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Abstract

Purpose of review—This review summarizes the phenotype and function of macrophages in 

the context of solid organ transplantation and will focus on fundamental insights into their 

paradoxical pro-inflammatory versus suppressive function. We will also discuss the therapeutic 

potential of regulatory macrophages in tolerance induction.

Recent findings—Macrophages are emerging as an essential element of solid organ 

transplantation. Macrophages are involved in the pathogenesis of ischemia reperfusion injury, as 

well as both acute and chronic rejection, exacerbating injury through secretion of inflammatory 

effectors and by amplifying adaptive immune responses. Notably, not all responses associated 

with macrophages are deleterious to the graft, and graft protection can in fact be conferred by 

macrophages. This has been attributed to the presence of macrophages with tissue-repair 

capabilities, as well as the effects of regulatory macrophages.

Summary—The explosion of new information on the role of macrophages in solid organ 

transplantation has opened up new avenues of research and the possibility of therapeutic 

intervention. However, the role of myeloid cells in graft rejection, resolution of rejection and 

tissue repair remains poorly understood. A better understanding of plasticity and regulation of 

monocyte polarization is vital for the development of new therapies for the treatment of acute and 

chronic transplant rejection.
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Introduction

Macrophages and their precursors, monocytes, constitute an essential component of the 

innate immune system and form the first line of defense against pathogens [1]. Macrophages 

have the capacity to differentiate into a variety of phenotypes in response to cues from the 

microenvironment, and it is this notable phenotypic plasticity that governs the expression of 

the broad range of inducible effectors [2]. In the transplant setting, macrophages can cause 

allograft injury, tissue remodeling or have immunoregulatory/suppressive effects depending 

on their state of activation [2–4]. In response to stimuli, infiltrating macrophages 

differentiate preferentially into “classically activated” or “alternatively-activated” subsets 

with markedly different functions [3, 4]. Classically activated macrophages, also referred to 

as M1 macrophages, develop in response to IFN-γ and engagement of Toll-like receptors 

(TLRs) by microbial products [2, 5]. They generally display a proinflammatory phenotype 

expressing high levels of CD86, iNOS, TNF-α, IL-1 and IL-6 (Figure 1a) [4]. In contrast, 

exposure to IL-4 or IL-13 leads to the development of “alternatively-activated” or “wound-

healing” macrophages, also referred to as M2 macrophages, that display markers of 

alternative activation including CD206, the scavenger protein CD163, arginase-1, and IL-10 

(Figure 1b) [6–8]. The M2 subset of macrophages is not a uniform population and is further 

subdivided into M2a, M2b, and M2c. Within this subset, M2a macrophages, generally 

referred to as alternatively activated macrophages, are induced by IL-4 and IL-13, with 

surface expression of CD163, CD206, CD209, IL-4, FcεR, and Dectin-1. Ligation of 

macrophage FcRs by IgG complexes coupled with TLR or CD40/CD44 engagement induces 

a Type II activation [2, 3, 9], which corresponds with an M2b phenotype. M2b macrophages 

are immunoregulatory and produce high levels of IL10, IL-1, IL-6 and TNF-α. M2c 

macrophages are referred to as deactivated macrophages given their role in down-regulation 

of pro-inflammatory cytokines, as well as tissue repair and remodeling. This macrophage 

subset is induced by IL-10, TGF-β, and glucocorticoids and in turn produces large amounts 

of IL-10 and TGFβ with surface expression of CD163, CD206, RAGE and other scavenger 

receptors [3, 10]. While these M2 variants have been explored in a variety of disease models 

[11, 12], they have yet to be characterized in the setting of solid organ transplantation. 

Regulatory macrophages (M regs), a less well-characterized subtype of macrophages, can 

suppress T cell function and have been utilized as therapeutic agents in transplantation 

(Figure 1c) [13, 14]. Regulatory macrophages express iNOS, MHC class II, and PD-L1, 

though little CD40 or CD86 [15]. M regs are fundamentally distinct and do not express most 

markers found on M1 or M2 macrophages and have been shown to mitigate acute and 

chronic inflammation in different disease models [16]. Though regulatory macrophages 

modulate inflammatory immune responses, these cells do not actively participate in wound 

healing [15]. Notably, peripheral blood monocytes have been divided into two subsets with 

distinct function and phenotype. The pro-inflammatory CD14+CD16+ subset exhibits high 

expression of proinflammatory cytokines [17], while the immunosuppressive monocytes are 

CD14+CD163+ and exhibit immunosuppressive mechanisms including IL-10 production 

[18]. The role of peripheral blood monocyte subsets in transplantation has been minimally 

studied, with contradictory findings, and requires further investigation [18, 19].
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Macrophages in Ischemia Reperfusion Injury

Ischemia reperfusion injury (IRI) is a multifactorial process, involving both innate and 

adaptive immunity, which impacts early and late graft dysfunction [20]. Cells of the innate 

immune system, particularly macrophages, are key potentiators of IRI, participating in both 

the early stages of injury and in late stage repair [21–25]. Animal models of IRI show that 

injury is associated with an influx of macrophages, implicating these innate immune cells in 

augmentation of ischemic injury [26]. One study demonstrated that knocking out CCR2, a 

receptor for monocyte chemo-attractant protein 1 (MCP-1), protected mice from kidney IRI, 

correlating with reduced macrophage infiltration [27]. In a murine model of liver IRI, 

blockade of TIM-1 on CD4 cells inhibited T cell mediated activation of macrophages and 

mitigated injury [28]. In a clinical study, using the selectin antagonist (rPSGL-1) reduced 

liver IRI with improved liver function and augmented cytoprotective IL-10, with a reduction 

in MCP-1, suggesting inhibition of macrophage infiltration [20]. Notably, while 

inflammatory macrophages contribute to the initial damage during IRI [21], alternatively 

activated macrophages promote repair following the injury. As such, Huen et al. showed that 

macrophages in the setting of kidney IRI can be skewed toward a distinct reparative 

phenotype which supports tubular proliferation and repair in response to GM-CSF [29, 30]. 

Similarly, a myeloid-specific PTEN knockout conferred protection from liver IRI by 

promoting development of M2 macrophages in response to TLR engagement. PTEN 

deficiency resulted in constitutive activation of the pro-survival PI3K pathway, which 

regulates macrophage differentiation by upregulating miR155. This M2 differentiation 

correlates with a decrease in expression of certain pro-inflammatory mediators and a marked 

increase in the anti-inflammatory cytokine IL-10 [31]. Moreover, over-expression of 

macrophage heme-oxygenase-1, an enzyme with anti-inflammatory properties, imposed an 

anti-inflammatory or M2 phenotype, selectively inhibiting M1 polarization. When 

adoptively transferred into mice, these macrophages mitigated injury and inflammation 

caused by ischemia reperfusion [32]. Collectively, these findings point to an instrumental 

role for macrophages in the pathophysiology of IRI depending on the nature of the 

macrophage subset during the time course of injury, as M1 macrophages can mediate the 

inflammatory process at the onset of ischemic injury, while M2 macrophages are involved in 

post-injury resolution. As IRI is an antigen independent event, macrophages involved in this 

process are activated through cytokines and/or engagement of TLRs or other pattern 

recognition receptors by endogenous ligands generated through cellular damage [33]. 

Consequently, mice deficient in TLR4 demonstrated reduced IRI after liver transplantation 

[34], while donor TLR4 was shown to contribute to renal allograft inflammation in humans 

[35]. A recent study revealed lipocalin2 (Lcn2), a defense mediator expressed in response to 

TLR activation, plays a crucial role in cardiac IRI, and neutralization of Lcn2 suppressed 

M1 macrophage polarization and instead mediated skewing of macrophages toward an M2 

phenotype. Additionally, Lcn2 treatment suppressed infiltration of macrophages further 

limiting IRI [36].

Macrophages in Acute Allograft Rejection

Macrophages were first implicated in rejecting renal allografts over fifty years ago [37]. 

Macrophage accumulation in the allograft is associated with both acute antibody-mediated 
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rejection (AMR), and acute cell mediated rejection [38, 39]. In instances of acute and 

chronic injury [39] in animal models as well as humans [40, 41], macrophages account for 

38–60% of infiltrating leukocytes in rejecting organs [42–45]. Notably, a murine model of 

pancreatic islet grafts provided evidence of direct destruction of islet tissue by macrophages 

[46]. The presence of CD68+ macrophage infiltrates is associated with diagnosis of acute 

rejection in human renal allografts [39, 47–49]. Macrophage depletion has led to 

amelioration of graft injury and a reduction in pathological features of acute rejection in 

experimental models [40, 44, 50, 51]. Similarly, inhibition of macrophage accumulation and 

activation in murine cardiac allografts results in abrogation of graft injury and rejection [43, 

52].

Macrophages propagate injury in the setting of AMR [53, 54] and are a distinguishing 

feature of graft pathology in AMR lesions [49]. In fact, one of the most important diagnostic 

criteria for AMR in cardiac transplantation is the presence of intravascular macrophages in 

the capillaries of endomyocardial biopsies [55]. In a clinical study, Kirk and colleagues 

found that there was a high incidence of AMR associated with infiltrating macrophages in 

renal transplant patients treated with Campath, a T cell-depleting drug [56, 57]. Similar 

detrimental effects were observed in a lymphocyte-deficient RAG−/− cardiac murine model 

of acute AMR [53, 54], adding support to the claim that macrophages are sufficient to 

induce allograft injury. In this study, passive transfer of anti-donor HLA antibodies induced 

accumulation of intravascular macrophages in heterotopic cardiac allografts, demonstrating 

pathological features of injury. In vitro, P-selectin blockade was shown to prevent antibody-

mediated monocyte recruitment to endothelial cells, conferring protection from antibody 

induced damage. This was recapitulated in the above-mentioned murine model of acute 

AMR [53] and has had promising results in IRI [20], with potential for use in AMR in solid 

organ transplantation. In the setting of AMR, donor specific HLA IgG antibodies have been 

shown to recruit monocytes via an FcγR-dependent mechanism [9, 58]. Consequently, 

eliminating these antibody-FcγR interactions using EndoS, an endoglycosidase that modifies 

protein glycosylation, and IdeS, an IgG-degrading enzyme, was shown to significantly 

lessen monocyte recruitment to cardiac endothelium in vitro [58].

These combined findings implicate macrophages as an essential determinant in the induction 

of acute rejection. Though the exact mechanism by which macrophages mediate injury is not 

fully understood, in vitro and in vivo studies implicate the production of inflammatory 

mediators as a central mechanism whereby macrophages contribute to allograft injury [5]. 

Inside the graft, macrophages release inflammatory mediators such as nitric oxide (iNOS), 

IL-2, IL-6, IL-12, MCP-1, and TNF-α [40, 44], which activate and damage the 

microvasculature, recruit leukocytes, and induce donor-specific cytotoxic responses [1]. 

Studies where macrophages have been depleted, or receptors for leukocyte recruitment 

antagonized, confirmed the role of macrophage cytokine production and other pro-

inflammatory mediators in graft rejection. For instance, chemical macrophage depletion 

results in a reduction in the severity of acute allograft rejection in rodent models of small 

bowel transplantation [44, 59]. The reduction in small bowel injury was attributed, in part, to 

lower expression of inflammatory genes including iNOS, MCP-1 and IL-6, factors 

associated with M1 macrophages. Blockade of inflammatory cytokines such as TNF-α and 
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iNOS was shown to extend cardiac graft survival, underscoring the importance of 

macrophage-mediated-inflammation in heart transplant rejection [60, 61]. Similarly, 

administration of the chemokine receptor antagonist, Met-Rantes, inhibited monocyte 

adhesion to inflamed endothelium in a rat model of acute cellular renal injury in which 

monocytes constitute the majority of the infiltrating cells. Correspondingly, the treated 

animals displayed a decrease in the expression level of several pro-inflammatory cytokines 

[62, 63]. While M1 macrophages mediate injury, M2 macrophages are generally implicated 

in injury resolution and tissue remodeling, and therefore, they may promote allograft 

damage repair; though currently, their role in acute injury remains speculative. Histological 

studies of murine corneal allografts exhibiting acute rejection revealed the presence of M1 

macrophages secreting proinflammatory mediators, while M2 macrophages were detected in 

the animals that did not reject the transplants [64]. An M1-dominant response was also 

observed in a rat model of acute renal AMR and in clinical biopsy samples of acutely 

rejecting kidney allograft recipients [65].

In light of these findings, selective depletion of macrophage subpopulations may be 

exploited to provide additional insight into the myriad functions of macrophages in the 

context of acute allograft injury and repair, more specifically targeting M1 macrophages as a 

therapeutic tactic. Albeit, it might be more prudent to target destructive macrophage subsets 

for manipulation, such as those skewed toward the M1 phenotype, for manipulation, rather 

than depletion, as studies suggest that macrophages are plastic and do not remain committed 

to a single phenotype/activation state [2, 3].

Macrophages in Chronic Allograft Rejection

Chronic rejection is the leading cause of long-term graft failure. The manifestations of 

chronic allograft rejection include vasculopathy and chronic vascular lesions, often 

accompanied by sub-endothelial leukocytes, and proliferation of vascular endothelial and 

smooth muscle cells [66]. Histological sections of chronically rejecting tissues stain positive 

for macrophage infiltrates, and macrophage labeling has been explored as a means of 

detecting chronic rejection prior to the onset of graft dysfunction [67]. Intragraft 

macrophages are associated with worse outcome in renal, liver, and cardiac transplantation 

in humans as well as animal models [68–70], and macrophages have been shown to directly 

cause tissue injury and fibrosis. Case studies focusing on the development of chronic 

allograft nephropathy have emphasized the pivotal role of macrophages in human biopsies 

culminating in end-stage renal failure [69, 71, 72]. Interestingly, monocytes have been 

shown to have altered activation levels, exhibited by enhanced TNF-α production, in 

patients undergoing chronic renal rejection [73].

As in the case of acute rejection, the current view is that macrophages promote worse graft 

outcome through the release of inflammatory mediators and regulation of cytokine 

dynamics. Studies conducted during the course of chronic rejection found up-regulation of 

MCP-1, RANTES, TNF-α, IFN-γ and iNOS among others, correlating with macrophage 

activation [74]. Yang et al. used a previously established rat renal allograft model to target a 

variety of macrophage-derived and macrophage-activating soluble mediators implicated in 

chronic graft rejection. Blocking the actions of TNF-α, IL-12, and IFN-γ reduced 
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macrophage-mediated chronic injury [75]. Macrophage participation in chronically rejecting 

vascularized grafts can be further modulated by blockade of chemokine-chemokine receptor 

interactions, as administration of Met-RANTES, an agonist to the chemokine receptor 

CCR5, to transplant recipients has been successful in significantly lessening chronic injury 

in cardiac and renal grafts [76, 77]. A macrophage-specific inhibitor, gamma lactone, was 

successfully used to prevent murine chronic renal allograft nephropathy [68] with a 

correlative reduction in the levels of macrophage-produced inflammatory mediators. As in 

acute injury, the impact of macrophages in models of chronic rejection has been assessed 

through depletion strategies, demonstrating attenuation of chronic lesions and vasculopathy 

[78].

In patients presenting with chronic allograft nephropathy, mRNA levels of PAI-1, a 

glycoprotein which promotes fibrosis by inhibiting degradation of the extracellular matrix, 

were found to be increased in macrophages infiltrating the kidney [72]. These findings 

identify an additional mechanism where macrophages incite chronic rejection by promoting 

fibrosis. Fibrosis precedes clinical dysfunction of the allograft and the development of 

progressive fibrosis in turn has been attributed to M2 macrophages in the context of 

dysregulated inflammation [48]. Though the majority of M2 macrophages, including M2a 

and M2c macrophages, are generally considered to demonstrate beneficial reparative 

characteristics, with regard to ongoing injury, sustained activity may result in the continuous 

production of various wound-healing growth factors, ultimately becoming a pathological 

process leading to fibrosis [79]. Consequently, M2 macrophages were identified as the 

dominant macrophage subset found in chronic lesions [6]. Steroids and calcineurin 

inhibitors, used routinely in transplantation therapy, have been shown to induce CD163+ M2 

macrophage polarization, with a correlative increase in mRNA levels of pro-fibrotic 

cytokines such as TGFβ-1 and connective tissue growth factor, thus promoting development 

of fibrosis and at times exacerbating rejection [6, 80]. These recent findings link progression 

of fibrosis to this subset of macrophages, suggesting that they may serve as a predictive 

biomarker of chronic rejection and that restricting their activity would serve as a potential 

therapeutic strategy to protect against macrophage-dependent mechanisms related to 

fibrosis. Fully understanding the function of the M2 macrophage subset in the setting of 

chronic rejection requires additional studies.

Macrophages as a therapeutic agent

Though much attention has been given to the detrimental role of macrophages in organ 

transplantation, limited studies have ascertained that regulatory macrophages have the 

potential to prolong allograft survival. M regs have been used in immunodeficient mice [81], 

and in non-immunosuppressed recipients of a mismatched heterotopic heart allografts, to 

ameliorate symptoms of rejection and prolong allograft survival [15]. Furthermore, 

administration of M regs to porcine recipients of single lung allografts improved graft 

prognosis [82].

Presently, it is not fully understood how M regs exert their immunosuppressive effects in 

vivo, though it is assumed it is controlled by multiple mechanisms. In principle, M regs 

could directly regulate and suppress polyclonal T cell proliferation and mediate T cell 
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elimination through an iNOS-dependent mechanism and their ability to down-regulate L-

selectin levels on T cells, which ultimately prevents T cell activation [15, 83]. Alternatively, 

M regs may secrete anti-inflammatory mediators, which help promote tissue repair. 

Consistent with this idea, the suppressive capacity of M regs has been attributed to IFN-γ-

induced iNOS [15, 84], which has recently been implicated in macrophage-mediated 

immune suppression [15, 85].

From a therapeutic viewpoint, regulatory macrophages with the capacity to quell an aberrant 

inflammatory response could be used as a pharmacological agent for tolerance induction. A 

recent study showed that M regs can be generated from peripheral blood monocytes for 

potential use in solid organ transplantation [86]. Two human recipients of kidney allografts 

were adoptively transferred with donor-derived infusions of M regs and weaned to 

monotherapy [13]. No incidence of acute or chronic rejection has been observed at 5 years. 

The absence of acute rejection and lack of signs indicative of subclinical rejection suggested 

a lack of or attenuation of anti-donor reactivity [87]. In these studies, M regs demonstrated 

graft protective functions and pre-operative administration of M reg-based therapy was 

shown to mediate tolerance of the donor allograft. Donor M regs are used instead of 

recipient M regs, as a study by Riquelme et al. established that the graft-protective effect of 

M regs is specific to donor cells [15]. The described findings suggest there is a benefit to 

distinguishing between macrophage subsets present in allograft settings, as depletion of 

certain subsets of macrophages may prove more beneficial than total macrophage depletion.

Several key clinical concerns remain to be addressed regarding the translation of M reg 

therapy to clinical transplantation, such as the stability and safety of M regs in vivo and the 

efficacy of M reg usage in a wide and variable population. Some of these questions are now 

being addressed in the ONE Study consortium in Europe, aimed at determining the efficacy 

and safety of administering donor-derived M reg preparations to living-donor solid organ 

transplant recipients as a cellular immunotherapy, with the ultimate goal of reducing the 

need for conventional immunosuppression (NCT02085629).

The Effects of Immunosuppressives and therapeutics on Macrophages

Immunosuppressive drugs used routinely for the prevention of allograft rejection have been 

shown to affect the phenotype and function of macrophages. Macrophages treated with 

rapamycin, an inhibitor of the serine/threonine kinase mTOR, were impaired in their ability 

to present antigens and displayed a notable reduction in the expression of CD80 [88]. 

Rapamycin has also been shown to inhibit production of the inflammatory mediator iNOS in 

macrophage cell lines [89]. Bortezomib is a protease inhibitor mainly used in the treatment 

of AMR [90] and has also been found to block T-cell mediated responses [91, 92]. In a 

murine model of contact hypersensitivity, an inflammatory immune reaction mediated by T 

cells, Bortezomib treatment resulted in a noted reduction in macrophage infiltration [91]. 

Furthermore, Bortezomib has been shown to reduce inflammatory cytokine production in 

macrophages stimulated with LPS in vitro [91, 93]. Use of the calcineurin inhibitors CsA 

and FK506 has been shown to regulate TLR mediated pathways in myeloid cells and lead to 

macrophage activation by inhibiting the calcineurin/NFAT pathway. Blocking NFAT leads 

to activation of the downstream NF-κB and MAPK pathways, and to subsequent production 
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of inflammatory mediators including IL-12 and TNF-α [94, 95]. As mentioned previously, 

calcineurin inhibitors have also been implicated in the promotion of M2 macrophage 

differentiation, as identified by the marker CD163 [6]. Butyric acid is used for treatment of 

auto-immune disorders and has been investigated for tolerance induction in allografts [96]. 

Butyrate treatment of monocytes in vitro was found to decrease their phagocytic capabilities 

and to reduce expression of markers including CD14, CD86 and MHCII [97]. In a separate 

study, butyrate prevented IL-12 production in human monocytes and promoted production 

of IL-10 [98], suggesting that it might play a role in the development of anti-inflammatory 

macrophages.

Conclusion

Modulation of graft homeostasis involves the interplay between the various subpopulations 

of macrophages, which can contribute allograft-destructive or protective mechanisms based 

on their phenotype and function. Though major advances have been made with regard to an 

improved understanding of the contribution of macrophages to graft outcome, there is a 

paucity of clinical data and further studies are warranted to establish a comprehensive 

understanding of their contribution to graft injury, repair and graft acceptance.
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Key points

• Based on cues from their microenvironment, macrophages differentiate into 

inflammatory (M1), wound healing (M2), or regulatory macrophages all with 

distinct functions and phenotypes.

• Macrophages generate inflammatory mediators that contribute to ischemia 

reperfusion injury and acute and chronic allograft rejection.

• Regulatory macrophages are an attractive candidate for use as an adjunct cell-

based therapy to suppress allograft rejection in human transplantation.
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Figure 1. Macrophage plasticity and function in the context of allograft rejection
a) M1 macrophages are classically activated, damage graft endothelium, recruit additional 

leukocytes, and mediate tissue injury. They are the dominant phenotype in acute rejection 

and their activity can be modulated by blockade of their activation or the factors they 

produce. b) M2 macrophages are alternatively activated, mediate tissue repair and injury 

resolution, and promote fibrosis. This subset is predominantly found in chronically-damaged 

allografts. c) Mregs are activated in a fashion distinct from the other two subsets. They 

modulate anti-inflammatory response, have T cell suppressive capacity, and are being 

investigated for use in cell-based therapy.
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