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Abstract

We investigate the influence of three common definitions of the solute/solvent dielectric boundary 

(DB) on the accuracy of the electrostatic solvation energy ΔGel computed within the Poisson 

Boltzmann and the generalized Born models of implicit solvation. The test structures include 

small molecules, peptides and small proteins; explicit solvent ΔGel are used as accuracy reference. 

For common atomic radii sets BONDI, PARSE (and ZAP9 for small molecules) the use of van der 

Waals (vdW) DB results, on average, in considerably larger errors in ΔGel than the molecular 

surface (MS) DB. The optimal probe radius ρw for which the MS DB yields the most accurate 

ΔGel varies considerably between structure types. The solvent accessible surface (SAS) DB 

becomes optimal at ρw ~ 0.2 Å (exact value is sensitive to the structure and atomic radii), at which 

point the average accuracy of ΔGel is comparable to that of the MS-based boundary. The 

geometric equivalence of SAS to vdW surface based on the same atomic radii uniformly increased 

by ρw gives the corresponding optimal vdW DB. For small molecules, the optimal vdW DB based 

on BONDI + 0.2 Å radii can yield ΔGel estimates at least as accurate as those based on the optimal 

MS DB. Also, in small molecules, pairwise charge-charge interactions computed with the optimal 

vdW DB are virtually equal to those computed with the MS DB, suggesting that in this case the 

two boundaries are practically equivalent by the electrostatic energy criteria. In structures other 

than small molecules, the optimal vdW and MS dielectric boundaries are not equivalent: the 

respective pairwise electrostatic interactions in the presence of solvent can differ by up to 5 

kcal/mol for individual atomic pairs in small proteins, even when the total ΔGel are equal. For 

small proteins, the average decrease in pairwise electrostatic interactions resulting from the switch 

from optimal MS to optimal vdW DB definition can be mimicked within the MS DB definition by 

doubling of the solute dielectric constant. However, the use of the higher interior dielectric does 

not eliminate the large individual deviations between pairwise interactions computed within the 

two DB definitions. It is argued that while the MS based definition of the dielectric boundary is 

more physically correct in some types of practical calculations, the choice is not so clear in some 

other common scenarios.
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1 Introduction

Accurate and at the same time computationally facile description of the solvent environment 

is essential for realistic biomolecular modeling. Replacing the discrete molecules by an 

infinite continuum with the dielectric and “hydrophobic” properties of water is at the heart 

of the so-called implicit solvent framework1–8 which has gained popularity over the past two 

decades. Within the framework, approaches based on solving the Poisson-Boltzmann (PB) 

equation9 of linear response, continuum electrostatics are arguably most widely used. A 

variety of numerical schemes for solving the PB equation have been developed.2,7,10–18 

When speed and algorithmic simplicity are paramount, as in molecular dynamics 

simulations, the generalized Born (GB) model19–42 is usually preferred. The GB model 

provides an approximate analytical expression for electrostatic solvation free energy, and 

shares the same underlying physics of linear response continuum electrostatics with the PB 

approach. A key step in these continuum calculations2,12,43 is defining the solute/solvent 

dielectric boundary (DB) – a region of space over which the dielectric constant ε(r) changes 

from the value characteristic of the molecular interior (e.g. ε = 1 or 4) to that of the solvent, 

(e.g. 80 for water). While technically there is no notion of a dielectric boundary in the main 

equation of the GB model, see “Methods”, the solute/solvent boundary still enters into the 

model via the so-called effective Born radii – the latter are typically computed as exact or 

approximate integrals over the suitably chosen solute volume44 or surface.27,45 Schematics 

of three basic surface definitions that have so far most commonly been used in biomolecular 

computations are shown in fig. 1. Among these, the Van-der-Waals (vdW) representation of 

the molecule – the union of hard atomic spheres – is the simplest and most computationally 

facile. However, it is the Lee-Richards molecular surface46 (MS), that has been utilized most 

often in numerical PB or GB calculations.10,12,44 In analytical GB formulations considerable 

effort was made to approximate this type of boundary, with various degrees of success, see 

e.g. Ref.47 for a review. Still, the Lee-Richards molecular surface is not the only type of DB 

proposed for use in the PB14,48–51 and the GB models.52–55 Other recent examples of DB 

definitions include Gaussian boundary in which a transition between the low and high 

dielectric regions is smooth,48 and the skin surface50,56 which has a similar appearance to 

the Lee-Richards surface, but avoids singularities associated with the latter.

Arguments in favor of a particular DB representation can be purely technical/computational. 

For example, the use of a smooth representation for DB can significantly increase 

convergence rate of iterative solutions of the PB equation. Likewise, representing the solute 

as a collection of vdW spheres simplifies the calculation of the effective Born radii in the 

GB model, compared to using the Lee-Richards surface to define the solute/solvent 

boundary. These technical considerations are very important in practical computations and 

weigh heavily in the accuracy/speed trade offs made in the development and use of the 

implicit solvent models. A more fundamental question is which of the alternative 

representations of the solute/solvent dielectric boundary is more physically realistic in 

atomistic calculations? The question is not trivial and may not have a unique answer as the 

very notion of dielectric boundary is a concept borrowed from classical electrostatics of 

macroscopic dielectric media. At the atomic level the concept is a serious approximation. 

For example, dielectric boundary is completely external to the current PB/GB formalism 
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where the boundary is a purely geometric construct that does not depend on the charge 

distribution within the solute. In reality, water structure around a microscopic solute 

responds to its electric field (electrostriction), the response depends not only on the 

magnitude but also the sign of the solute charge (charge hydration asymmetry). Within the 

limitations of the current continuum electrostatics formalism, the choice of the right 

dielectric boundary definition is very important since the outcomes of such calculations are 

extremely sensitive to details of the DB.57 The sensitivity is expected: solvation energy of a 

single “Born” ion is of an order of a 100 kcal/mol, and is inversely proportional to the ion 

radius. Thus, for an isolated surface atom, a 10 % change in the atomic radius – a mere 0.1 

Å shift in the position of the dielectric boundary – can result in a 10 kcal/mol change in the 

energy, comparable to stability of a typical protein.

Arguably the two conceptual limiting cases of the currently used DB definitions are the MS 

and vdW surfaces, fig. 1. Physically, the most important difference between these two 

distinct treatments of the solute/solvent separation is the assignment of dielectric to the 

interstitial space in-between the atomic spheres: the vdW representation treats any tiny 

crevasse as filled with high dielectric solvent, while within the DB definition based on 

molecular surface the entire interior of the molecule is treated as low dielectric space 

(internal cavities large enough to fit a water molecule are treated as high dielectric). Other, 

more complex surface definitions48,52 can typically be parametrized to approach one of 

these limiting cases. While it was often argued, based on individual case studies58 and 

general physical considerations59 that the DB based on molecular surface is physically more 

realistic than the vdW alternative, the issue is certainly not yet settled. Opposite arguments 

and case studies exist.60 In fact, it is surprising that so few works address this important 

issue as their primary focus. Here we revisit the question of accuracy of the vdW vs. MS DB 

definition within the context of continuum electrostatic calculations. A fairly large and 

diverse set of test molecular structures is employed. While our main focus here is the 

accuracy of the electrostatic solvation free energies computed via the standard continuum 

treatment based on the Poisson equation, we will also investigate the equivalent generalized 

Born calculations. Three common definitions of the dielectric boundary (DB) will be 

explored – molecular surface (MS), van-der-Waals surface (vdW) and solvent accessible 

surface (SAS), fig. 1.

While more sophisticated implicit solvent approaches exist61–66 that make fewer 

approximations to reality than do the PB and GB models, the latter continue to be work 

horses of practical continuum electrostatic calculations due to their robustness, conceptual 

simplicity, computational speed, and availability in many popular packages. The following 

study should help improve outcomes of such calculations.

2 The Approach

Biomolecular continuum electrostatic calculations, be that PB or GB, produce a range of 

physical quantities that can be compared either to more accurate models of solvation or 

directly to experiment. While comparison with experiment is the ultimate test of any theory, 

we argue that it is not ideal for the task at hand – evaluating the performance of various 

boundary definitions in PB or GB calculations. This is because to go from PB/GB to an 
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experimental observable one has to make several different approximations unrelated to the 

DB definition. Limited conformational sampling and, as a consequence, inadequate 

structural relaxation and dielectric response, is just one such example that adds considerable 

uncertainty to these calculations. The absence of explicit structural relaxation in many types 

of continuum electrostatic calculations67 often requires13,68 the use of interior dielectric 

constants larger than 1, which is an additional approximation complicating comparisons 

between various DB definitions. In this work we will try to reduce such uncertainties as 

much as possible, which leads to the following choices. Our reference solvation model is 

explicit solvent (TIP3P). To avoid conformational sampling issues, conformations of all of 

the test molecules are fixed. We choose only net neutral compounds mainly to mitigate the 

uncertainties associated with the absence of charge hydration asymmetry from the 

conceptual basis of the PB or GB model. As was argued elsewhere,69 the issue of the 

dielectric boundary placement can be treated separately from the charge hydration 

asymmetry effects. Also, the absence of charged compounds in the test set simplifies the 

explicit solvent free energy calculations significantly (no need to consider net charge 

corrections to the PME based calculation), likely making the corresponding computation as 

of ΔGel more robust. Finally, our target “observable” is the electrostatic solvation free 

energy. It can be estimated in a straightforward manner in both the implicit and explicit 

solvent. Unless otherwise stated, we use internal dielectric of 1. Accurate computation of 

biomolecular solvation free energy (ΔGsolv) is central to numerous areas of fundamental, 

bio-medical and industrial research.70–75

As was mentioned above, three types of solute/solvent boundaries are explored here: the 

Lee- Richards (MS) surface, the van-der-Walls (vdW) surface, and the solvent accessible 

(SAS) surface, fig. 1. We vary the solvent probe radius to transition between the boundary 

types in a continuous manner, which helps clarify the trends. For example, the vdW surface 

corresponds to setting the probe radius to zero in the Lee-Richards MS surface definition; on 

the other hand, using a very large probe radius approximates the convex hull of the 

molecule. The commonly used MS lies in-between, at probe radius of 1.4 Å for water. In 

addition, we vary details of the boundary by switching between three sets of atomic radii: 

two commonly used, “all purpose” sets of intrinsic atomic radii, BONDI,76 PARSE,77 plus a 

relatively new set ZAP975 developed specifically for neutral small molecules. A change of 

the solvent probe radius in SAS is equivalent to a uniform shift in the intrinsic atomic radii 

in vdW surface, an equivalence which effectively allows us to probe a range of radii as well. 

Key parameters that define geometry of each of the DB types shown in fig. 1 are intrinsic 

radii of individual atoms in the molecule, and, in the case of molecular and SAS boundary, 

the radius of the solvent probe. Partial atomic charges are external to the PB/GB models, we 

use the same set charges for the corresponding explicit solvent reference calculations, see 

“Methods”.

3 Methods

3.1 Molecules used as test sets

We use three test sets of neutral molecules in this work: (1) 19 small proteins. (2) A subset 

of 248 neutral drug-like small molecules,78 which is becoming a de-facto standard for 
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testing performance of various computational models.79–82 (3) 4 conformational states of 

alanine decapeptide (Ala10), fig. 2

The structures of the 4 conformational states of Ala10 were kindly provided by Daniel Roe. 

A detailed description of the Ala10 structures and the methods used to compute ΔGel for 

these structures can be found in Roe. et al.83 Briefly, the conformations Alpha, Left, and 

PP2 were obtained using the LEAP module of AMBER. The Hairpin conformation was 

generated from the backbone of the peptide Trpzip2. The values of ΔGel for the four 

conformations were then calculated by Thermodynamic Integration (TI). For our 

calculation, each of the 4 conformational states of fig. 2 was represented by 100 snapshots 

obtained from the TI protocol described in Ref.83 Within each conformational state, 

structures of individual snapshots differ little since they were generated under strong all-

atom restraints.

The data set of 19 small proteins was randomly selected from a larger data set of 

representative proteins structures from Feig et al.,84 the selection criterion being that the 

compounds are small enough to allow for high-resolution grid computations. Their PDB IDs 

are 1az6, 1bh4, 1bku, 1brv, 1byy, 1cmr, 1dfs, 1dmc, 1eds, 1fct, 1fmh, 1fwo, 1g26, 1ha9, 

1hzn, 1paa, 1qfd, 1qk7, and 1scy. Chain “A” or “model 1” has been chosen when 

appropriate. We used the H++ server85 to assign partial charges and protonation states of 

ionizable aminoacids. Moreover, using specific values of pH, H++ allowed us to obtain 

structures with neutral net charge. The random selection resulted in a fairly representative 

sampling of various structural classes. The structural composition of the proteins is as 

follows: 6 mostly α helical, 4 mostly β sheet, 4 roughly equal mix of α/β, and 5 mostly 

disordered. The size of most of these proteins is about 30 amino acids. For this set only, a 

slightly modified version of BONDI radii (MBONDI240) was used for all PB and GB 

calculations. The difference between BONDI and MBONDI2 is in the radii of hydrogens 

bound to nitrogen atoms; MBONDI2 assigns a radius of 1.3 Å to those hydrogens while 

BONDI assigns 1.2 Å.40

The set of rigid small molecules consists of 248 molecules selected from a larger and diverse 

set of 504 molecules, originally examined by Mobley et al.78 We selected only the 

molecules with average RMS deviation smaller than 0.3 Å relative to the t=0 (initial) 

conformation of each molecule, calculated over 10ns implicit solvent molecular dynamics 

(MD) trajectories of the original set of 504 molecules; the trajectories were taken from 

Ref.86,87 The t=0 conformations were also used to compute the solvation energies reported 

in this work. The coordinates, charge distribution, and the TIP3P based polar solvation 

energies ΔGel were taken from Ref.78 Merck-Frosst implementation of AM1-BCC88 was 

used to assign the partial charges. The alchemical (TI) hydration free energies were 

computed using the Bennett acceptance ratio89 in TIP3P water.

3.2 Poisson-Boltzmann calculations

Within the linear response continuum solvent framework, and in the absence of mobile ions, 

the electrostatic potential ϕ(r) produced by an arbitrary charge distribution ρ(r) is given by 

the Poisson equation:
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(1)

The charge density ρ(r) is given by a set of “fixed” atomic charges qi at positions ri inside 

the dielectric boundary, ρ(r) = Σiqiδ(r−ri). All three dielectric boundary definitions tested 

here, fig. 1, assume an abrupt dielectric boundary in which ε(r) takes only two values: εin 

inside the dielectric boundary and εout outside. Once the potential ϕ(r) is solved for, the 

electrostatic part of the solvation (transfer, if εin > 1) free energy is given by:90

(2)

where ϕ(ri)|vac is the electrostatic potential computed for the same charge distribution in the 

absence of the dielectric boundary, e.g. in the uniform dielectric εin of molecular interior. 

Here, F(ri,rj) is the reaction field Green function of the corresponding boundary value 

problem and  are the pairwise components of the electrostatic solvation free energy.

All the Poisson calculations of the total ΔGel were performed using DELPHI version 2.011 

with a grid spacing of 0.25 Å. Unless otherwise specified, the internal and external 

dielectrics were set to 1, and 80 respectively. The monovalent salt concentration was set to 

zero, making it a pure Poisson model. We use “PB” abbreviation because it is well 

recognized. Given a specific water probe radius ρw, DELPHI uses the standard molecular 

surface as solute/solvent dielectric interface. A vdW based solute/solvent dielectric interface 

is obtained by setting the input probe radius ρw to zero. To set up the dielectric interface as 

the solvent accessible surface (SAS), the atomic radii are increased uniformly by the given 

probe radius ρw. The modified atomic radii and a probe radius of zero is then used as input 

for DELPHI.

For the pairwise electrostatic interactions shown in fig. 7, the corresponding Poisson 

problem is handled by PEP software package originally developed by Beroza et al.,3 which 

computes F(ri,rj). The finest grid spacing used in these calculations is 0.07 Å, decreasing 

from 4 Å in eight steps of focusing on the atom in question. The pairwise interactions are the 

off-diagonal (i > j) elements of the total charge-charge interaction matrix91 

. For the analysis we have excluded all 1–2, 1–3 and 1–4 bonded 

interactions along the atom chain, as is the standard practice in molecular simulations.

3.3 The generalized Born Model

The polar component of the solvation energy was calculated by the ALPB model,92 which 

introduces physically correct dependence on dielectric constants into the original GB model 

of Still et al.,20 while maintaining the efficiency of the original. The ALPB model 

approximates ΔGel using the following formula:
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(3)

where εin and εout are the dielectric constants of the solute and the solvent respectively, β 

=εin/εout, α = 0.571412, and A is the electrostatic size of the molecule, which is essentially 

the over-all size of the structure which can be computed analytically.92 We employ the most 

widely used functional form20 of , where Ri is the 

so-called effective Born radius of atom i, and rij is the distance between atoms i and j. 

Unless otherwise specified, we set εin = 1, and εout = 80 in eq. (3).

In this work, we use the so-called R6 effective Born radii

(4)

proposed by Svrcek-Seiler93 and independently by Grycuk.94 In eq. (4) the integral (ext) is 

taken over the region outside the molecule’s DB. We use an equivalent formulation 

described in Mongan et al.:44

(5)

which, by Gauss-Ostrogradski theorem, is equivalent to eq. (4). Here, ∂V represents the DB 

of the molecule, and dS is the infinitesimal surface vector. eq. (5) is estimated by a 

numerical procedure described in Ref.45 An empirical constant offset B is added to the 

computed inverse radii to obtain the best agreement with the PB ΔGel.44 Although B = 0 was 

later found to give better agreement with explicit solvent ΔGel for small molecules,79 here 

we use the same B = 0.028 Å−1 for all structures for consistency between the GB and PB 

results.44

To represent the DB computationally, we employ triangulation of the MS generated by 

MSMS95 tool which takes the solvent probe radius ρw as input. The vdW based effective 

Born radii are approximated by using a very small probe radius, ρw = 0.01 Å. Note that there 

may exit small cavities that are completely buried in the interior of the molecules even for 

ρw =0. We found that these are not included in the MSMS output triangulated surface. Thus, 

the true vdW effective Born radii are slightly smaller than those estimated by our strategy, 

which can only increase the differences between the vdW vs. MS based radii seen in fig. 9, 

right panel. Our main conclusion is therefore unaffected. Given relatively small sizes of the 

tested proteins, any difference between the true and the approximate vdW effective Born 

radii is expected to be small. The pairwise interactions are the off-diagonal (i > j) elements 

of the total charge-charge interaction matrix91 . For the analysis 
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we have excluded all 1–2, 1–3 and 1–4 bonded interactions along the atom chain, as is the 

standard practice in molecular simulations.

3.4 Explicit solvent solvation free energies

Standard Thermodynamic Integration(TI) protocol was employed to compute the explicit 

solvent electrostatic solvation free energies used as reference. The calculations were 

performed in explicit (TIP3P) solvent in Amber1296 simulation package. The electrostatic 

(polar) contribution was computed as the difference of the charging energy of the molecular 

cavity in the aqueous phase and the gas phase.83 The TI integrals were approximated using a 

five point Gaussian weighted sum. All simulations were performed using the Langevin 

thermostat with a collision frequency of 2 ps−1 and a time step of 2 fs. Hydrogen bonds were 

constrained with SHAKE97 using a geometrical tolerance of 10−6 Å. For the TI 

computations in the aqueous phase, the molecules were placed in a truncated octahedral box 

such that the minimum distance between the solute atoms and the box edge is 12 Å. The 

non-bonded interaction cutoff was 10 Å, and long-range electrostatic interactions were 

calculated using periodic boundary conditions via the particle mesh Ewald (PME) 

summation.98,99 Note that since all the structures are net neutral, no additional corrections 

were required. Positional restraints of 200 kcal/mol/ per Å2 on all atoms were employed to 

hold the solute in the desired conformation. The system was gradually heated at constant 

volume for 50 ps, followed by a 1 ns equilibration at constant pressure of 1 atm and pressure 

relaxation time of 2 ps. The last 1 ns of a 2 ns constant volume simulation was used for the 

free energy calculations.

4 Results

In what follows we present a set of calculations that systematically explore the influence of 

the dielectric (solute/solvent) boundary definition on the accuracy of the standard continuum 

solvent treatment of electrostatic free energies. While our main focus is the Poisson type 

calculations, towards the end of the section we also briefly discuss the generalized Born 

model in the same context.

4.1 vdW vs. MS dielectric boundary in the PB model

The Poisson equation estimates of the electrostatic solvation energies for several classes of 

molecules are shown in fig. 3 and fig. 4.

The immediate conclusion one makes by examining these figures is that the vdW surface 

(the 13 ρw = 0 point) based on all three “standard” radii sets is far from optimal for 

representing the dielectric boundary in PB electrostatic energy calculations. The conclusion 

holds true for all of the molecule types tested. In contrast, the standard Lee-Richards 

molecular surface based on BONDI atomic radii is close to optimal for the alanine 

decapeptide and small proteins. The optimal solvent probe radius ρw is close to that of the 

water molecule, ρw = 1.4 Å, although some variability of the optimum ρw in the range 1.4 to 

2.0 Å is seen between the four types of secondary structures of Ala10, and also for the small 

proteins. The use of PARSE radii requires considerably larger probe radius, in the range of 

3.5–6 Å, for the best accuracy relative to explicit solvent ΔGel. For small molecules, the 
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larger the probe the smaller the error in the continuum solvent ΔGel, suggesting that in this 

case the optimal dielectric boundary is close to the convex hull for all three radii sets tested. 

Not surprisingly, ZAP9 shows lowest error among the three sets, since it was originally 

optimized75 on a set of 200 neutral small molecules similar to the set of small molecules 

used in this work*

4.2 SAS dielectric boundary in the PB model

Compared to molecular surface, SAS is not as commonly used100 in estimates of solvation 

free energies, as it is often employed in other types of continuum electrostatics calculations. 

For our purposes here, SAS provides a convenient way to probe variable atomic radii within 

the same general approach of this work. We therefore examine SAS-based DB definition 

here on the same footing with the other two DB definitions, fig. 1. At zero probe radius, the 

SAS coincides with the vdW surface, which for the three common radii sets tested so far, 

does not give accurate ΔGel estimates relative to the explicit solvent. However, as the 

solvent probe increases, the average error in the SAS-based estimates of ΔGel decreases until 

a minimum is reached between ρw =0.1 Å and 0.3 Å, the average optimal value being ≈ 0.2 

Å, fig. 5. For small proteins, the average accuracy of the SAS-based ΔGel at the optimum is 

essentially equal to that of the MS based calculation at its respective optimum. Moreover, 

for small molecules the SAS yields better accuracy at the optimum than the molecular 

surface based calculation at any probe radius from 0 to the maximum tested (ρw = 7 Å). We 

stress that the specific location of the optimum ρw is sensitive to the structure, see the inset 

in the left panel of fig. 5. The sensitivity is also evident from the range of optimum probes 

seen for the four conformations of Ala10, fig. 5. The fact that there is no “one-size-fits-all” 

optimum DB is a manifistation of the limitations of the linear response continuum theory, in 

particular the absence of charge hydration asymetry in its foundation.69

Note that for any probe radius ρw, SAS is equivalent to vdW surface computed with the 

same radii uniformly increased by constant ρw. Which means that by adding 0.2 Å to either 

of the common radii sets explored here, one can use the resulting vdW surface DB to match 

on average (for small proteins) or even exceed on average (for small neutral molecules) the 

accuracy of PB ΔGel calculations performed with the standard ρw = 1.4 Å MS DB and the 

common radii. By itself, it is not news57,101 that one can come up with a set of radii optimal 

for the vdW dielectric boundary definition, and that such set can yield equally accurate 

electrostatic solvation energies when compared to a radii set optimized for molecular surface 

PB calculations.101 The question is whether the optimal vdW and MS based dielectric 

boundaries are equivalent within the Poisson (and GB) continuum framework, and if so, in 

which sense and for which types of molecular structures? And if not, then why?

To address the question, we have selected from out test sets two small proteins and two 

small molecules that best represent the possible equivalence: for each pair of structures in 

table 2, their PB electrostatic solvation energies are closest to each other and also to their 

respective explicit solvent values both for the optimal vdW and MS dielectric boundary 

definitions considered above. The careful selection is needed here becasue the optimal MS 

*Since ZAP9 set was optimized for smooth Gaussian surface implemented in ZAP, 48 one can not necessarily expect it to perform 
equally well in our tests based on sharp dielectric boundary used by DelPhi PB solver
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ρw and vdW radii vary from structure to structure: for example, the 0.2 Å uniform shift in 

the BONDI radii, while optimal on average, is not necessarily optimal for every structure 

used to compute the RMS deviations from explicit solvent seen in fig. 6 and fig. 4. We have 

chosen to analyze proteins and small molecules as the two limiting cases of structure size in 

our test sets: large and small.

If numerical equality of the electrostatic solvation energies between the two DB definitions 

– vdW and MS – is taken as a sole accuracy metric, then these two “opposing” definitions 

are indeed equivalent in the context of linear PB calculations, at least for the types of 

structures explored in table 2*. However, it is well known that even though two estimates of 

 may be close to each other, the individual pairwise components of the 

total, , may differ substantially.91,102 This possibility is investigated in fig. 7, where 

pairwise electrostatic interactions (in the presence of solvent) between individual atomic 

charges are compared for the two DB definitions, vdW and MS. For the small proteins, we 

see large – up to 5 kcal/mol – deviations between some of the charge-charge interactions 

computed within the two DB definitions being compared.

We also find that in this case the average effect of the switch from MS to vdW surface can 

be mimicked within the MS based PB calculations by increasing the internal dielectric 

constant from 1 to almost 2, fig. 7 (left panel). However, the near doubling of the interior 

dielectric still does not make the two DB definitions equivalent: it has little effect on the 

spread of the deviations between the pairwise interactions estimated via the two DB 

definition, which remain large. The deviations between the vdW and molecular surface 

based PB interactions are due to the differences in how the two surface definitions treat the 

small interstitial void space between the atoms, voids that are smaller than the solvent probe. 

Within the VdW DB, this interstitial space is considered to be filled with the high dielectric 

solvent, while the same voids and small invaginations are treated as low dielectric interior 

within the MS based DB definition, fig. 7 (inset of left panel). Thus, the dielectric constant 

averaged over the molecular interior is obviously larger in the vdW DB than in the MS DB, 

in agreement with the calculation shown in fig. 7 (left panel).

In contrast, small molecules do not have the interior in the same sense as larger compounds 

do – virtually every atom is a surface atom. Consequently, it is not surprising that in small 

molecules, the pairwise interactions agree very well between the two DB definitions, fig. 7 

(right panel). A change in the internal dielectric is unlikely to improve the already tight 

agreement, fig. 7. Thus, for small proteins, the vdW and molecular surface definitions of DB 

are not equivalent with respect to pairwise charge-charge interactions. For small molecules, 

the two definitions appear equivalent by our energy-based criteria. Note that the accuracy of 

individual pairwise interactions in electrostatic computations is important: for example, even 

a single wrong charge-charge interaction may lead to significant under- or over- sampling of 

salt-bridges in molecular dynamics simulations, which in turn can alter the thermodynamics 

*The specific amount of the atomic radii “adjustment” needed to achieve the equaility of vdW and MS PB ΔGel depends on the 
structure size57
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of the system.103 Likewise, accuracy of individual charge-charge interactions is key for 

successful continuum electrostatic estimates of biomolecular pK values.13,104–106

4.3 vdW vs. MS dielectric boundary in the generalized Born Model

While there is no notion of dielectric boundary (DB) per se in the key equation of the 

generalized Born (GB) model, eq. (3), the DB enters the model via the effective Born radii 

Ri. Theoretically, Ri can be computed directly from the solution of the PB equation, which 

makes the self-energy terms  of the GB approximation exactly equal to the 

corresponding PB values based on the chosen DB definition. When these perfect effective 

radii are used, the total GB ΔGel approximates the PB result closely.102 In practice, one tries 

to approximate the perfect effective radii as close as possible using approximation less 

computationally expensive than the PB. In this work we use the so-called R6 GB flavor, see 

“Methods”, which was shown to match the PB ΔGel very closely for both the small 

proteins44 and small molecules79 used in this work. Since the GB model is an approximation 

to the Poisson treatment47,94 of electrostatics, and both models are based on the same 

continuum electrostatics framework, it is expected that the conclusions made above for the 

PB will hold for the GB model as well.

As expected for the GB model employed here, fig. 8 is very similar to its PB counterpart, 

fig. 4. As in the PB case, the vdW surface based on all three “standard” radii sets is far from 

optimal for representing the dielectric boundary in GB electrostatic energy calculations. The 

conclusion holds true for the small proteins and small molecules alike (we did not test the 

alanine decapeptide explicitly since we do not expect qualitatively different conclusions). 

The standard molecular surface based on the three common atomic radii sets is close to 

optimal for the small proteins; for each radii set tested, the optimal solvent probe radius is 

close the corresponding optimal for the PB case discussed above. For the small molecules, 

just like in the PB estimates, the larger the probe the smaller the error in the continuum 

solvent ΔGel relative to explicit solvent, suggesting that in the GB case the optimal dielectric 

boundary is also close to the convex hull for all three common radii sets tested.

It is known that for small molecules one can adjust atomic radii to approximate MS based 

PB ΔGel values via the GB approximation based on effective radii computed over vdW 

surface.54 The question is whether in the GB model, the vdW and MS representations of the 

dielectric boundary are also equivalent for small molecules in the same sense as discussed 

above in the context of PB calculations? That is with respect to pairwise charge-charge 

interactions. Not surprisingly, the answer is also positive for the GB, based on an analysis of 

the same small molecules in table 2 that were used to address this question within the PB. 

For these two small molecules (results not shown), not only the total ΔGels, but also the 

corresponding pairwise interactions agree very well between the vdW and molecular surface 

definitions of the DB. For the small proteins, just like in the PB case, there is no equivalence 

between the two DB definitions, fig. 9 (left panel). As in the PB case, the GB vdW based 

pairwise interactions in small proteins can be mimicked by increasing the internal dielectric 

constant, but again only in an average sense: large deviations between individual charge-

charge interactions persist. We did not test the small molecules explicitly in the GB context, 

as the outcome is not expected to be different from the PB case discussed above.
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The closed form of the GB model allows one to explore the origin of the vdW vs. MS 

differences further. Here, and in contrast to the PB model, solvation self energies , or 

the effective Born radii, uniquely determine all pairwise interactions within the GB 

approximation.47 For the small proteins, the optimal vdW based DB leads to a pronounced 

underestimation of the effective radii for atoms buried within the protein interior relative to 

the optimal MS based estimate, fig. 9; this underestimation is compensated by a slight 

overestimation of the relatively small effective radii of the surface atoms, which 

nevertheless contribute substantially to the total . The overestimation of 

the small effective radii is a direct consequence of using the slightly larger (by 0.2 Å in our 

example) atomic radii in the optimal vdW DB. Combined with the pronounced 

underestimation of the large effective radii, fig. 9, the net result is a total vdW ΔGel that is 

deceptively equal to that of the MS based ΔGel. The underestimation of the large effective 

radii occurs because small invaginations and interstitial voids between the atom spheres are 

treated as solvent in the vdW based integral approaches to the estimation of the effective 

radii,102 that is the corresponding volume is missing from the integrals such as eq. (4). The 

net result is similar to filling the voids and small invaginations with high dielectric solvent in 

the PB calculations based on vdW dielectric boundary. Note that the small, ~ 0.2 Å, increase 

in the atomic radii required to make the vdW DB optimal, is not going to close many of 

these voids in structures with pronounced interior regions, fig. 7 (insets). The above 

argument applies only to molecules that posses pronounced interior, such as proteins. In 

contrast, small molecules do not have an interior – virtually every atom is a surface atom – 

and so the “missing volume” problem does not arise.

5 Discussion

In this work we have investigated how the use of three common dielectric boundary 

definitions – van-der-Waals (vdW), molecular (MS) and solvent accessible surface (SAS) – 

affects the accuracy of computing the electrostatic component of solvation free energy 

(ΔGel) within the Poisson (PB) and the generalized Born (GB) continuum solvent models. 

The following conclusions were essentially the same for both models, although we have 

tested fewer options within the GB which is an approximation to PB.

The energies were computed for a set of neutral compounds representing several molecular 

classes: small proteins, peptides, and small rigid molecules. We have started with two 

general purpose atomic radii sets, BONDI and PARSE, and a newer set ZAP9 optimized for 

small molecules. When any of these radii were used to set the dielectric boundary (DB) in 

the PB calculations, the MS dielectric boundary emerged as a clear winner, judging by the 

accuracy of ΔGel estimates relative to explicit solvent free energy calculation taken as 

reference. As a testament to limitations of the continuum electrostatics approach, the optimal 

value of the solvent probe radius ρw varies appreciably between structure types and atomic 

radii sets. For example, the use of the typical water radius of 1.4 Å leads to smallest errors 

for proteins and BONDI radii, while PARSE radii and small molecules required much larger 

ρw to minimize the average deviation from the explicit solvent. Variations of the optimal 

probe radius were also seen within individual structural classes. The SAS boundary 

definition, computed with an optimal probe, proved to be competitive, on average, with the 
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MS based definition. Namely, for a very small ρw ~ 0.2 Å, optimal ΔGel values computed 

with the SAS boundary were nearly identical to the optimal ΔGels based on the MS 

boundary. The exact optimum was extremely sensitive to the probe size and the specific 

radii set, and varied somewhat from structure to structure. Since SAS is geometrically 

equivalent to the vdW surface derived from atomic radii shifted by the solvent probe value, 

we have further investigated the possibility of equivalence of optimal MS and vdW surface 

based dielectric boundaries. Our main finding is that while the total ΔGel computed within 

these two definitions may nearly equal each other for their respective optimal boundary 

parameters (atomic and probe radii), the individual charge-charge interaction energies can 

differ substantially between the vdW and MS based computations. The differences were 

found to be large, up to several kcal/mol for some pairs of atoms, in a carefully selected 

representative sample of small proteins. The observation makes the two boundary 

representations not equivalent for this structure type. On the other hand, pairwise charge-

charge interactions in sample small molecules were nearly unaffected by a switch between 

optimal MS and vdW boundaries, suggesting that at least for small rigid molecules the two 

DB definitions may be interchangeable in practical PB or GB calculations. We have 

attributed this difference between proteins and small molecules to the fact that proteins have 

well defined interior regions, while small molecules do not have interior regions – 

essentially every atom is at the surface. Thus, for small molecules, differences between MS 

and vdW boundary definitions with respect to the interior regions are almost irrelevant, 

while for structures with well defined interiors these differences play a larger role. Within 

the vdW DB, the interstitial void space between the atoms and small internal cavities is 

considered to be filled with the high dielectric solvent, while the same voids (smaller than 

the solvent probe size) are treated as low dielectric interior within the MS based DB 

definition. We have also found that, for the small proteins, one can mimic the average 

decrease in pairwise atom-atom electrostatic interactions due to the switch from MS to vdW 

DB by simply doubling the interior dielectric value in the MS based calculations. The 

observation is consistent with the above picture: once the solvent filled voids are taken into 

account, the dielectric constant averaged over the molecular interior is obviously larger for 

the vdW DB then for MS DB. For structures with no interior, there should be no difference, 

which is exactly what we see for the small molecule examples.

Since the two limiting cases of the dielectric boundary definitions (vdW and MS) are not 

expected to be equivalent for biomolecular structures other than small molecules with 

virtually no interior region, it is natural to ask which of the two definitions is physically 

more correct? The issue is especially important since novel approaches to define and 

compute dielectric boundary are being developed, which can be parametrized to mimic one 

or the other limiting definition of the DB. We believe that the answer depends on which 

other approximations – on top of the linear response continuum – are used in each particular 

application of the PB or GB model. First, consider a scenario in which adequate 

conformation dynamics and sampling is expected to reproduce correct structural 

reorganization that leads to proper dielectric response. For example, if a continuum model is 

used to estimate electrostatics in all-atom molecular dynamics, then a dielectric of 1 is 

appropriate for molecular interior1, which is better reproduced by MS based DB, not vdW. 

In this scenario, physical phenomena that give rise to higher than 1 interior dielectric, e.g. 
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transient water penetration and reorganization of molecular dipoles, are supposed to be 

accounted for by the correct dynamics, not by an artificial increase of the internal dielectric 

constant. For instance, native proteins transiently unfold at room temperature, exposing 

some of their interior to the high dielectric solvent for short periods of time. At these brief 

moments, the interactions between some of the protein charges are reduced substantially, 

leading to somewhat lower mean interactions when averaged over a long time. The resulting 

effective dielectric constant will be larger than 1, but this does not mean that the constant 

internal dielectric used in the equations of motions that govern the dynamics of the 

molecule, e.g. those based on the GB model eq. (3), should be different from unity.

Consider now a very different scenario of continuum electrostatics usage, one in which 

atomic level structural relaxation is not part of the computational model. A good example is 

estimation of pK and ionization states of protein titratable groups based on single 

conformational state13 of the molecule. In this case, polarization of protein dipoles, water 

penetration, etc. does not come in naturally via dynamics, but is instead accounted for, albeit 

in some average sense, by using a higher than 1 interior dielectric, typically in the range of 4 

to 20.85,107 As we have seen above, increased interior dielectric can be mimicked, at least on 

average, by employing the vdW DB definition. This correspondence may justify the use of 

vdW DB in scenarios where εin > 1 is called for by limitations of the underlying model; such 

scenarios are not limited to pK estimation.60 We can still argue that a smoothly varying 

representation of higher dielectric interior108 afforded by a uniform dielectric model (and 

MS boundary) is more physical than the very granular representation that would result from 

filling a myriad of inter-atomic voids with high dielectric of the solvent (vdW boundary), 

thus creating a great number of tiny sharp dielectric boundaries within the protein interior. It 

is unlikely that the correct spatial variation of the internal dielectric, which stems from 

several physical effects including variation in charge and mobility of structural components, 

can be accurately reproduced by a distribution of high dielectric pockets resulting from 

purely geometric voids in the vdW representation. However, most of the current PB-based 

pK estimates, as well as many other continuum electrostatics calculations, still use the 

simplest two-dielectric model, in which the entire protein interior is assigned a single 

dielectric value – a drastic approximation to reality in which the dielectric response varies 

considerably within the protein.108,109 Moreover, the very notion of intramolecular 

dielectric constant is problematic,110 the specific values may depend on the model being 

employed.67,111 Therefore, it is still unclear whether the simplified two-dielectric MS based 

DB can always be expected to provide more accurate charge-charge interactions than the 

alternative vdW based treatment in which one can attempt to mimic locally averaged 

variable dielectric by appropriately adjusting the atomic radii throughout the protein – a 

relatively inexpensive proposition, computationally. In particular, the latter approach can be 

useful in situations where the key charge-charge interactions within the protein are spatially 

separated from the region of variable dielectric, for example when the vdW DB was used to 

mimic variable dielectric across a membrane112 that surrounds the protein in question. 

1The issue of electronic polarizability, which may formally require internal dielectric of 2, is separate. Assume, for the sake of 
argument, that this polarizability is “parametrized into” the force-field.

Onufriev and Aguilar Page 14

J Theor Comput Chem. Author manuscript; available in PMC 2015 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Successful use of vdW based DB was also reported in several PB studies unrelated to pK 

calculations, see e.g. Ref.60 for a recent review.

A comparison of the accuracy of continuum electrostatic calculations based on vdW vs. MS 

based dielectric boundary definitions can be made by comparing a set of computed 

observables directly against experiment. However, such comparisons may not always be 

straightforward, as many other approximations are involved. Conclusions from such 

comparisons also depend on the specific atomic radii set used; ideally one wants to compare 

between sets optimized for each specific type of the DB in the context of the specific 

problem, which may be computationally very demanding for large structures. The use of 

variable internal dielectric to account for missing conformational rearrangements 

complicates such comparison even further, as its effects on charge-charge interactions is 

similar to that of changing the dielectric boundary definition. In the present work we have 

attempted to avoid many such complications and make a more direct comparison between 

the two common dielectric boundary definitions by focusing on a fairly representative test of 

small rigid structures and explicit solvent solvation energies as reference.
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Figure 1. 
The three representations of solute–solvent dielectric boundary (thick red line) tested in this 

work. Left panel The van-der-Waals (vdW) boundary coincides with the surface of atomic 

spheres, the inter-atomic interstitial space is treated as high dielectric solvent (white). 

Middle panel: The Lee-Richards molecular surface (MS): all interstitial space, small voids 

and invaginations inside the surface are treated as low dielectric solute (Grey). (3) Right 
panel: The solvent accessible surface (SAS) defines the boundary: all interstitial space and 

small voids inside the SAS are treated as low dielectric solute.
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Figure 2. 
Cartoon representation of the four conformational states of alanine decapeptide, Ala10, used 

in this work.
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Figure 3. 
Absolute error, relative to the explicit solvent (TIP3P) reference, in the PB electrostatic 

solvation free energy ΔGel of 4 conformational states of alanine decapeptide. The error is 

shown as a function of the solvent probe radius ρw used to define the dielectric boundary 

(solute/solvent surface). Different definitions of the boundary are accessed by varying the 

solvent probe radius within the Lee-Richards MS definition: the vdW surface corresponds to 

ρw = 0. The details of the boundary are also varied by switching between two sets of atomic 

radii: BONDI (left) and PARSE (right). The computations are performed individually for the 

four conformational states of Ala10 (pp2, alpha, left, and hairpin) shown in fig. 2.
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Figure 4. 
Average (RMS) error in the PB electrostatic solvation free energy ΔGel as a function of the 

solvent probe radius ρw used to define the dielectric boundary (solute/solvent surface). The 

error is calculated relative to the explicit solvent (TIP3P) reference. Different definitions of 

the boundary are accessed by varying the solvent probe radius within the Lee-Richards MS 

definition: the vdW surface corresponds to ρw =0. The calculations are performed for 19 

small proteins(Left) and 248 small molecules (Right), for three sets of atomic radii shown in 

the legend box.
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Figure 5. 
Absolute error in the PB electrostatic solvation free energy ΔGel as a function of the solvent 

probe radius used to define the Solvent Accessible Surface (SAS) dielectric boundary. The 

error is calculated relative to the explicit solvent (TIP3P) reference. The computations are 

performed individually for four conformational states of alanine decapeptide (pp2, alpha, 

left, and hairpin) shown in re 2.
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Figure 6. 
Average (RMS) error of the PB ΔGel relative to the explicit solvent (TIP3P) reference, as a 

function of the solvent probe radius used to define the SAS dielectric boundary. RMS 

deviations are computed over 248 small molecules (Right) and 19 small proteins(Left); the 

inset shows the distribution of the optimal probe radius for the proteins (bondi atomic radii).
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Figure 7. 
Pairwise electrostatic interactions between atoms in a small protein (PDB 1BH4, left panel) 

and a small molecule (3-methyl-1h-indole, right panel) computed using optimal vdW and 

MS based dielectric boundary definitions that yield nearly equal respective ΔGel within the 

PB model. The different surfaces are shown in the insets. For visual clarity, only interactions 

larger than 10−2 kcal/mol are shown for the protein.
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Figure 8. 
Average (RMS) error the GB ΔGel relative to the explicit solvent (TIP3P) reference, as a 

function of the solvent probe radius. The Molecular Surface is used as the solvent/solute 

boundary employed in the estimates the effective Born radii via the “R6” surface integral eq. 

(5); the radii enter into the generalized Born formula eq. (3) for ΔGel. RMS error is 

computed over 19 small proteins (Left) and 248 small molecules (Right).
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Figure 9. 
Left: GB pairwise electrostatic interactions between atoms in a small protein (PDB 1BH4) 

computed using optimal vdW and MS based solute/solvent boundary definitions. For visual 

clarity, only interactions larger than 10−2 kcal/mol are shown. Right: Comparison of the 

vdW and MS based effective Born radii computed via eq. (5); the radii enter the generalized 

Born formula via eq. (3). To match the vdW and MS based total ΔGel exactly (εin = 1), the 

solvent probe used to define the MS was increased to ρw = 2.0 Å.
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Table 2

Examples of two proteins and two small molecules for which optimal vdW and MS based dielectric boundary 

definitions yield equally accurate PB estimates of ΔGel, kcal/mol. The vdW DB calculations are based on 

BONDI + 0.2 Å atomic radii. For the proteins the standard value of ρw = 1.4 Å was used to compute the MS. 

Since, in the case of the small molecules and MS DB, the 3 common radii sets did no yield an optimal 

agreement with the explicit solvent for any solvent probe radius ρw < 7 Å, fig. 6, we increased all the atomic 

radii slightly to reach the optimum at a reasonable ρw. Specifically, a uniform scaling (multiplication) of all 

the radii in the BONDI set by 1.096 gave a clear minimum at ρw = 3 Å in the PB vs. explicit solvent ΔGel 

average error curve (graph not shown); here we used this value of ρw to define MS for the PB calculations on 

small molecules.

Structure class small protein small protein small molecule small molecule

Name 1BH4 1BRV 3-methyl-1h-indole 1-naphthol

Number of atoms 427 265 19 19

ΔGel, PB vdW −237.9 −210.0 −7.5 −8.0

ΔGel, PB MS −240.9 −213.4 −7.4 −8.1

ΔGel, TIP3P −239.7 −206.7 −7.5 −8.3
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