotypes to aid in gene identification was first introduced to the 

field of psychopathology by Gottesman and Shields [2]. The idea gained widespread 

attention after Gottesman and Gould [3] reintroduced the concept and argued that 

psychiatric classification systems by their very nature create heterogeneous groups of 

affected individuals, and that this heterogeneity hampers our ability to detect susceptibility 

genes. Further, these broad binary classifications are quite distal from the level of gene 

action; surely there is no gene “for” AUD, rather, genes affect certain biochemical processes 

and pathways that alter susceptibility. Since then, there has been a proliferation of interest in 

endophenotypes across a range of psychiatric disorders [4–6], including AUD [7–11]. A 

PUBMED search of the terms “endophenotype” plus “alcohol” produces over 150 results (as 

of November 2014).

Although there are several excellent reviews of specific candidate endophenotypes for AUD, 

such as subjective responses to alcohol [8] and neurophysiological markers such as brain 

oscillations [12], as well as novel candidate neurobiological endophenotypes that distinguish 

between different stages in the development of alcohol dependence [13], there has not been 

a recent integrative update on where the field stands with respect to using endophenotypes to 

aid in gene identification for AUD. Our goal here is threefold. First, we evaluate the weight 

of evidence for various candidate endophenotypes for AUD (including their previously 

documented genetic associations) and highlight promising candidate endophenotypes from 

the cognitive/psychological, sensory, and structural neuroimaging domains. Second, we 

provide illustrative examples of successes and challenges in validating endophenotypes in 

animal models. Third, we identify themes to guide future research on endophenotypes for 

AUD.

Evaluating the Weight of Evidence for AUD Candidate Endophenotypes

Gottesman and Gould defined endophenotypes as “measurable components unseen by the 

unaided eye along the pathways between disease and distal genotype”, and argued that 

endophenotypes should be “simpler clues to genetic underpinnings than the disease 

syndrome itself” [2], although it has been more recently recognized that there is likely a 

gradient of endophenotypes, some of which are closer to gene action and others that are 

closer to the phenotype [14]. They delineated five criteria: A candidate endophenotype 

should be (1) associated with illness; (2) heritable; (3) state-independent (present whether or 

not illness is active); (4) co-segregate with illness within families; and (5) found in a higher 

rate in the unaffected relatives of affected individuals than in the general population [3]. 

Others have agreed that endophenotypes should reflect causes rather than effects of 

disorders, and suggest that endophenotypes should be measured quantitatively [15, 16].

The endophenotype concept is similar to, but distinct from, related concepts such as 

biomarkers and intermediate phenotypes [17]. Biomarkers refer to measurable indicators of 

a disease state. As noted by Lenzenweger [17], biomarkers are associated with the disease, 

but do not necessarily reflect a genetically influenced pathway. For example, in a biomedical 

context the ratio of aspartate aminotransferase to alanine aminotransferase can be used as a 

biomarker of alcoholic liver disease. In this case, the biomarker is associated with the 

disease, but does not reflect a genetically influenced enduring vulnerability to the disease. 
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According to Rasetti and Weinberger, an intermediate phenotype is “a heritable trait that is 

located in the path of pathogenesis from genetic predisposition to psychopathology” [18]. 

This concept has been critiqued on account of its ambiguity with respect to where 

“intermediate” phenotypes lie along the pathway from genes → disorder, which has 

implications for level of analysis [17]. Thus, although the endophenotype, biomarker, and 

intermediate phenotype concepts share overlapping goals of clarifying heterogeneity, the 

terms are not interchangeable. For an extended discussion of these definitional issues, we 

refer interested readers to Lenzenweger [17].

Flint and Munafo noted that the “endophenotypes” that have been used in studies of 

different psychiatric diseases typically fell into six categories: anatomical, developmental, 

electrophysiological, metabolic, sensory, and psychological/cognitive [19], providing a 

useful framework for classifying potential endophenotypes. We adopted this framework to 

organize the evidence for a number of AUD candidate endophenotypes according to each of 

the five Gottesman & Gould [3] criteria (Table 1) as well as genes, regions of interest, and 

gene sets associated with candidate endophenotypes (summarized in Table 2 and visualized 

as part of a gene-environment interplay system in Figure 1). We also added a “functional 

neuroimaging” category in view of the growing number of functional brain candidate 

endophenotypes for AUD [13]. As Table 1 illustrates, the evidence for many of the strict 

endophenotype criteria is sparse at present. The two candidate AUD endophenotypes for 

which there is the greatest evidence, and which have generated the most genetic 

associations, are neurophysiological phenotypes and level of response to alcohol [for 

detailed reviews of these as candidate endophenotypes, see 8, 12].

Neurophysiology

Numerous dimensions of resting and event-related EEG measures (e.g., alpha, theta, and 

beta oscillations) broadly index information processing and cognitive functioning. 

Neurophysiological measures are highly heritable [20], and individuals affected with AUD 

and individuals at high-risk for AUD (offspring of male alcoholics) have elevated resting 

high-frequency (beta; 12–28 Hz) brain oscillations [21] compared to unaffected and low-risk 

individuals.

A genome-wide linkage study of EEG beta power in the high-risk Collaborative Study on 

the Genetics of Alcoholism (COGA) sample found a linkage peak (i.e., a statistical 

indication that a particular section of a chromosome co-segregates with the trait within 

families) over a GABAA receptor gene (GABRA2) on chromosome 4 [22]. Subsequent 

studies across multiple, independent samples have found evidence for association between 

alcohol dependence and variation in GABRA2 [23–25] (for a recent exception see [26]). A 

genome-wide linkage study of power for three frequency bands (alpha, theta, and beta) in a 

sample of Plains American Indians showed evidence for convergent linkage peaks over the 

corticotropin releasing hormone binding-protein gene (CRH-BP) on chromosome 5 [27]. In 

the same study, variants in CRH-BP showed association with AUD in a Caucasian 

replication sample, and anxiety disorders in the Plains Indians, suggesting that CRH-BP may 

have pleiotropic effects (i.e., associations with multiple disorders). More recently, gene-

based tests from a whole-genome sequencing study of EEG beta power identified the 
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gastrulation brain homeobox 2 gene (GBX2) on chromosome 2; however, it is unknown 

whether this gene is associated with AUD [28].

In another neurophysiology example, the amplitude of the event-related potential P3 wave, 

which indexes orientation toward novel events and inhibition of ongoing cognitive 

processing, is reduced in individuals with AUD (and externalizing disorders more generally) 

and in individuals at familial risk for AUD [29–33], especially in male offspring [34]. 

Linkage analyses of the frontal theta and parietal-occipital delta event-related oscillations 

(EROs) underlying the P3 component found a linkage peak over the muscarinic 

acetylcholine receptor M2 (CHRM2) on chromosome 4 [35]. Subsequent association 

analyses in the COGA sample found significant association among variants in the glutamate 

receptor, metabotropic 8 (GRM8) gene and theta EROs [36]; variants in the corticotropin 

releasing hormone receptor 1 gene (CRHR1) on chromosome 17 and P3 amplitude [37]; and 

variants in KCNJ6 on chromosome 21 and frontal theta oscillations [38]. Variation in 

CHRM2, GRM8, CRHR1, and KCNJ6 has also been associated with alcohol and/or drug 

dependence [39, 40, 37, 36].

Level of response

Level of response (LR) to alcohol is the second candidate endophenotype for AUD to meet 

many of Gottesman & Gould’s [3] criteria, with the exception that, to our knowledge, there 

is not evidence that it co-segregates with AUD within families. LR [also known as 

subjective response to alcohol; 41] is the degree to which a person responds to a specific 

dose of alcohol or the number of drinks an individual needs to produce specific 

psychological and motor effects, and is distinct from acquired alcohol tolerance [42]. Low 

LR is hypothesized to confer risk for AUD because individuals who are less sensitive to 

alcohol must consume larger quantities of it in order to experience its effects. A program of 

research led by Schuckit and colleagues demonstrates that low LR is associated with 

increased alcohol use and problems across multiple samples [43, 42, 44]. As summarized in 

a recent meta-analysis, populations at risk for AUD, such as individuals with a family 

history of alcoholism, typically have lower LR compared to other populations [45]. 

Heritability (h2) estimates for LR are approximately 60% [46, 47].

Variation in a number of genes and gene regions is associated with LR. Variation in 

GABRA2 [48] and in the 5-HTTLPR polymorphism in the serotonin transporter (SERT) gene 

on chromosome 17 [49] are associated with subjective responses to alcohol and/or body 

sway in alcohol challenge studies. Variation in the μ opioid receptor gene (OPRM1) on 

chromosome 6 is associated with subjective responses to alcohol in alcohol infusion studies 

of problem and [50] non-problem drinkers [51] and self-rated effects of alcohol in a Native 

American sample [52]. A systematic genome-wide scan in the same Native American 

sample identified regions of interest on chromosomes 6, 10, 12, and 17 that were associated 

with participants’ self-reported subjective LR early in their drinking careers [53]. Variation 

in the aldehyde dehydrogenase gene (ALDH2) on chromosome 12 was associated with self-

reported subjective LR early in the drinking careers of a sample of Chinese- and Korean-

American college students [54]. Finally, variants in the cholinergic nicotinic receptor gene 

cluster (CHRNA5-CHRNA3-CHRNB4) on chromosome 15 [55, 56] and genes sets 
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implicated in neuronal signaling [57] were associated with LR in a sample of young adult 

offspring of alcoholics.

The evidence for association among these genes and AUD is mixed, with the exception of 

ALDH2’s well-replicated association [58]. A meta-analysis indicates an association between 

variation in the 5-HTTLPR polymorphism and AUD; however, there is some indication that 

this reflects publication bias [59]. A meta-analysis of the commonly studied OPRM1 

Asn40Asp (A118G) polymorphism indicated no association with substance dependence 

(opioid, alcohol, nicotine, or cocaine) [60]. There is some evidence for association among 

variants in the nicotinic receptor gene cluster on chromosome 15 and AUD [61]; however, 

other studies have reported null effects [62].

Although LR has received much attention as an endophenotype, it is worth noting that some 

inconsistencies in the alcohol challenge literature have led others to propose a more nuanced 

“differentiator model” [63] that takes into account subjective and motor responses across the 

rise and fall of blood alcohol levels. Under this model, individuals at risk for developing an 

AUD (by virtue of family history) are hypothesized to show acute sensitization to alcohol as 

blood/breath alcohol level rises, and acute tolerance as blood/breath alcohol level falls. 

Thus, these individuals are at risk because of two processes: they experience more 

pleasurable and excitatory effects of alcohol during initial intoxication, and fewer of the 

sedative effects of alcohol as blood alcohol level declines. A modified version of the 

differentiator model [64] suggests that these effects are most pronounced at peak breath 

alcohol concentration. Recent longitudinal work is consistent with this modified 

differentiator model; individuals who were more sensitive to the stimulant and rewarding 

effects of alcohol and who were less sensitive to the sedating effects of alcohol at peak 

breath alcohol concentration in an alcohol challenge study had the highest number of AUD 

symptoms six years later [65].

Promising Potential Endophenotypes

Although there are only a small number of examples that come close to meeting the strict 

definition of an endophenotype, there are many additional candidate endophenotypes for 

AUD for which some criteria are met. This is especially the case for novel promising 

endophenotypes for which sufficient data are not yet available. We highlight here four 

psychological/cognitive, sensory, and neuroimaging candidate endophenotypes that show 

potential.

Delayed reward discounting

AUD shares genetic influences with several other common externalizing disorders (e.g., 

illicit drug dependence and antisocial behavior) and measures of impulsivity [66, 67]. 

Disinhibition, or the inability to control one’s impulses, is the central feature shared among 

these disorders [68]. Impulsivity is a multifaceted construct that encompasses diverse 

behaviors that are poorly planned, inappropriate, or unnecessarily risky [69]. Impulsivity as 

a whole is likely not tractable for study as an endophenotype because it does not represent a 

unitary construct unseen to the unaided eye, but specific features, such as the ability to delay 

rewards (i.e., exhibit self-control) have been proposed as a cognitive endophenotype for 
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AUD and substance use disorders more generally [70]. Delayed reward discounting is 

heritable [30–51% in an adolescent sample; 71]. Abstinent alcoholics are less likely to delay 

rewards [72] and the unaffected adult daughters (but not adult sons) of alcoholic fathers are 

less likely to delay reward [73]. To date, however, there have not been systematic gene 

identification efforts for sub-clinical impulsivity phenotypes such as delayed reward 

discounting, and so its potential to aid in gene identification for AUD is still relatively 

unknown.

Executive functions

In recent years there has been a proliferation of interest in executive functions (EF) as they 

relate to alcohol and other substance use disorders. EF refer to an interrelated set of self-

regulatory skills and abilities related to goal-directed behavior [74] including attention, 

working memory, planning, and cognitive flexibility. EF share a highly heritable (99%) 

common factor [75] and alcohol dependence severity is associated with impaired EF [76]. 

These EF impairments among alcohol dependent individuals are to be expected given the 

toxic effects that alcohol has on the frontal lobes; however, it has been proposed that these 

EF deficits may predate the onset of disorder and qualify as an endophenotype [77]. For 

example, unaffected relatives of alcohol or drug dependent probands also have lower EF (as 

measured in tasks tapping cognitive flexibility and inhibition) compared to healthy controls 

[78, 77]. In one of these samples, analyses of the brain-derived neurotrophic factor (BDNF) 

Val66Met polymorphism found that the Met allele was associated with lower EF [78]. 

However, variation in this same polymorphism is not associated with AUD [79].

Sweet liking

From the sensory domain, sweet liking (i.e., preference for sweet tasting foods) is also a 

strong yet understudied candidate endophenotype. Perceived pleasantness of sweet foods, 

the frequency of sweet food consumption, and sweet food cravings are moderately heritable 

(31–50%) [80]. In a taste preference test, alcoholic men preferred higher concentration 

sucrose solutions compared to non-alcoholic men [81], and paternal history of alcoholism 

(an indicator of genetic risk) in an inpatient psychiatric sample predicted sweet liking above 

and beyond subjects’ own alcohol dependence status [82]. Children with a family history of 

alcoholism also prefer a higher sucrose concentration compared to children without a family 

history of alcoholism; however, this was only the case for children who were also 

experiencing depressive symptomatology [83]. Variation in the taste receptor type one 

family of genes (TAS1R1, TAS1R2, and TAS1R3) influences sweet liking [84] and there is a 

linkage peak (LOD = 3.5) on chromosome 16 at 16p11.2 (marker D16S753) for frequency 

of sweet food consumption [80]. However, whether variation in the TAS1 genes and other 

sweet-liking genomic regions are associated with AUD has not been systematically 

examined, representing an important direction for future research.

Brain structure

The rapid advances and growing interest in neuroimaging have begun to identify a number 

of structural brain features that may qualify as endophenotypes for AUD [13]. Disentangling 

premorbid differences from the effects of alcohol on the brain is an inherent difficulty of 
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work in this area, as it is known that even subclinical alcohol use disrupts typical 

neurodevelopment [85] and chronic alcohol abuse accelerates loss of white and gray matter 

volume [86]. Brain structure is highly heritable (e.g., frontal and language-related structures 

(h2 > 80%) [87] and white matter volume (h2 = 96%) [88]). Alcohol-dependent individuals 

have reduced volume in the right hippocampus compared to unaffected controls [89, 90]. 

Brain volume differences are also observed in alcohol-naïve children, adolescents, and 

young adults who are at high familial risk for AUD, as evidenced by reduced gray matter 

volumes across multiple brain regions (superior frontal, cingulate and parahippocampal gyri, 

amygdala, thalamus, and cerebellum) compared to matched controls at low familial risk for 

AUD [91]. In this same study, smaller gray matter volumes in many of these regions were 

associated with elevated externalizing symptoms (attention deficit, hyperactivity, conduct 

and oppositional defiant disorder symptoms), suggesting that these gray matter differences 

may predispose individuals to a range of externalizing-spectrum problems, some of which 

have been previously shown to be genetically correlated with AUD [92, 93]. Thus, some 

structural brain features appear to meet many of the endophenotype criteria. Systematic gene 

identification studies for these features may provide evidence for association with AUD and 

thus become important directions for future research.

AUD Endophenotypes in Animal Models

Translational approaches to endophenotypes that include the development of relevant animal 

models are important [94] for elucidating the underlying neurobiology and genetics of AUD, 

which may in turn support the development of pharmacological treatments [95]. As 

highlighted below, the efforts to develop animal models for AUD endophenotypes have had 

varying degrees of success with respect to these goals.

Neurophysiology

In findings that mirror the human literature, an alcohol preferring (P) mouse strain had a 

reduced P300 amplitude compared to a non-alcohol preferring (NP) mouse strain [96]. A 

follow-up study further indicated that reductions in evoked delta event-related oscillations 

and decreases in delta and theta phase synchrony contributed to this P300 amplitude 

reduction [97]. Additional studies are needed to identify the genetic differences between 

these selectively bred mouse models that are associated with these neurophysiological 

endophenotypes.

Level of response

Rat models suggest that P animals have lower LR compared to NP animals; for example, in 

a conditioned place aversion test, P rats avoided an alcohol-paired location less than NP rats 

[98], suggesting that P rats are less sensitive to the aversive effects of alcohol. here have also 

been attempts to translate the body sway dimension of LR into rodent models; however, the 

lack of concordance between the human phenotype and rodent models makes development 

of novel behavioral assays an important area for continued refinement [for a review see 99]. 

A series of eleven rodent behavioral assays broadly indexing body sway were tested across 

eight inbred mouse strains. Interestingly, there was little genetic correlation across the 

behavioral assays, suggesting that unique sets of genes contribute to foot slippage and 
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wobbly gait, for example [100]. The degree to which unique sets of genes contribute to the 

component processes of human body sway is unknown. Despite these challenges to 

phenotype consilience across species, convergent evidence from cross-species (humans, 

mice, and fruit flies) analyses of locomotor responses to ethanol implicated the glypican 

gene GPC5 on chromosome 13 [101].

Delayed reward discounting

Delayed reward discounting tasks are very similar in human and non-human animals, 

making this an ideal translational endophenotype [70]. In findings that mirror the human 

literature, P mice were more impulsive than NP mice in a delayed reward discounting task 

[102]. Outbred mice that more steeply discounted delayed rewards also displayed more 

sensitivity to the stimulant effects of ethanol after repeated exposures [103], suggesting that 

delayed reward discounting and ethanol sensitization (one component of the differentiator 

model discussed above) may share underlying predispositions to AUD. We note that this 

translational literature is not entirely consistent. In one study there were no differences in 

delayed reward discounting between mice that were bred to either consume high or low 

amounts of ethanol [104], and there is also some evidence that mice bred to be less sensitive 

to the reinforcing effects of drugs exhibited greater delay discounting compared to mice that 

were more sensitive to these reinforcing effects [105]. These differences may be attributable 

to mouse strain differences, and highlight the difficulties in identifying the appropriate 

model system for translational studies of candidate endophenotypes.

Sweet liking

Animal models have also provided some validation of sweet liking as a strong candidate 

endophenotype for AUD and for addiction phenotypes more broadly [106, 84]. Rats selected 

for high saccharin intake consumed more ethanol relative to rats selected for low saccharin 

intake [107], and they exhibit greater ethanol withdrawal [108]. Saccharin consumption also 

appears to offset alcohol consumption. P rats who voluntarily consume saccharin 

subsequently drink less ethanol compared to alcohol preferring rats who are not given access 

to saccharin [109]. This suggests that ethanol and saccharin consumption may have 

overlapping effects on (genetically-influenced) neurobiological systems involved in reward, 

such as the opioid, serotonin, and dopamine systems [110]. Consistent with this idea, P rats 

who were administered clonidine (a noradrenergic signaling inhibitor) reduced alcohol 

consumption and saccharin consumption, but not water consumption [111]. In another 

example, P rats who were administered TP-10 (a dual-specificity cyclic adenosine 

monophosphate/cyclic guanosine monophosphate-inhibiting enzyme inhibitor) reduced their 

alcohol and saccharin self administration [112]. This illustrates the utility of using the 

endophenotype concept in a translational manner to develop potential therapeutic targets for 

AUD.

Gene identification for translational endophenotypes

Translational approaches to endophenotypes typically rely on comparisons of mouse strains 

selectively bred for higher and lower alcohol preference. Mapping these differences to genes 

and gene networks is critical to fully realizing the promise of a translational approach for 
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endophenotypes. A meta-analysis of three mouse strains that differed in alcohol preference 

identified 3,800 genes that were differentially expressed in the brains of N and NP mice, and 

functional gene groups including mitogen-activated protein kinase signaling and 

transcription regulation pathways were overrepresented among these differentially expressed 

genes [113]. These results provide numerous candidate genes and pathways to be tested for 

association with translational candidate endophenotypes and, if merited, further testing in 

human samples.

The Endophenotype Concept in AUD Research: Redux

The landscape of psychiatric genetics has changed dramatically since the endophenotype 

concept was most recently reintroduced in the literature. The field has moved towards large, 

collaborative gene finding research networks for psychiatric outcomes (such as the 

Psychiatric Genomics Consortium) that have sample sizes in the tens of thousands, moving 

away from an endophenotype strategy with its emphasis on heritability. However, the trade-

off between large-scale genotyping, where amassing very large samples often comes at the 

cost of less precise measures, and the study of endophenotypes, which may require deeper, 

more costly measurement on a smaller number of subjects, is currently unknown.

We recognize that an endophenotype approach shares some of the same weaknesses as 

large-scale genotyping efforts. One is the issue of reliability. As noted by Kendler and Neale 

[114], although many candidate endophenotypes may seem scientifically “harder” (because 

they involve, for example, measures of brain structure) than “softer” clinical diagnoses, they 

do not necessarily have higher reliabilities. This ultimately impacts the power of one’s 

analyses, and in this respect it does not appear that endophenotypes offer a particular 

advantage over diagnoses. A second is the issue of whether candidate endophenotypes are 

truly less heterogeneous than diagnostic categories; for example, a reduction in P3 amplitude 

can result from several possible differences in underlying event-related oscillations. Thus, 

whether some endophenotypes for AUD are more homogenous than the diagnostic category 

for genetic analysis remains an open question. A third is the issue of replication. Only a few 

of the genes and genetic variants identified in Table 2 have replicable associations with their 

respective candidate endophenotypes and with AUD, and thus the replicable yield of AUD-

associated genes remains small.

Related to the issue of replication, several of the genes summarized in Table 2 were selected 

based on their prior association with AUD-related phenotypes. This raises the question of 

whether studies of candidate endophenotypes have identified novel genes for AUD. Let us 

put the issue of novelty into context. GABRA2 exemplifies the success of an endophenotype 

approach for AUD in that variation in this gene was initially associated with a 

neurophysiological endophenotype [23] and numerous subsequent studies have documented 

its association with alcohol dependence [115]. On the other hand, the largest genome-wide 

association study of alcohol dependence to date [116] produced associations for genes 

implicated in alcohol metabolism that were initially identified in the early 1990s [117], as 

well as a handful of other genetic variants for which the replication results were mixed. 

Thus, in the absence of other, more successful approaches for AUD gene identification (both 

in terms of novelty and replicability), it seems reasonable that pursuing both large-scale 
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genotyping strategies and endophenotypes-based approaches may be the most prudent path 

forward.

There is also a growing recognition that endophenotypes may not be genetically simpler 

than the psychiatric phenotypes with which they are associated [118], and in fact may reflect 

the contribution of many genetic variants of small effect from across the genome [119]. A 

recent special section in the journal Psychophysiology (December 2014) devoted to studies 

of physiological candidate endophenotypes for addiction and schizophrenia in the Minnesota 

Twin and Family Study reiterates this point. These studies were able to use the same sample 

of parent and twin pair offspring to conduct biometric modeling (i.e., decomposing variation 

for a measure into latent genetic and environmental influences based on the pattern of 

correlations among different degrees of relatives) and genetic association analyses. In one 

example, biometric modeling indicated that genetic factors accounted for 65% of the 

variance in P3 amplitude; however, a genome-wide association study in the same sample did 

not identify any genome-wide significant variants, although a gene-based test did identify 

the myelin expression factor 2 (MYEF2) gene on chromosome 15 [120]. The absence of 

genome-wide significant effects suggests that P3 amplitude is likely polygenic. We return to 

the implications of a polygenic architecture for endophenotypes shortly.

Nonetheless, even if these candidate endophenotypes are not simpler clues to the genetic 

underpinnings than AUD itself [19], they could still be very useful in terms of delineating 

underlying mechanisms [118]. And, as illustrated in the neurophysiology, level of response, 

delayed reward discounting, and sweet liking literatures, endophenotypes can also help to 

begin to bridge human and non-human animal alcohol research and (in the case of sweet 

liking) identify possible drug targets, both of which are distinct advantages of the 

endophenotype concept that Gould and Gottesman [94] emphasized.

Future Directions

Polygenic and network approaches to endophenotypes—AUD has a polygenic 

architecture, meaning that it includes the effects of many variants of small magnitude across 

the genome [121, 122]. The advent of low-cost genome-wide genotyping has made it 

possible to measure polygenic risk for psychiatric disorders such as schizophrenia, and 

polygenic approaches have shown predictive power in instances where no single marker 

meets the stringent genome-wide significance threshold [123]. Polygenic approaches can be 

easily applied to studies of endophenotypes to test whether polygenic risk scores for 

candidate endophenotypes also show association with AUD [124].

Polygenic effects can be further interrogated using gene network analyses and bioinformatic 

data to evaluate biological plausibility and relevance (e.g., is the gene expressed in the brain 

or liver?). Gene network analyses permit examination of whether variants included in 

polygenic scores are located in functionally related networks of genes [125]. This approach 

can thus identify the different pathways involved in genetic vulnerability, and the routes by 

which a set of genes may influence pathways of risk. Knowledge of such networks can be 

capitalized on to develop novel drug targets. Work in model organisms has begun to identify 

gene networks associated with initial sensitivity to ethanol, a measure closely associated to 

level of response [126], and there is some preliminary evidence suggesting that variation in 
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gene networks related to neuronal signaling is associated with level of response in humans 

[57].

Developmental approaches to endophenotypes—Attention to endophenotypes as 

developmental phenomena may also provide additional insight into the pathways between 

genetic predispositions and eventual disorder. To date, the criterion for an endophenotype to 

be associated with the illness has typically been met using cross-sectional studies that 

compare individuals with AUD to healthy controls. However, there are also likely to be 

endophenotypes that emerge or maximally differentiate between those who will and will not 

go on to have AUD at points earlier in development. In a conceptual example of this, 

variation in the AUD-associated gene GABRA2 is also associated with childhood conduct 

disorder symptoms [127] and increased risk (odds ratios ranging from 2.1 to 2.7) of 

exhibiting an elevated persistent trajectory of externalizing behavior across adolescence and 

early adulthood [128]. Neither conduct disorder nor externalizing behavior trajectories meet 

the endophenotype criteria; however, what this example illustrates is the possibility that 

there may be endophenotypes earlier in development that predict adult AUD, and these can 

be capitalized on in gene identification efforts.

A corollary of this point, which is particularly relevant for substance use disorder candidate 

endophenotypes, is that there is likely to be a dynamic relationship between the genes 

associated with AUD and a necessary environmental exposure (i.e., alcohol). For example, 

ethanol exposure induces modest differential gene expression in lymphoblastoid cell lines 

from alcoholics and non-alcoholics [129]. The possibility of identifying AUD genetic 

predispositions that interact with environmental factors (e.g., adolescent alcohol exposure) 

to produce variation in a candidate endophenotype is particularly promising. For example, 

adolescent alcohol exposure may initiate a cascade of biological changes (e.g., gene 

expression [130]) that contribute to variation in AUD candidate endophenotypes and 

eventual disorder.

Developmental considerations have been nearly absent in the literature on endophenotypes 

[131], although it has been noted that one of the more prominent candidate endophenotypes 

for AUD—P3 amplitude reduction—is more pronounced in adolescence compared to young 

adulthood in males with a high-risk paternal history of externalizing disorders [132]. 

Another promising example of a developmental candidate endophenotype comes from a 

recent fMRI study of spatial working memory. It found that the pattern of functional brain 

connectivity in early adolescents (12–14 years) with a family history of AUD was less 

similar to that of older adolescents/young adults (16–20 years) compared to a control sample 

of early adolescents without a family history [133]. The pattern of findings suggests that 

neural connectivity is less mature in adolescents with a family history of AUD. Interestingly, 

this may represent a neuromaturational lag that can only be detected in adolescence. 

Additional data are needed to determine whether this neurodevelopmental lag in adolescence 

is indeed associated with subsequent AUD, but this example illustrates that novel candidate 

endophenotypes that have “sleeper effects” for AUD may be used in gene finding studies.

Attention to developmental changes in and/or the developmental salience of particular genes 

for candidate endophenotypes may be important for identifying the relevant genes and gene 
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networks implicated in AUD. Fully 95% of genes are expressed in the developing fetal brain 

[134], in contrast to the 84% of genes expressed in the adult human brain [135]. The 

structure and function of the brain is largely determined during prenatal development, with a 

second wave of development in adolescence [136]. Thus, the genes and gene networks that 

influence neuronal development, cellular migration, and brain anatomy and function may be 

predominantly expressed quite early in development, but their consequences for cognitive, 

neurophysiological, and functional brain candidate endophenotypes may only emerge later 

in development.

Conclusions

The endophenotype concept was initially proposed as a strategy for improving gene 

identification in view of the complex and heterogeneous nature of psychiatric disorders. In 

the area of alcohol research, level of response to alcohol and resting and event-related 

neurophysiological measures have received considerable attention as candidate 

endophenotypes, and have also led to replicable genetic associations (e.g., CHRM2 [7] and 

GABRA2 [115]) for AUD. As these examples illustrate, the past successes of endophenotype 

strategies for AUD gene identification suggest that the concept will continue to remain 

relevant to AUD research today, even as gene identification efforts move towards large-

scale phenotyping at the diagnostic level. A number of other candidate endophenotypes 

show promise, including delayed reward discounting, executive functions, sweet liking, and 

structural brain features. Systematic efforts to continue to refine and validate these as elected 

endophenotypes, and to identify the genes, polygenes, and gene networks that may influence 

variation in these traits/behaviors (and in turn AUD) by themselves and in the context of 

environmental exposures (particularly alcohol) represent important directions for future 

research.
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Figure 1. 
Depiction of the interplay among genetic and environmental factors that contribute to 

liability for alcohol use disorder (AUD), and the contribution of candidate endophenotypes 

and their associated genes and gene regions. Genes and gene regions that are associated with 

AUD candidate endophenotypes are highlighted here (references are documented in Table 

2). These should be considered illustrative and not exhaustive. The “reaction surface” 

represents the probabilistic interplay among genetic and environmental factors in the 

development of risky alcohol use (i.e., consuming alcohol in quantities that put individuals 

at risk for alcohol-related harms) and AUD. Figure adapted from Gottesman & Gould [3] 

and used with permission.
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Table 2

Genes, regions of interest, and gene sets associated with illustrative candidate endophenotypes.

Candidate endophenotype Chromosome Gene Potential relevance References

Low subjective response to 
alcohol 4 GABRA2 Implicated in central 

nervous system disinhibition Uhart et al. [48]

6 OPRM1
Endogenous opioid system 
involved in alcohol-induced 
reward

Ray et al. [50] 
Ray, Hutchison 
[51]
Ehlers et al. [52]

10 CYP2E1
Codes CYP2E1 enzyme; 
involved in ethanol 
metabolism

Webb et al. 
[159]

12 ALDH2

Involved in alcohol 
metabolism; implicated in 
conversion of acetaldehyde 
to acetate

Luczak et al. 
[54]

15 CHRNA5-CHRNA3-CHRNB4 genes Nicotinic acetylcholine 
receptor genes Joslyn et al. [55]

17 SERT Involved in serotonin 
transmission Hu et al. [49]

multiple gene sets implicated in neuronal 
signaling -- Joslyn et al. [57]

regions of 
interest on 
chromosomes 
6, 10, 12, and 
17

-- -- Ehlers et al. [53]

EEG variables
13 GPC5

Codes for a cell surface 
proteoglycan implicated in 
neural development

Joslyn et al. 
[101]

2 GBX2

Involved in midbrain/
hindbrain development and 
influences the expression of 
other genes during 
embryogenesis

Vrieze et al. [28]

4 GABRA2 Implicated in central 
nervous system disinhibition

Porjesz et al. 
[22]

5 CRH-BP

Codes for a high affinity 
binding protein for 
corticotrophin releasing 
hormone; involved in stress 
response

Enoch et al. [27]

7 CHRM2

Influences the effects of 
acetylcholine in the central 
and peripheral nervous 
system

Jones et al. [35]

7 GRM8 Involved in glutamatergic 
system Chen et al. [36]

10 HTR7 Involved in serotonergic 
system

Zlojutro et al. 
[160]

15 MYEF2
Transcriptional repressor of 
the myelin basic protein 
gene

Malone et al. 
[120]

17 CRHR1
Involved in the 
neuroendocrine stress 
response

Chen et al. [37]
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Candidate endophenotype Chromosome Gene Potential relevance References

21 KCNJ6
Codes for the GIRK2 
protein involved in 
dopaminergic signaling

Kang et al. [38]

Executive functions 11 BDNF

Codes for BDNF protein 
involved in brain 
development and synaptic 
plasticity

Benzerouk et al. 
[78]

Structural brain differences 11 11q14.2 -- Boutte et al. [89]

Sweet liking 1 TAS1R1, TAS1R2, TAS1R3 Involved in sweet taste 
reception

Bachmanov et 
al. [84]

16 16p11.2 -- Keskitalo et al. 
[80]

Notes. -- indicates not applicable or unknown. Studies listed should be considered illustrative and not exhaustive.
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