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Abstract

The elastic and geometric properties of arteries have been long recognized as important predictors 

of cardiovascular disease. This work presents a robust technique for the noninvasive 

characterization of anisotropic elastic properties as well as thickness and diameter in arterial 

vessels. In our approach, guided waves are excited along arteries using the radiation force of 

ultrasound. Group velocity is used as the quantity of interest to reconstruct elastic and geometric 

features of the vessels. One of the main contributions of this work is a systematic approach based 

on sparse-grid collocation interpolation to construct surrogate models of arteries. These surrogate 

models are in turn used with direct-search optimization techniques to produce fast and accurate 

estimates of elastic properties, diameter, and thickness. One of the attractive features of the 

proposed approach is that once a surrogate model is built, it can be used for near real-time 

identification across many different types of arteries. We demonstrate the feasibility of the method 

using simulated and in vitro laboratory experiments on a silicon rubber tube and a porcine carotid 

artery. Our results show that using our proposed method, we can reliably identify the longitudinal 

modulus, thickness, and diameter of arteries. The circumferential modulus was found to have little 

influence in the group velocity, which renders the former quantity unidentifiable using the current 

experimental setting. Future work will consider the measurement of circumferential waves with 

the objective of improving the identifiability of the circumferential modulus.

1. Introduction

The elastic properties of arteries have received significant attention in recent years as they 

have been identified as independent predictors of cardiovascular health (Blacher et al. 1998). 

Moreover, in recent years, geometric quantities such as the intima-media thickness have 

been also identified as early indicators of cardiovascular disease (Davis et al. 1999, Polak et 

al. 2011). In this regard, noninvasive methods for estimating material and geometric 

properties in arteries are of great current interest.

Several methods have been proposed recently for the non-invasive characterization of elastic 

modulus in arteries such as measurement of the speed of propagation of pressure waves 
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(Cockcroft et al. 2005), direct analysis of propagating modes (Bernal et al. 2011, Zhang et 

al. 2005, Luo et al. 2012, Konofagou et al. 2011, Luo et al. 2009, Couade et al. 2010), and 

inverse problem strategies based on the finite element method (Rosario et al. 2008), among 

others. On the other hand, the thickness of arteries is usually estimated through angiography, 

which is an invasive procedure, or from direct measurements in ultrasound images. The 

latter approach is subject to operator error and may yield significant variability of results. To 

the best knowledge of the authors, methodologies for the simultaneous estimation of elastic 

properties and thickness in arteries have yet to be developed.

The main goal of this work is to devise a fast and accurate methodology for the noninvasive 

characterization of anisotropic elastic properties, thickness, and diameter of arteries. To this 

end, in our approach, arteries are excited with ultrasound radiation (US) force and the 

normal particle velocity is measured along the length of the artery. The material properties 

and geometry (i.e. thickness and diameter) of the artery are estimated using an inverse 

problem solved in a constrained optimization framework. One of the main theoretical 

contributions of this work is the construction of surrogate models of the acoustic-structure 

interaction system using a sparse grid collocation approach to accelerate the inversion 

process. The notion is that once a surrogate is created, it can be used for the expedient 

reconstruction of material and geometric properties across many different arteries.

Numerical optimization approaches are becoming more frequently used for estimating 

material properties in biomedical applications (Aguilo et al. 2010, Oberai et al. 2003, 

Arridge & Hebden 1997). The main drawback of these approaches is the computational 

expense and complexity of implementation. For instance, finite elements are commonly used 

to discretize the forward problem, which has to be solved repeatedly during the optimization 

process. For medical diagnosis problems, such as the ones pursued in this work, 

minimization of computational time is highly desirable.

Different alternatives exist to decrease computational time, while maintaining accuracy in 

the solution of the inverse problem. For instance, model reduction approaches have been 

proposed and successfully used for inverse materials identification (Deng & Edwards 2007). 

Some approaches reduce the dimension of the approximation spaces such as those based on 

the Proper Orthogonal Decomposition (POD) (Brigham et al. 2007). Although POD has 

been successfully used to solve many important problems, one key aspect for success with 

POD is coming up with adequate data (i.e. snapshots) for obtaining a suitable basis for a 

given problem. To this end, a general and effective strategy is still needed.

Other model reduction approaches adopt a non-intrusive approach in which maps between 

parameter spaces (e.g. material and geometric features) and state variable spaces (e.g. 

displacements, velocities, etc.) are constructed (Brigham & Aquino 2007, Aguilo et al. 

2010). These maps have been developed using different techniques such as neural networks, 

support vector machines, radial basis functions, wavelets, and polynomials, among many 

others (Bishop 2006). The main advantage of using this type of surrogate model is the non-

intrusive nature as they can be constructed off-line. In this work, surrogate models are 

constructed using polynomial interpolation along with a Smolyak’s sparse grid collocation 

strategy (Smolyak 1963, Nobile et al. 2008, Ganapathysubramanian & Zabaras 2007, Xiu & 
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Hesthaven 2005, Klimke et al. 2004). The main advantages of polynomial interpolation on 

sparse grids are readily available error estimates and ease of training. In this work, arteries 

will be represented as cylindrical geometries with transversely isotropic materials, allowing 

for low-dimensional parametric representations of both geometry and material properties.

This paper is organized as follows: Section 2 describes the forward problem, a method for 

calculating group velocity, the sparse grid collocation technique, and the algorithm proposed 

for inverse identification. In Section 3, we present numerical examples that demonstrate the 

performance of the method using simulated experiments. In Section 4, we present 

experimental results for an in vitro artery and a rubber tube. Finally Section 5 states the 

conclusions and future work.

2. Background

2.1. Forward Model

It well known that the mechanical response of the arterial wall is nonlinear with respect to 

changes in internal pressure. However, in the current study we will focus on waves launched 

by the radiation force of ultrasound. These waves are of very low amplitude and can be 

modeled using the linear theory of elasticity. In essence, we conceive an artery at a given 

state of deformation and internal pressure as a given configuration for which we will 

compute linearized deformations and stresses. Furthermore, we will not use a proper 

linearization of a nonlinear constitutive model, but a simple Hookean model. Although the 

latter simplification is not formal from the mechanics perspective, it is nevertheless useful 

from the diagnosis point of view since engineering quantities such as Young’s modulus and 

shear modulus can be easily interpreted. We elaborate further on the diagnostic value of 

simplifications in Section 2.1.2.

In this work, we model an artery and the surrounding fluid as a coupled acoustic-structure 

interaction (ASI) dynamical system. We will not include in our model the properties of 

surrounding tissue and viscosity of blood as the experiments presented in a subsequent 

section were carried out in a water bath. Tissue and viscosity will be included in future 

work. The governing equations for an artery undergoing transient motion are given as

(1a)

(1b)

(1c)

(1d)

(1e)
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(1f)

(1g)

where u is displacement, σ is the stress tensor, ρs is the solid mass density. The variable Ωs 

represents the solid medium, which in the present case is the artery, ε is the linearized strain 

tensor and  is the elasticity tensor. The boundary at the interface of the artery and fluid is 

represented as Γfs, while Γt is the part of the boundary where tractions are applied, and ns is 

a unit vector normal to the surface of the solid. The operator B is used to represent absorbing 

conditions on the boundary ΓR.

The governing equations of the acoustic medium inside and outside the artery are given as

(2a)

(2b)

(2c)

(2d)

where p is the fluid pressure, ρf is the density of the fluid surrounding the artery. Equation 

(2c) represents the boundary condition at the interface of the artery and the surrounding fluid 

and Eqn. (2d) describes the Sommerfeld radiation boundary condition on the truncated semi-

infinite fluid medium. The variable Ωf represents the fluid domain, ΨRF refers to the 

boundary where the radiation condition is applied, nf is a unit vector normal to the fluid 

surface, and nrf is the unit normal pointing outward of ΨRF. A schematic of the truncated 

artery and the surrounding fluid with the boundaries described in equations 1 and 2 is 

depicted in Fig. 1.

We used the Finite Element Method (FEM) to obtain approximate solutions to the coupled 

boundary value problems described herein. Details of the FEM for ASI problems are 

omitted for brevity and can be found in (Everstine & Henderson 1990).

2.1.1. Group velocity—We use group velocity measured along a path in the artery as the 

quantity of interest from which we identify geometric and material properties. This quantity 

of interest is commonly used in elasticity imaging due to its simplicity and ease of use 

(Bernal et al. 2011). In this section, we provide details for the calculation of group velocity 

from measured particle velocities along a path in an artery. Group velocity refers to the 

velocity with which a wave envelope propagates. In the current problem, we are interested 

in the group velocity of waves propagating on a path along the length of the artery. 
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Traveling waves along such paths are easily measured with ultrasound transducers and 

hence are the focus of this work.

We will define a path along the length of the artery of as a set of coordinates given as (See 

Fig. 1)

(3)

where x, y are coordinates on the cross section of the artery and coordinate z is aligned along 

the length of the artery. ro is the outer radius of the artery. We will next derive a approach to 

compute the group velocity along this path using the cross covariance of particle velocities.

Let vn(T, t) := u̇(T, t) · ns be the normal particle velocity at time t and along path T. The 

cross-correlation between two locations Ti := {ro, 0, zi} and Tj := {ro, 0, Zj} for a given time 

difference τ is obtained as

(4)

where T is the total time of wave propagation, K is a normalizing constant such that Cii(0) = 

1, and  is the mean velocity. The time delay  is defined as the 

value of τ that maximizes the cross-correlation between positions Ti and Tj (Viola & Walker 

2005), i.e.,

(5)

The group velocity cg is then found by solving the following least squares optimization 

problem.

(6)

where || · || refers to the Euclidean norm. It is important to notice that the group velocity in 

(6) is independent of the magnitude of the load. Hence, precise knowledge of the magnitude 

of the load will not be needed later on when we formulate the inverse problem. This is one 

of the salient features of our proposed method since it is difficult to accurately know the 

magnitude of the radiation force of ultrasound used in practice.

2.1.2. Parameters of Interest and Sensitivity Study—Arteries are complex vessels 

whose cross sections can vary along their length due to normal anatomical changes or due to 

disease (e.g. atherosclerosis). Furthermore, the arterial wall is composed of three layers 

containing collagen and elastin fibers taking different orientations across layers (Holzapfel 

et al. 2000). Moreover, the material response with increasing internal pressure is nonlinear. 

Accurate modeling of arterial behavior needs to take into consideration the latter 
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complexities. However, when the goal is to deduce relative changes in material and/or 

geometry for diagnostic purposes, simplified models can oftentimes provide very useful 

information. If diagnosis is the main objective, it is important to achieve a balance between 

model complexity and accuracy. One one hand, we want to capture the real response of 

arteries as close as possible, but on the other hand as model complexity increases so does the 

number of parameters in the model.

In the case of arteries, simple models and idealizations are commonly used and have been 

shown to provide useful information for differentiating between healthy and unhealthy 

groups (Couade et al. 2010, Davis et al. 1999). An artery model based on a circular cylinder 

with a single layer can be seen as a first-order approximation to a more complex model 

containing a variable cross section, multiple layers, and fibers oriented in multiple 

directions. This first-order model will be of diagnostic value as long as changes in its 

defining parameters correlate with the onset and progression of disease. In the case of 

arteries, changes in cross section can be naturally approximated as changes in diameter and 

thickness of cylindrical vessels. Furthermore, changes in stiffness, localized or spread across 

the three arterial layers, can be approximated as average changes in the mechanical 

properties of a single material layer. As long as material and geometric changes in this 

simple approximations correlate to material and geometric changes, respectively, in the real 

system, these coarse models can be valuable from the diagnosis point of view.

Based on the foregoing reasoning, we will assume arteries to be simple transversely 

isotropic cylindrical vessels. Hence, the main parameters of interest consist, in general, of 

five independent material moduli, diameter, and thickness. The material parameters of 

interest are two Young’s moduli; EL, EC; two Poisson ratios, νLC, νRL; and one shear 

modulus, GLC, where L, C and R represent longitudinal, circumferential, and radial 

directions, respectively (Daniel & Ishai 2006).

The geometry is described completely by its diameter (d) and thickness (h). Assuming 

incompressibility of the material, the Poisson ratios can be readily identified from the 

Young’s moduli as (Bernal et al. 2011)

(7)

(8)

Thus, we are left with a total of three (3) material parameters (i.e. EL, EC, GLC) plus the 

diameter and thickness to be identified.

We investigated the sensitivity of the group velocity to changes in the parameters of interest 

to determine the identifiability of the latter through an inverse problem approach. To this 

end, we carried out transient finite element simulations varying each parameter over a 

predetermined range, while fixing all others, and computed the group velocity. Defining 
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α := {EL EC GLC h D}T as the parameter vector, the sensitivity of the group velocity to 

changes in parameter αi, denoted as Scgi

(9)

In the above equation, Δαi is the change in parameter αi with respect to its base value, cgo is 

the value of the group velocity evaluated at the base state, and Δcgi is the change in group 

velocity corresponding to Δαi. For the present case, the base state was taken as EL = EC = 

100 kPa, GLC = 50 kPa, h = 0.7 mm, and D = 6 mm. These values were decided based on 

previously reported experimental results (Bernal et al. 2011).

The results from our sensitivity study are reported in Table 1. We can observe that group 

velocity was significantly more sensitive to changes in the longitudinal modulus (EL), 

thickness (h), and diameter (D) than it was to changes in the shear modulus (GLC) and 

circumferential modulus (EC). Although, the sensitivity of the group velocity to changes in 

EC was very low, we decided to keep this variable in our parameters of interest to 

investigate the effect of lack of sensitivity of a parameter on inversions. Based on these 

observations, EC, EL, D and h were selected as the parameters of interest. Notice that since 

no sensitivity was observed to shear modulus, the group velocity is considered 

uninformative about this quantity and hence it will be excluded from the inverse 

identification. It is important to point out that we did not attempt to interpret the sensitivity 

values and trends with increasing (decreasing) parameter values shown in Table 1 since the 

main goal was to differentiate between identifiable and not identifiable parameters.

We also studied the sensitivity of the group velocity around other base values for moduli, 

diameter, and thickness. For instance, we computed sensitivities for EC and EL in the range 

[50 kPa, 500 kPa], GLC in the range [20 kPa, 100 kPa], while the diameter and thickness 

ranges were [2 mm, 9 mm] and [0.5 mm, 1 mm], respectively. All our sensitivity analyses 

yielded results similar to those reported in Table 1 and led to the same conclusion: the group 

velocity is much more sensitive to changes in EL, h, and D than to changes in GLC and EC. 

These other results are not shown here for the sake of brevity.

Lastly, we would like to point out that the sensitivity results presented herein should be 

interpreted carefully. The reason for the lack of sensitivity of group velocity to shear 

modulus is simply due to the fact that the loading used in our studies produced modes of 

deformation that were dominated by bending-like behavior (i.e. shear deformation of the 

cross section was small in comparison). In theory, there exist frequencies high enough as to 

produce wavelengths of the order of the thickness of the artery that would lead to sensitivity 

in GLC. However, we used loading signals whose frequency content resembled those used in 

real experiments and expect that, in practice, our sensitivity results and conclusions would 

hold over a wide range of combinations of arterial geometries and material properties.

2.1.3. Surrogate Model Formulation—In this section, we describe our approach for 

constructing surrogate models for arterial vessels immersed in a fluid. To this end, we 

employ sparse grid polynomial interpolation in order to construct maps that relate input 
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parameters (e.g. geometric features and material parameters) to our main quantity of interest 

(i.e. group velocity).

Let vn(T, t, ξ) be the normal particle velocity along path T corresponding to a given set of 

parameters ξ. We can represent the group velocity abstractly as

(10)

where  is a linear functional representing the operations described in Section 2.1.1.

Our main task herein is to devise a way to construct efficient and accurate approximations to 

cg(ξ). In this work, we will use polynomial interpolation to produce approximations . A 

straightforward approach to this problem is to use tensor product representation of univariate 

polynomials along each parameter dimension. Using tensor products, Eqn. (10) is 

represented as

(11)

where Φ1(EL), Φ2(EC), Φ3(h) and Φ4(D) are univariate polynomials. To create a polynomial 

interpolant using a conventional tensor product representation, the total number of points 

needed is , where Nl is the number of points for a particular parameter. We can 

observe that the total number of points NQ increases exponentially with the size of the 

parameter vector. This result is known as the curse of dimensionality as the computational 

cost of creating the polynomial interpolant also increases exponentially with the size of the 

parameter vector (Le Maître & Knio 2010).

To circumvent (at least in part) the curse of dimensionality, sparse tensorization is 

commonly used to create polynomial interpolants. Sparse interpolation grids use far fewer 

collocation points than those used by a conventional tensor product representation. In fact, 

sparse grids can reduce the number of collocation points needed for accurate interpolation 

by several orders of magnitude. This reduction in the number of interpolation or collocation 

points translates directly into computational savings as each point requires a finite element 

simulation.

A common approach to construct sparse interpolants is to use the Smolyak’s interpolation 

algorithm (Smolyak 1963). The Smolyak’s algorithm provides a methodology to create 

interpolation functions based on a coarse grid of points in a multidimensional space. The 

collection of this minimum number of points is called a sparse grid. For example a typical 

sparse grid in two dimensions is given in Fig. 2(a). Smolyak’s algorithm interpolates using 

the sparse grid by extending univariate interpolation formulas to a multivariate case in a 

special way. For example, Fig. 2(b) shows interpolation of the function exp(−x2 – y2) using 

sparse grid and Smolyak’s algorithm. Details of the Smolyak’s algorithm have been omitted 

here for the sake of brevity and focus. The reader is referred to references (Le Maître & 

Knio 2010, Klimke 2006) for more information on general sparse grid interpolation.
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We use the Smolyak’s algorithm to create sparse grid interpolants of the group velocity with 

respect to the material moduli and geometric parameters. We describe this sparse interpolant 

(abstractly) as an operator  : ℝ4 ↦ ℝ. That is, mathematically we define the group velocity 

as

(12)

where  is the interpolated group velocity obtained via Smolyak’s algorithm. Our goal is to 

use  in lieu of full finite element simulations in our inverse problem.

An error estimate is used for assessing the accuracy of the interpolant. This error estimate is 

defined with respect to the level of interpolation, which in turn is a function of the number 

of points in the sparse grid (Chapter 3 in (Klimke 2006)). Let the interpolant created at kth 

and k+1th levels of interpolation be given by  and , respectively. We determine a 

sufficiently accurate interpolant in  if the following condition is met.

(13)

where || · ||∞ refers to the maximum-norm. The parameter ε is a user-defined tolerance. It 

can be shown that as the level of interpolation increases, the error in interpolation decreases 

(Chapter 3 in (Klimke 2006)). However, the higher the level of interpolation the more 

collocation points are needed and, hence, the higher the computational cost of building the 

interpolant.

2.2. Algorithm for Creating the Surrogate Model

Now, we describe the algorithm for creating a surrogate model using sparse grid 

interpolation. First, we create a sparse grid where the axes are the components of the 

parameter vector ξi, where i is the interpolation level. As mentioned before, the level of 

interpolation is directly related to number of points in the sparse grid. Let , k = 1, …, Ni 

represent the collocation points at level i, where Ni is the total number of points. Each 

interpolation point,  on the sparse grid represents a four-dimensional vector of moduli and 

geometric features. Then, for each interpolation point, we perform a finite element 

simulation to obtain the particle velocity along path T. The group velocity is then calculated 

for each interpolation point using Eqn. (10). The group velocity for the kth point at the ith 

level is given by . Once the group velocity has been obtained for all interpolation points, 

we use Smolyak’s algorithm to create an interpolant of the group velocity. We terminate the 

surrogate creation when the error metric given in Eqn. (13) is met. The steps for the creation 

of a surrogate model are given in Algorithm 1.
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Algorithm 1

Creation of the group velocity surrogate model.

Require: ξl, ξu ∈ ℝ4 ▷ Upper and lower bounds.

Require: ε ▷ Error threshold.

1: Set E = ∞ ▷ Initialize error metric.

2: Set i= 1 ▷ Initialize level.

3: while E > ε do

4:

 Get points at ith level, , j = 1, …, Ni

5:  for k = 1 → Ni do

6:

   

▷ Group velocity calculation.

7:  end for

8:

  

▷Construct interpolant using Smolyak’s algorithm.

9: if i > 1 then

10:

 Calculate n

11:  end if

12:  i = i + 1

13: end while

2.3. Inverse Problem Formulation

Let  denote the group velocity measured in an experiment. Then, the elastic moduli and 

geometry are reconstructed by solving

(14)

where ξl and ξu are the lower and upper bounds of ξ, respectively, and ξ̂ is an optimal value 

of ξ.

3. Numerical Results

In this section, we investigate the performance of the proposed sparse grid interpolation 

approach using numerical experiments with simulated data. To this end, we first constructed 

a 3D finite element model of an artery immersed in water. A Sommerfeld condition was 

used to model non-reflecting boundaries in both the artery and surrounding fluid. The 

density of both water and artery was taken as 1000 kg/m3. The artery was excited using a 

half sine pulse load with a duration of 406 μs. Continuum 8-node hexahedral elements were 

used in all simulations and convergence studies were carried out to determine a suitable 

mesh for our computations. That is, we refined finite element meshes until the group 

velocity did not change beyond a specified tolerance. Transient analyses were carried out 
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using 85 time steps of 40 μs for a total time of 3.4 ms. All finite element simulations were 

performed using SIERRA/SDA from Sandia National Laboratories.

3.1. Construction of the surrogate model

A group velocity surrogate model was created using Algorithm 1. For this purpose, we used 

the spinterp toolbox in MATLAB® as described in (Klimke & Wohlmuth 2005). The 

circumferential (EC) and longitudinal (EL) moduli were sampled from the range [60, 400] 

kPa, the thickness was sampled from the range [0.3, 1] mm and the diameter from the range 

[2, 7] mm. We used ε= 10−5 as the stopping interpolation error as per Algorithm 1. Using 

this error tolerance, the total number of interpolation points (i.e. finite element simulations) 

used to create the surrogate was 505.

To verify the accuracy of the surrogate model, we generated a test data set comprised of 25 

random parameter vectors ξ sampled from the given moduli and geometry domains. For 

each parameter vector in the test set, we obtained a group velocity c̄g from 3D FE 

simulations and the group velocity  from the surrogate model. We evaluated the error in 

the group velocity prediction as

(15)

The average ecg using the test data set was 8.47% and the maximum was 18.51%. It is 

important to keep in mind that this error does not translate into a commensurate error in the 

solution of the inverse problem (14) when a surrogate model is used. In fact, an effective 

surrogate model is one that preserves the topology of the objective function in the 

optimization problem such that the correct minimum is found despite the presence of errors 

in magnitude.

3.2. Inverse problem solution using simulated data

Simulated data was generated using the high fidelity 3D finite element model for different 

combinations of moduli and geometry as shown in Table 2. We first performed inversions 

for cases in which the data was not corrupted with noise, and then for cases in which 

Gaussian noise was added to the computed particle velocity before computing the group 

velocity. The corrupted data was generated as

(16)

where v̂n(Ti, t) is the corrupted normal particle velocity, γ represents the noise level and 

η(Ti, t) ~ (0, 1) is a random variable drawn from a standard Normal distribution 

(independent for each time and position).

We solved the inverse problem in Eqn. (14) using the Optimization Toolbox in Matlab. Due 

to the computationally inexpensive nature of the surrogate model, we were able to use a 

global search algorithm (fminbnd in MATLAB). The results of the inversion without noise 
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are reported in Table 2. It can be seen that the longitudinal modulus EL, diameter D, and 

thickness h were identified with reasonable accuracy. However, the circumferential modulus 

EC was not identified correctly. This latter result is in agreement with the fact that the group 

velocity displayed little sensitivity to EC in our numerical studies. Table 2 also shows the 

group velocity predicted by the surrogate model at the identified parameters and the 

corresponding group velocity (actual) computed from 3D FE simulations. It can be seen that 

the group velocity values predicted by the surrogate are very close to those computed from 

the high fidelity simulations.

Table 3 shows the results of inversions performed on data polluted with Gaussian noise. It 

can be seen that as the noise level increases, the percentage error in prediction of the 

materials properties and dimension also increases, as expected. However, the errors remain 

relatively low for all parameters, except for EC as noticed previously.

4. Experimental Results

In this section, we study the performance of the proposed methodology using laboratory 

experiments. To this end, we conducted two separate experiments; one using a rubber tube 

and another using a porcine carotid artery immersed in saline solution subjected to different 

internal pressures. The proposed algorithm was used to reconstruct geometric and material 

properties from measured group velocity.

4.1. Description of the Experiments

A schematic of the experimental setup for the porcine carotid artery is shown in Fig. 3. The 

artery was immersed in a saline solution and its ends were fixed. A linear array transducer 

was used to apply an ultrasonic pulse excitation in the middle section of the artery and to 

measure the normal particle velocity along the top surface (see Fig. 1). The force duration 

was 406 μs. We report results for four different internal pressures: 20, 40, 60 and 80 mmHg.

For the rubber tube experiment, we used the same setup as was used for the artery. The 

rubber tube was subjected to an internal pressure of 10 mmHg. At this pressure, the 

thickness of the tube was measured at 0.94 mm and the outer diameter was 6.5 mm. The 

data for the artery experiment was recorded with a sampling frequency of 7.5 kHz. The 

spatial sampling was performed with a spacing of 0.154 mm. For the rubber tubes, the 

sampling frequency was 5.68 kHz, and the spacing between two consecutive measurements 

was also 0.154 mm. The shear moduli of the rubber material in the tube was measured in a 

separate shear wave experiment and was estimated to be G = 93 kPa. Assuming 

incompressibility, the Young’s modulus for the rubber tube was calculated as E = 279 kPa 

(i.e. 3 × G).

4.2. Inverse Identification Results

We processed all the experimental data using the same surrogate model and optimization 

procedure presented in Section 3. We first present the results obtained for the rubber tube. 

The value of group velocity obtained from the measured particle velocity was 6.98 m/s. 

Using our inverse problem framework, we estimated the geometric and material properties 

of the tube to be EL = 230 kPa, EC = 90 kPa, D = 6.7 mm, and h = 0.96 mm. Since the tube 
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was isotropic, we expected that the values of EC and EL would be similar, which was not the 

case. This is a reflection of the lack of sensitivity of the group velocity with respect to EC. 

Using the formula in Eqn. (15), we estimated the respective errors to be 17%, 67%, 3% and 

2%. Furthermore, we performed a 3D FE simulation (with the estimated parameters) and 

determined the group velocity to be 6.54 m/s, which corresponds to a relative error of 6.3% 

with respect to the experimentally measured value. We can see that, with the exception of 

EC, all parameters were estimated with good accuracy.

We also compared dispersion curves obtained from the 3D FE simulations corresponding to 

the identified parameters with the dispersion curves obtained from the experimental data. To 

get the dispersion curves, we performed a two-dimensional (2D) fast Fourier transform 

(FFT) of the normal particle velocity along the measurement path on the artery (see Section 

2.1.1). We used the procedure described in (Bernal et al. 2011) to obtain the dispersion 

curves from the 2D FFT. After taking the 2D FFT, the peaks in the magnitude spectrum are 

identified at each frequency in the analysis bandwidth. The coordinates of the peaks (f, k) 

can be used to calculate the phase velocities for different modes through c = 2πf/k. 

Typically, before peak identification is performed, a magnitude threshold is applied to the 

Fourier spectrum. The latter step eliminates spurious, low-magnitude phase velocities and 

the most dominant modes are emphasized. In this study, we used a threshold of 0.10 ( i.e. 

mode amplitudes less than 0.10 of the peak value were masked).

Figure 4 shows a comparison of the experimental and simulation dispersion curves for the 

rubber tube. The results are given for the frequency range [100, 1000] Hz. The highest 

frequency was selected based on the smallest wavelength that could be adequately captured 

with the 3D FE mesh (using about 10 elements per wavelength). The lower frequency bound 

was selected such that at least one wavelength was captured along the measurement path. 

We can observe that the dominant modes, shown in bold, obtained from the experimental 

data and optimized material properties are close to each other over the range [600, 900] Hz. 

The dominant modes are those for which the 2D FFT produced the largest amplitudes.

We can also observe close agreement between computed and experimentally measured 

secondary, high order modes (shown with solid and dashed lines in Figure 4) for phase 

velocities below 5 m/s. However, we observed that the FE simulation produced a mode 

above 700 Hz with phase velocities between 10 and 25 m/s that was not present in the 

experimental data. This type of discrepancy can be attributed to some of the assumptions 

made in our models. For instance, no damping was included in the FE model, while silicon 

rubber is to some extent viscoelastic and high order modes are naturally attenuated. On the 

other hand, these high order modes would be present in the undamped FE simulations. The 

latter can partially explain why the dominant mode obtained from the experimental data 

spans over a wider frequency range than that of the computed dominant mode. Another 

important point to consider is that the group velocity depends on the phase content of the 

group. It is expected that there would be some discrepancy between the frequency content of 

the excitation signal used in experiment and that used in the FE simulations.

Next we consider the inverse identification of material properties and dimensions for the 

excised artery. The results are summarized in Table 4, which shows that the recovered 
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diameter and thickness closely approximate the measured values. We can observe from this 

table that the maximum relative error was 11.59% and occurred for the diameter estimate in 

the 80 mmHg case.

The recovered material properties and group velocities are presented in Table 5. The 

predicted or identified group velocities (ĉg) were obtained from 3D FE simulations using the 

identified material and geometric properties. Table 5 shows that the predicted group 

velocities are very close to the group velocities (c̄g) obtained from the experimental data. As 

for the prediction of material properties, the values obtained for EL were consistent with 

those reported in (Bernal et al. 2011). However, the EC values obtained seem to be 

inaccurate, which is consistent with the findings of our sensitivity studies.

Figure 5 compares the dispersion curves obtained from the experimental data and those 

obtained from 3D FE simulations using the recovered moduli and geometry. As in the 

silicon tube experiment, close agreement is observed between the dominant modes of the 

data and those of the FE simulations, for arteries at 20, 40 and 60 mmHg hydrostatic 

pressures. The discrepancy in the dispersion curves for the 80 mmHg case was larger than 

for the other cases. However, the identified diameter and thickness were estimated with 

sufficient accuracy and the longitudinal modulus followed an expected trend (i.e. value 

increased with pressure). Nonetheless, we would naturally have less confidence in the 

results for the latter case due to the higher error in the dispersion curves. Lastly, we would 

like to point out that some of the discrepancies observed in the dispersion diagrams can be 

attributed to some of the assumptions made in the FE simulations as previously discussed.

5. Concluding Remarks and Future Work

The prediction of thickness, diameter, and material properties are of paramount importance 

in the characterization of cardiovascular diseases. In this work, we presented a novel 

approach for the fast and noninvasive identification of material properties and geometry of 

arteries excited by an ultrasonic pulse. The main algorithm used a Smolyak’s sparse grid 

collocation technique to create a surrogate model mapping the moduli and dimensions to the 

group velocity. Once a surrogate model is created, the identification process can be carried 

out in near real time across different specimens and internal pressures. The main advantage 

of the proposed approach is that the surrogate model combines computational speed with 

knowledge of the fundamental physics of the underlying wave propagation problem.

We applied the proposed inversion methodology to obtain longitudinal and circumferential 

moduli as well as thickness and diameter in an excised artery subjected to different internal 

pressures and a silicon tube. It was found that the proposed method could effectively 

identify the longitudinal modulus, diameter and thickness. However, the circumferential 

modulus could not be identified. The inaccuracy in the identification of EC can be attributed 

to the fact that the group velocity measured along a longitudinal path seems to be relatively 

insensitive to changes in this parameter. It seems plausible that devising experiments that 

capture wave motion in the circumferential direction would yield more accurate 

reconstructions of EC; a direction that would be pursued in the near future.
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To apply the current methodology in vivo, the high fidelity and surrogate models have to 

incorporate surrounding tissue and viscoelastic effects (both in the artery and the 

surrounding tissue). Furthermore, the viscosity of blood may have to be included. These 

features can be naturally incorporated in the proposed sparse grid collocation framework. 

However, these model extensions are expected to increase the dimensionality of the 

problem, and hence the computational cost of constructing the surrogate model. Yet, this 

increase in computational cost can be mitigated by the used of sparse grids. Furthermore, 

due to their uncoupled nature in collocation approaches, high-fidelity simulations can be 

carried out straightforwardly in parallel. Moreover, surrogate models are built offline and 

can be used across many different inversion cases in near real-time, compensating for the 

initial high-computational cost.

Another direction that will be pursued in future research is the development of adaptive 

strategies for constructing the surrogate model. The basic premise would be to start with a 

coarse grid of parameters (e.g. geometry and material) and choose collocation points 

according to the sensitivity of a quantity of interest along different coordinates (i.e. 

parameters). Similar approaches have been successfully used for uncertainty quantification 

(Ganapathysubramanian & Zabaras 2007).

Lastly, we would like to emphasize that what level of model complexity, and hence 

accuracy, is the most adequate for diagnostic purposes remains an open issue that we intend 

to investigate in the near future. For instance, we will study the use of material models that 

include variable fiber orientation. Furthermore, we will investigate the diagnostic value of 

parameters obtained from proper linearization of nonlinear constitutive models, which 

would be more consistent with arterial mechanics than the simpler Hookean models used 

herein.
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Figure 1. 
Figure describing the domains and boundaries for the artery problem. The blue region is the 

acoustic medium and the white region is the artery.
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Figure 2. 
Figure showing (a) example of sparse grid points in two dimension and (b) interpolant 

created using the Smolyak’s algorithm on the sparse grid in two dimensions for the example 

function exp(−x2 – y2),
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Figure 3. 
Experimental setup for the in vitro artery and rubber tube tests.
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Figure 4. 
Comparison of dispersion diagrams obtained from the data and from post processing 

optimized material properties and geometry for the rubber tube. The solid lines represent 

dispersion curves obtained from the experiment and the dashed lines represent dispersion 

curves obtained from a 3D FE simulation using the optimized material properties and 

dimensions. The bold solid line is the dominant dispersion mode obtained from the 

experimental data and the bold dashed line is the dominant mode obtained from the FE 

simulation.
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Figure 5. 
Comparison of dispersion diagrams obtained from the experimental data and 3D FE 

simulations using the recovered material properties and geometry. The solid lines represent 

dispersion curves obtained from the experimental data and the dashed lines represent 

dispersion curves obtained from FE simulations. The bold solid line is the dominant mode 

obtained from the experimental data and the bold dashed line is the dominant mode obtained 

from the FE simulations.
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Table 2

Results of prediction of dimensions and moduli for numerical experiments.

Parameters Measured Predicted % error

Case 1

EL (kPa) 100 90 10

EC (kPa) 120 70 41.2

diameter (mm) 3.2 3.3 3.12

thickness (mm) 0.40 0.48 20

cg (m/s) 5.79 5.75 0.69

Case 2

EL (kPa) 100 93 7

EC (kPa) 120 67 44.2

diameter (mm) 6.0 5.6 6.67

thickness (mm) 0.70 0.74 5.17

cg (m/s) 6.10 5.90 3.27

Case 3

EL (kPa) 100 89 11

EC (kPa) 120 65 45.8

diameter (mm) 8.0 8.3 3.27

thickness (mm) 0.90 0.86 4.44

cg (m/s) 5.72 5.81 1.58
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Table 3

Results of prediction of dimensions and moduli for numerical experiments when noise was added to the group 

velocity data.

Noise level (pc) Parameters Measured Predicted % error

1% noise

EL (kPa) 100 112 12

EC (kPa) 120 64 46.67

diameter (mm) 3.2 3.5 9.37

thickness (mm) 0.40 0.50 25

cg (m/s) (with noise) 5.88 5.85 0.34

5% noise

EL (kPa) 100 82 18

EC (kPa) 120 62 48.3

diameter (mm) 3.2 3.9 21.87

thickness (mm) 0.40 0.51 27.5

cg (m/s) (with noise) 5.90 5.88 0.33
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