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Abstract

The existence of fundamental differences between lung adenocarcinoma (AC) and squa-
mous cell carcinoma (SCC) in their underlying mechanisms motivated us to postulate that
specific genes might exist relevant to prognosis of each histology subtype. To test on this
research hypothesis, we previously proposed a simple Cox-regression model based feature
selection algorithm and identified successfully some subtype-specific prognostic genes
when applying this method to real-world data. In this article, we continue our effort on identi-
fication of subtype-specific prognostic genes for AC and SCC, and propose a novel embed-
ded feature selection method by extending Threshold Gradient Descent Regularization
(TGDR) algorithm and minimizing on a corresponding negative patrtial likelihood function.
Using real-world datasets and simulated ones, we show these two proposed methods have
comparable performance whereas the new proposal is superior in terms of model parsi-
mony. Our analysis provides some evidence on the existence of such subtype-specific
prognostic genes, more investigation is warranted.

Introduction

Microarray technology allows simultaneous monitoring of thousands of genes and measuring
of their expression values. When data from a microarray experiment being analyzed, a feature
selection algorithm, which downsizes the number of genes to a small manageable size, is
becoming essential to tackle with difficulties associated with the issue of high dimensionality,
namely, the number of genes is much larger than the number of samples. Currently, RNA-
sequencing (RNA-seq) has emerged as a novel technology for expression profiles and replaced
microarray as the first choice for some biological research, e.g., transcriptomics [1]. Like micro-
array data, RNA-seq data faces the challenge of high dimensionality. Thus, a feature selection
algorithm plays the same crucial role in RNA-seq data analysis as in microarray analysis.
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However when we searched on PubMed using keywords of feature selection and RNA-seq,
the search only returned 11 articles while the number was 358 after the keyword of RNA-seq
being replaced by microarray (dated Jan 12, 2015). The lag of feature selection implementation
in RNA-seq data might owe to that RNA-seq data consists of count numbers of sequence reads
mapping to each gene. Statistically, count distribution is less tractable than a normal distribu-
tion, which is typically used for parametric inference on logarithm-transformed expression
measurements in microarray. Recently, a novel function called Voom [2] was proposed, mak-
ing a normal distribution-based analysis of RNA-seq read count data practically feasible.
Voom function has been demonstrated to provide accurate estimation on log Counts-per-mil-
lion (CPM) values for genes, which we believe can certainly boost the adoption of feature selec-
tion algorithms developed for microarray data to RNA-seq data.

Non-small cell lung cancer (NSCLC) is the predominant histological type of lung cancer,
accounting for up to 85% of lung cancer cases [3]. The overall five-year survival rate of NSCLC
is estimated below 15% because more than two-thirds of NSCLC patients have advanced dis-
ease with lymph node and/or visceral metastases at the time of diagnosis [4]. Furthermore,
roughly 50% of early stage patients having undergone surgery have and then die of tumor
recurrence [5]. Thus precise categorization of early stage NSCLC patients’ prognosis is crucial,
and the timely administration of additional therapeutic interventions to the patients with poor
prognosis will lead to better survival for them. In contrast, the avoidance of these interventions
to patients with good prognosis can reduce medical expenses and improve their quality of life.

Within NSCLC, two major histology subtypes are adenocarcinoma (AC) and squamous cell
carcinoma (SCC) with AC approximately accounting for 40% and SCC for 30% of lung cancer
cases [6]. Fundamental differences have been found between these two subtypes in the underly-
ing mechanisms of tumor development, growth, and invasion [7,8]. Therefore, successful clas-
sification of NSCLC patients into their corresponding subtypes is of clinical importance, e.g.
for guiding personalized medicine, and had been previously explored [8-13]. A similarly
important question is to consider the prognosis for each histology subtype, and in particular,
whether there are subtype-specific biomarkers associated with survival. To the best of our
knowledge, studies that consider prognosis can be stratified into the following categories: 1)
ignoring histology subtype, e.g.,[5], or 2) focusing on one specific subtype e.g.,[14], or 3) ana-
lyzing each subtype separately. None of these means manages to tackle on the identification of
subtype-specific prognostic biomarkers directly.

To address this topic specifically, we previously proposed a feature selection method which
uses a Cox regression model as a filter to select relevant genes individually [15]. The proposed
Cox-model based filter is referred to as Cox-filter herein, and it identifies some subtype-specific
genes when being applied to a microarray dataset but fails to do so when applied to a RNA-seq
dataset. This might be due to that patients in the microarray study were more homogenous
than the RNA-seq data and had been followed up for a substantially longer period. Neverthe-
less, when including normal paired controls in RNA-seq data, Cox-model filter can also iden-
tify some subtype-specific prognostic genes if very liberal cutoffs are chosen.

In this article, we continue our effort on identifying subtype-specific prognostic genes and
propose a novel embedded feature selection algorithm. In essence, the method extends Thresh-
old Gradient Descent Regularization (TGDR) algorithm [16] by specifying separate set of
parameters for each histology subtype. In TGDR, an objective function is usually defined to be
optimized. For instance, log partial likelihood function usually acts as the response function in
survival analysis. As an embedded feature selection algorithm, TGDR has its own merits. For
instance, TGDR selects relevant feature into the model and estimates its corresponding coeffi-
cients simultaneously and thus saves on computing time compared with a wrapped algorithm.
Additionally, compared with a filter algorithm TGDR can model dependencies among genes
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and thus evaluate the coordinated influence of selected genes on the outcome. The use of
TGDR in microarray data including survival analysis has been explored previously [9,17-19].
Overall, TGDR has been demonstrated to have superior performance empirically, which
encourages us to extend it for the identification of subtype specific prognostic genes. Then
using one RNA-seq and one microarray data, we revisit the test on existence of subtype-specific
prognostic genes for two major NSCLC histology subtypes. This extension to TGDR is named
as Cox-TGDR-specific.

Materials and Methods
Experimental data

All data are publicly available from the Gene Expression Omnibus (GEO) repository and The
Cancer Genome Atlas (https://tcga-data.nci.nih.gov/tcga/). In those two databases, all personal
information on participants is blinded. Both data were previously used by us to illustrate Cox-
filter algorithm, our first effort to test existence of NSCLC subtype-specific prognostic genes
[15]. Notably based on the statement “. .. gene expression has the most direct effect on cancer
clinical outcomes, and other genome measurements affect outcomes through gene expression.
Thus gene expression may carry the richest information on prognosis” by [20], we only con-
sider gene expression profiles for prognosis of AC and SCC in this paper.

RNA-seq data including 489 AC and 488 SCC samples were downloaded from The Cancer
Genome Atlas (TCGA), dated Aug 13, 2014. Here, we only considered those patients at early
tumor stages, i.e., stage I and II, and adjuvant treatments naive with clinical outcome (e.g., sur-
vival time) accessible. The corresponding data include 70 AC and 55 SCC patients, respectively.
Because the event rate (mortality) is very low and both algorithms might lack statistical power
to detect significant features in this subset, the restrictions on early-stage and treatment naive
were loosed and extra analysis on those patients at advanced stages was conducted.

Microarray data were retrieved from GEO with an accession number of GSE50081. It was
hybridized on Affymetrix HGU133 Plus 2.0 chips. In this cohort, there were 181 early stage
NSCLC patients who had not received any adjuvant therapy. Filtering out those samples with
ambiguous histologic subtype labels and those other than AC and SCC leads to 127 AC and 42
SCC samples respectively in the final dataset.

Pre-processing procedures

For the RNA-seq data, Counts-per-million (CPM) values were calculated and log, transformed
by Voom function [2] in R limma package [21]. For the microarray data, expression values
were obtained using the GCRMA algorithm [22]. Data normalization across samples was car-
ried out using quantile normalization and then expression values were log, transformed.

There are 16,363 unique genes commonly annotated by both datasets. Given the dissimilar-
ity of technology for measuring gene expression values, and the different characteristics of
patients in two studies, we performed an integrative correlation coefficient (ICC) [23] analysis
to identify genes with consistent co-expression patterns across studies. Downstream analysis
was conducted using 7,286 genes passed the ICC filtering with cut-off being set at the median
of those ICC values. Then the expression values were further scaled and centralized to have a
standard deviation of 1 and a mean of zero.

Statistical methods

Cox-TGDR-specific. As mentioned in Introduction section, a response function is indis-
pensable in TGDR. When modelling survival data, a Cox proportional hazards model is usually
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adopted. Thus its corresponding log partial likelihood function becomes naturally the response
function in our proposed Cox-TGDR-specific algorithm.

Without considering the subtype, the survival or censoring time t;;, censoring indicator (J;;
= 1 if patient is dead, &;; = 0 otherwise), and expression values for p genes under consideration
Xij = (Xjjoe - .,Xijp)T are observed. As is typical for survival data, if 8;; = 1 then t;; corresponds to
the survival time, otherwise t;; corresponds to the censoring time. Then the response function
is,

R(B) = Z J; (IITXi - log(zke,.iexp(ﬁTX,-)))

where P is a vector of regression coefficients for genes and r; indexes the set of patients at risk
at time t;".

To account for the subtype information, a new indicator Y; taking discrete values of ¢
(c=1,...,C, here Cis the number of subtypes) and a separate set of regression coefficients for
each subtype B. are introduced. Then the corresponding response function is redefined as,

C

R(p) = Z«s (Z(I(Y,- = )BX;) — log (Z > (1%, = c)exp(8? X»)))

c=1

Here Av is a small positive increment (e.g., 0.01) in gradient descent search and v = kxAv is
the index for the point along the parameter path after k steps. Cox-TGDR-specific algorithm is
iterated in the following steps,

1. With current estimate B(vy), negative gradient matrix g(vx) = —OR(B)/0p with its (c,j)th com-
ponent as g.j(vi) are computed.

2. Let f(vx) represent the threshold vector of size p for subtype ¢ (c = 1,..,C), its jth component
is,

1000 = 1{le o)1 2 v max(lg5™ 1) ) i € 5,

3. Update Bj(Vice1) = Bej(Vi)- Avx g¢j(vi)xfj(vio) and vy by vi+Av. Step 1-3 is iterated for K
times, whose value is determined by cross-validation.

Both K and ts are tuning parameters determining how sparse the final model is. We remark
that Cox-TGDR-specific is essentially similar to Multi-TGDR local algorithm [24] only with
two differences. First, in Cox-TGDR-specific log partial likelihood function replaces log likeli-
hood function. Optimization on difference response function is because their objective (i.e.,
Cox-TGDR-specific aims at identifying subtype-specific prognostic genes while Multi-TGDR
is at finding genes capable of discriminating multiple subtypes apart) differs. Second, different
T is adopted for each subtype/class in Cox-TGDR-specific. The inclusion of extra tuning
parameter certainly increases the computing burden, specifically when determining on their
values. Nevertheless, we believe it is somehow a prudent means to address the imbalance of
sample sizes/events between two subtypes.

Performance Metrics. Using the selected genes, one patient’s risk score was computed.
Then, patients were classified into either a low-risk group or a high-risk group based on those
risk scores. P-value of a log rank test comparing these two survival profiles was provided. Fur-
thermore, the classification accuracy i.e., the rate of correctly classifying patients into their
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Fig 1. Study schema. A graphical illustration showed how Cox-TGDR-specific and Cox-filter were applied to
select relevant subtype-specific prognostic genes for AC and SCC lung cancer.

doi:10.1371/journal.pone.0134630.g001

survival profiles, and the area under Receiver Operating Characteristic (ROC) curve (AUC)
statistics were given to assess performance of each algorithm.

Statistical language and packages

All statistical analysis was carried out in the R language version 3.1 (www.r-project.org), and R
codes for Cox-TGDR-specific are available upon request.

Results and Conclusions
Real-world applications to NSCLC

We applied Cox-TGDR-specific method to both NSCLC datasets. First, we used the microarray
dataset as the training set and the RNA-seq data as the test set. Second, we reversed the order
and repeated the analysis using the RNA-seq data as the training set, and then tested the result-
ing markers on the microarray data (Fig 1).

From Table 1A, it was observed that performance of both algorithms was comparable if the
training set is the microarray data. When training on the RNA-seq data, only can Cox-TGDR-
specific identify some subtype-specific prognostic genes. Moreover, when those resultant signa-
tures were tested on the other dataset from a different platform none of them established any
significance.

Then we examined if the 33 (18 AC/18 SCC specific)-gene signature trained on the microar-
ray data and 13 (10 AC/5 SCC specific)-gene signature trained on the RNA-seq data were con-
sistent and robust. First, we focused on the individual gene level. Afterwards, we shifted our
attention to the pathway level and evaluated how the enriched pathways by these two signa-
tures overlap (Fig 2). The search of enriched pathways was conducted using a web-based
database called STRING [25]. No overlap between these two signatures on both levels and suc-
cessful identification of keratin 5 (KRT5) as a discriminative gene between AC and SCC sam-
ples (although training on data from different platforms) [13] partially justify the claim that
prognosis prediction using gene expression profiles is a more difficult task than membership/
class prediction [20,26].
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Even though our goal is to develop histology subtype-specific prognostic genes for early-
stage AC and SCC, the RNA-seq data including only early-stage patients has major drawbacks,
i.e., small samples and few events (19 death among 125 patients). These might explain why
Cox-filter cannot identify any significant genes. Thus, we released the restriction on stages and
applied both Cox-filter and Cox-TGDR-specific algorithms to the whole RNA-seq dataset.
Notably, using the whole RNA-seq set leads to more heterogeneity between microarray data
and RNA-seq data. To alleviate this, we set ICC filtering threshold at a higher value, i.e., 90%.
The results are presented in Table 1B.

Unfortunately, no meaningful results have been obtained. To explore if different cut-off on
ICC filtering influences the results, we conducted a sensitivity analysis by varying its value over
a grid of 0.5~0.9 with an increment of 0.1, and found out the conclusion is consistently negative
across those values. Furthermore, given the event (death) rate is still as low as around 30%, we
randomly excluded 50% of those censored patients and applied both Cox-filter and Cox-
TGDR-specific algorithms to the combined data of the remaining 50% censored patients and
those decreased. Again, the conclusions are consistent (Data not shown). We attribute the
invalidity of resultant signatures’ being applied to independent data to heterogeneity of study
populations, platforms, protocols and so on.

One may argue that the resultant prognostic signatures should contain many robust differ-
entially expressed genes (DEGs) between AC and SCC. After an examination on those markers,
we think it is unsurprising to have two disjointed sets for prognostic signature and DEGs. First,
the objective here is to find subtype-specific prognostic genes. Therefore, the outcome is sur-
vival time versus that is gene expression value in typical DEG identification setting. Those
DEGs between AC and SCC might not be associated with their respective survival rate. For
instant, none of tumor protein p63 (TP63) and NK2 homeobox 1(NKX2-1) was identified by us,
or by the 13-gene signature in Guo et.al [28] and the 15-gene signature in Zhu et.al [29]. Those
two studies are highly relevant to our study, with the objective of finding prognostic genes for
early-stage AC and SCC lung cancer.

Table 1. Performance of Cox-TGDR-specific and Cox-filter on NSCLC data.

Cox-TGDR Cox-filter
# genes (# for Accuracy AUC (%) p-value (log # genes (# for Accuracy AUC (%) p-value (log
AC/SCC) (%) AC/SCC rank) AC/SCC) (%) AC/SCC rank)
A. RNA-seq data with patients in early stages (I and II)
Microarray 33 (18/18) 70.4 70.10/86.06  5.55x107"° 83(81/2) 76.3 85.23/78.43  1.11x107'®
itself
RNA-seq as 60.8 53.88/67.26  0.154 64 60.34/56.55  0.623
test
RNA-seq itself  13(10/5) 74.4 55.32/72.32  3.86x107° 0(0/0) = = =
Microarray as 50.3 51.63/48.32  0.119 — — —
test
B. RNA-seq data with patients in all stages °
Microarray 30(15/22) 65.7 67.21/86.78  3.25x107® 46(46/0) 66.9 77.24/50 0.385
itself
RNA-seq as 60.9 56.08/52.89  0.167 — — —
test
RNA-seq itself  16(16/7) 72.8 56.85/72.82  2.90x107° 0(0/0) — — —
Microarray as 51.5 54.57/51.68 0.313 — — —
test

" a higher ICC cut-off (90%) was used.

doi:10.1371/journal.pone.0134630.1001
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Fig 2. Venn diagrams of 33- and 13-gene signatures. A) On the individual gene level. B) On the enriched pathway level. 33-gene and 13-gene signatures
were obtained using Cox-TGDR-specific algorithm with one being trained on the microarray data and the other on the RNA-seq data. Here,| and 1 indicate a
negative and positive association with hazard of death, respectively.

doi:10.1371/journal.pone.0134630.9002

Furthermore, an embedded feature selection method tends to be superior in terms of model
parsimony. It means an embedded method is capable of selecting few features among those
highly correlated ones. For example, in one extreme case only KRT5 [10] was identified as rele-
vant for telling AC and SCC samples apart while other DEGs were considered as irrelevant.
Nevertheless, two pathways-renal cell carcinoma and pathways in cancer to which Kirsten rat
sarcoma viral oncogene homolog (KRAS) and phosphatidylinositol 3-kinase (PI3K) belong are
among enriched pathways by the 33-gene prognostic signature trained on the microarray data.

Lastly, in order to obtain a robust prognostic gene signature across different platforms, we
only considered those genes that present consistent expression pattern between the microarray
and RNA-seq data in this study. As a result, some of those DEGs such as fibroblast growth fac-
tor receptor 1 (FGFR1) and PI3K were filtered out.

Synthesized data

To explore the characteristics of Cox-TGDR-specific and compare it with Cox-filter algorithm,
we conducted simulations using gene expression values of the microarray data. Specifically, we
chose four genes-CERCAM, ITGA5, MTHFDI1L, and PLOD1 -to be prognostic markers, and
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then randomly selected 96 genes to make the total number of considered features as 100. Two
extreme cases were explored: 1) Mutually exclusive markers for each subtype where genes 1
and 2 are associated with SCC versus genes 3 and 4 with AC, and 2) no subtype specific prog-
nostic genes where all genes 1-4 share a common hazard function for both subtypes.

Notably, we actually duplicated the simulations we set up previously except two minor dif-
ferences. One is here expression values of each gene were standardized and centralized because
such extra scaling is required in Cox-TGDR-specific to avoid the algorithm being dominated
by genes with big variability, the other is the number of replicates is 50 because Cox-TGDR-
specific is so computing intensive that 500 replicates will consume hours to be finished, and 50
replicates are fairly adequate to identify meaningful patterns. For more details on the simula-
tions, our previous work [15] is referred.

Table 2 summarizes the simulation results. In both cases, we observed that Cox-TGDR-spe-
cific outperformed Cox-filter in terms of parsimony. As a result, the false true rate is low for
Cox-TGDR-specific. This is especially true in the case of no subtype specific genes. Also in this
case, however, Cox-TGDR-specific fails to identify gene 4, implying its false negative rate
might be higher. Given the signal of this gene is weaker compared to other three genes, the fail-
ure of Cox-TGDR-specific to identify it might not be a big surprise. Similarly, one possible
explanation for both algorithms’ failure of identifying gene 2 as a SCC-specific prognostic gene
is its signal is substantially weaker compared to gene 1.

Discussion

In this article, we introduce an embedded feature selection algorithm called Cox-TGDR-
specific. Similar to Cox-filter algorithm, it owns the capacity of selecting subtype-specific prog-
nostic genes. Nevertheless, different from Cox-filter it can select relevant genes and estimate
magnitudes of those genes’ association with outcome simultaneously. Certainly, it comes at an
extra computing cost given in Cox-filter feature selection is realized using a simple Cox-model
and coefficient estimation is separated from this step. Furthermore, cross-validations are
needed in order to find the optimal tuning parameters in Cox-TGDR-specific, which adds
computing burden. Nevertheless, although Cox-filter is apparently free of tuning parameters a

Table 2. Performance of Cox-TGDR-specific and Cox-filter on simulated data.

Cox-filter Cox-TGDR-specific

AC (%) SCC (%)’ AC (%)’ SCC (%)
A. Simulation 1: mutually exclusive markers for each subtype
Genel 0 100 100 98
Gene2 0 0 0 0
Gene3 100 0 100 14
Gene4 100 0 100 26
No. of selected genes 9.76 7.72 3.4 3.82
B. Simulation 2: no subtype specific prognostic genes
Genet 100 100 100 100
Gene2 100 100 100 100
Gene3 100 100 100 98
Gene4 100 100 0 0
No. of selected genes 24.48 31.33 3.54 414

' represents the percentage with a non-zero coefficient for specific gene among 50 replicates.

doi:10.1371/journal.pone.0134630.t002
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sensitivity analysis is usually in demand to decide on an optimal cutoff for FDR, which varies
from one real-world application to another.

As shown by simulations and one real-world application, Cox-TGDR-specific outperforms
Cox-filter in terms of model parsimony. Also because we use different tuning parameter t for
each subtype, the imbalance of sample sizes between two subtypes can be taken into account.
This point is justified by the fact that compared to Cox-filter, the performance statistics of
SCC-specific genes are dominantly superior in Cox-TGDR-specific. Certainly, different cutoff
values for FDR in Cox-filter can be adopted to improve upon the performance of Cox-filter.
Since it is beyond the scope of this article, this topic is skipped.

Different from Cox-filter that is an analysis-of-marginal-effects method, Cox-TGDR-spe-
cific is an analysis-of-joint-effects method [27]. Even though an analysis-of-joint-effects
method simultaneously accounts for the effects of all selected genes, Cox-TGDR-specific does
not perform excellently and superiorly as we expect. By grouping those genes presenting co-
expression patterns into separate subsets and applying regularization firstly to those groups
and then to individual genes within the selected groups hierarchically, Ma et al. [17] demon-
strated their proposed algorithm is superior to the regular TGDR on survival data. Therefore,
to develop an algorithm to incorporate co-expression pattern/biological relevancy as a priori,
so that it can identify subtype-specific prognostic genes and achieve more accurate prediction
on a patient’s prognosis, is definitely our future research.
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