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Abstract

Recently, high-resolution gamma cameras have been developed with detectors containing > 105–

106 elements. Single-photon emission computed tomography (SPECT) imagers based on these 

detectors usually also have a large number of voxel bins and therefore face memory storage issues 

for the system matrix when performing fast tomographic reconstructions using iterative 

algorithms. To address these issues, we have developed a method that parameterizes the detector 

response to a point source and generates the system matrix on the fly during MLEM or OSEM on 

graphics hardware. The calibration method, interpolation of coefficient data, and reconstruction 

results are presented in the context of a recently commissioned small-animal SPECT imager, 

called FastSPECT III.

Index Terms

Calibration; graphics processing units (GPUs); high-performance computing; image 
reconstruction; ordered-subset expectation maximization (OSEM); single-photon emission 
computed tomography (SPECT); system matrix

I. Introduction

A DISCRETE-TO-DISCRETE model of a single-photon emission computed tomography 

(SPECT) system, described by a system matrix H that maps an object f into measured data 

g, can be described as
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(1)

where f is an N × 1 vector of voxel elements, g is an M × 1vector of data bins (pixels), and H 
is an M × N matrix. When properly normalized, the individual elements of H, hmn, represent 

the probability of a photon emitted from the nth voxel being detected in the mth detector 

element [1], [2]. Detector and collimator blur, and pinhole and aperture misalignment, can 

be included in H by measuring the system response at a grid of discrete locations in the field 

of view (FOV) of the camera [3]–[6]. Using iterative algorithms, these system imperfections 

are at least partially compensated for, leading to improved quality of reconstructed images.

Traditional scintillation detectors that use photomultiplier tubes (PMTs) typically have ~104 

resolvable detector elements. In small-animal SPECT systems based on these low-resolution 

detectors, g has on the order of 105–106 elements, depending on the number of projection 

views. For an imaging system based on classical SPECT cameras with 128×128 binning, g 
has ~1.5 × 106 elements for 90 angles. In a few specific small-animal SPECT systems, the 

size of g is:

• U-SPECT [7] with 512 × 512 × 3 (detectors) ≈ 7.9 × 105 elements;

• X-SPECT [8] with 80 × 80 × 90 (angles) ≈ 5.80 × 105 elements;

• FastSPECT II [9] with 80 × 80 × 16 (detectors) ≈ 105 elements.

The number of voxels in f is typically of the order ~106–107 elements.

In recent years, high-resolution gamma cameras have been developed with detectors having 

105–106 pixel elements [10]–[14]. In SPECT systems based on these detectors, the size of g 
ranges from 106–107 elements, one to two orders of magnitude more elements compared to 

PMT-based SPECT systems. Additionally, the voxel size becomes smaller when utilizing 

high-resolution detectors. This leads to more voxels and an even larger system matrix. 

Consequently, we are presented with new challenges with regards to system calibration 

procedures, storage issues of the system matrix, and methods for performing fast 

tomographic reconstructions using iterative algorithms.

At the Center for Gamma-Ray Imaging, Tucson, AZ, we recently completed the system 

integration of FastSPECT III [15], a next-generation high-resolution stationary SPECT 

imager designed for neurological imaging studies of mice. Stationary SPECT imagers are 

composed of rings of gamma-ray detectors that provide sufficient angular sampling for 

tomographic reconstruction without requiring movement of the detector, imaging aperture, 

or imaging subject. Simultaneous acquisition of projection image data allows for dynamic 4-

D imaging, time-dependent activity studies, and avoidance of artifacts due to subject motion. 

An image of the system is shown in Fig. 1. FastSPECT III has 20 CCD-based scintillation 

gamma cameras, called BazookSPECT [10]. Each BazookaSPECT comprises a columnar 

CsI(Tl) scintillator, an image intensifier, and a 640 × 480 CCD sensor that operates at up to 

200 frames per second. Currently, the FastSPECT III imaging aperture has 20 pinholes, one 

per camera. The size g of for the system ~6 × 106 is elements. Assuming a 1003 voxel 

volume, storage of the entire system matrix would require ~22 TB of space. Fortunately, for 
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pinhole SPECT, most elements H of are zero, and storing only the nonzero elements (sparse 

H) significantly reduces memory storage requirements. In PMT-based systems, the entire 

sparse H can be loaded into memory for fast iterative reconstruction. This is done in the 

FastSPECT II system that has 16 modular PMT detectors (80 × 80 elements per detector). 

However, for FastSPECT III, even the sparse H is very large because of fine sampling with 

high-resolution detectors, and memory storage remains an issue. If we assume that the point 

spread function (PSF) from a given voxel can be modeled as a 2-D Gaussian function, then 

storage of the parameters that describe the Gaussian function results in a file which is 

significantly smaller for both types of SPECT systems. Table I shows the relative sizes of 

the system matrices for FastSPECT II and FastSPECT III.

To address the storage issues of the system matrix that new high-resolution gamma cameras 

pose for iterative reconstruction, we have developed and validated a method that uses 

multicore GPUs for fast, on-the-fly computation of H from coefficient data. This method 

can also be applied to stationary SPECT systems where g is relatively small (FastSPECT II) 

but f is large, such as in full-body imaging. Additionally, the method is readily extendable to 

other imaging geometries where the detector response to a point source is best modeled by 

some function other than a 2-D Gaussian, e.g., a rectangular point-source projection image 

from a crossed-slit collimator [16].

II. Materials and Methods

For stationary SPECT imagers at the Center for Gamma-Ray Imaging, we typically measure 

the system-specific components of H experimentally using a radioactive point source [4]. 

Using a three-axis positioning stage, the point source is stepped in object space in a 3-D grid 

of measurements points, where the span of the 3-D grid determines the system FOV. The 

calibration procedure incorporates into the system matrix imperfections or misalignment of 

the imaging system as well as nonuniformity in the camera response such as distortion, for 

example. Fig. 2 shows data from a FastSPECT III calibration measurement acquired at one 

position during a 3-D scan. The 99mTc point source is made using a ~Ø500-μm ion-

exchange resin bead. For a given source position, we obtain a projection image from each of 

the 20 detectors. The system response for the given voxel location corresponds to one 

column of H, of the size 640 × 480 × 20 = 6144000 elements, and it is estimated by fit-ting a 

2-D Gaussian function to each projection image. As can be visualized in Fig. 2, most 

elements in the 640 × 480 projection images are zero except for small regions of pixels, e.g., 

31 × 31 pixels, corresponding to PSFs. Only the nonzero elements of the system matrix 

contain information needed for reconstruction.

The left images in Fig. 3(a) and (b) show the 20 PSFs of Fig. 2 for the given source position. 

The PSFs shown in the left image in Fig. 3(a) were generated from a 20-s acquisition, and in 

the left image of Fig. 3(b) from a 600-s acquisition. The activity of the point source to 

generate these PSFs was ~600 μCi. For system calibration, we routinely make point sources 

with an activity up to ~1.5 mCi (99mTc). To generate H for FastSPECT III from the raw PSF 

calibration data (which contains photon-counting noise), we have adopted the method 

employed by Chen with FastSPECT II [17], where the PSF is estimated to be a 2-D 

Gaussian function. For each source position, a 2-D Gaussian fit is performed on projection 
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images using a least-squares algorithm. A total of six parameters (amplitude, x-position, y-

position, x-width, y-width, and a correlation coefficient) are used to parameterize the 2-D 

Gaussian, and each Gaussian is normalized to the count level of the PSF projection. Images 

of Gaussian fits to the 20- and 600-s raw PSF projections are shown in the right images of 

Fig. 3. A visual comparison between the short and long PSF acquisitions shows that the 

Gaussian fits are quite good, even for the relatively noisy PSFs from the short acquisition. 

Note that several of the point-source projections in Fig. 3 have a profile that is not circularly 

symmetric because the point source is nonorthogonal to the detector. Two-dimensional 

Gaussian fits to these images are allowed through the correlation coefficient.

To estimate the accuracy and reproducibility of 2-D Gaussian fits to raw PSF projection 

data, we positioned the point source at the same voxel locations and acquired projection data 

for 2 h from the 99mTc, ~600 μCi point source. PSF projection images were then generated 

from the listmode data into sets of acquisition times ranging from 10–600 s (with decay 

correction). The average 2-D Gaussian fit from the set of 600-s acquisitions was used as the 

gold standard, denoted h̄PSF. Fig. 4 shows the results of this comparison for two detectors.

To avoid prohibitively long calibration measurements, especially when using point sources 

with a short half-life such as 99mTc, we measure the 3-D grid of points at a relatively large 

step size of ~1 mm and estimate intermediate voxels by interpolating neighboring Gaussian 

coefficients. The next step used in previous-generation imagers (FastSPECT I and II) is to 

generate a sparse H from the Gaussian coefficient data and store the nonzero matrix 

elements to file. The system matrix is then loaded into system memory during tomographic 

reconstruction. For FastSPECT II, depending on the number of voxels and detector 

elements, the size of a sparse H ranges from 340 MB to 12 GB, a size well within the 

standard range of system memory in current computing systems. However, for FastSPECT 

III, as previously mentioned, because of the increased number of detector elements, loading 

a sparse system matrix, e.g., 80 GB, into system memory for tomographic reconstruction is 

not an attractive option as the reconstruction time would be prohibitively slow.

Since the entire coefficient file is relatively small (see Table I) and it contains all the 

information necessary to construct the system matrix, our solution to this dilemma with 

FastSPECT III is to use the inherently parallel nature of modern graphics cards, with the 

additional benefit of being low-cost, to generate the system matrix on the fly. For 

tomographic reconstruction, both projection images and the coefficient data are copied to 

GPU memory, and elements of H are then generated on the fly in parallel using coefficient 

data.

To date, we have implemented both maximum-likelihood expectation maximization 

(MLEM) and ordered-subset expectation maximization (OSEM) algorithms using the 

NVIDIA CUDA [18] programming environment on NVIDIA Fermi graphics cards. Using 

CUDA, within a block of parallel threads, elements of a 2-D Gaussian (PSF) are computed 

from a set of six coefficients. The NVIDIA GPU used for MLEM/OSEM reconstruction is a 

Fermi GeForce GTX 580 that has 512 processor cores and 1.5 GB of memory. This method 

is novel in that it combines the benefits from a faster MLEM/OSEM algorithm with a 

reduction in system matrix size by storing only a parameterized representation of H.
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III. Results

To validate our GPU-based MLEM/OSEM reconstruction algorithm, we imaged a micro-

Derenzo (Jaszczak) phantom produced by VANDERWILT techniques bv [19]. The phantom 

bores were filled with a total of 5 mCi of 99mTc. A set of Ø500-μm pinholes were used to 

acquire projection images. The 20 projection images along with images of their 

corresponding detectors are shown in Fig. 5, and a photograph of the phantom is shown in 

Fig. 6. The smallest bore is Ø350 μm, and the height of the bore is 8 mm. For the 

tomographic reconstruction, 100 iterations of MLEM were used with a reconstruction 

volume of 1043 voxels (14.95 mm in each dimension). A 3-D rendering of the reconstructed 

Jaszczak phantom is shown in Fig. 6. Currently, each iteration of MLEM for a 1043-voxel 

volume takes approximately 19 s, during which approximately 160 GB of data are generated 

and processed using the stored coefficients, i.e., elements of the system matrix are generated 

for forward and back projection operations using a 31 × 31 sampling of the 2-D Gaussian 

PSFs. To further increase the speed of the reconstruction algorithm, we have implemented 

OSEM on the GPU and present results using 20 iterations of OSEM with five subsets.

Since we are generating the PSFs of the system matrix on the fly in the GPU, we have the 

freedom to choose what fraction of the 2-D Gaussian to generate. For example, instead of 

generating a 2-D Gaussian that is sampled with 31 × 31 elements, we can sample a truncated 

region using 11 × 11 elements. The benefit of such an approach is reduced reconstruction 

time at the expense of potential reconstruction artifacts. Additionally, the reconstruction 

time can be further reduced using a coarser voxel volume, e.g., 523-voxel volume instead of 

a 1043 volume. Depending upon the imaging task, reduced resolution and potential artifacts 

may be acceptable tradeoffs for a shorter reconstruction time, especially with imaging 

studies that would benefit from the capability of real-time tomographic reconstruction while 

projection data are being acquired. Some benefits of real-time tomography include the 

following:

• the capability of quickly knowing whether or not the subject is properly aligned 

within the imaging FOV;

• rapidly determining whether or not the tracer has arrived at the target volume of 

interest;

• knowledge of when sufficient data are obtained so that the acquisition can then be 

stopped. This would optimize the acquisition time and consequently increase the 

throughput capability of the imaging system. Also, it would minimize the amount 

of time the subject would need to be placed under anesthesia;

• the ability to acquire scout scans for adaptive SPECT systems.

Regarding the last point, future adaptive SPECT systems [16], [20]–[23] are currently being 

built that will have the capability to dynamically change system geometry for optimal 

imaging performance. These systems will initially generate a low-resolution, large-volume 

reconstruction (scout scan) that is used to identify a target volume of interest. The system 

then dynamically reconfigures the aperture/detector configuration for an optimal imaging 
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acquisition. The capability to quickly obtain the scout tomographic reconstruction is an 

integral feature of adaptive SPECT systems.

To examine the performance variability in terms of reconstruction time and spatial 

resolution, we reconstructed the Derenzo phantom with 1043- and 523-voxel volumes at 

various truncations of the PSF. Results are shown in Tables II and III and Fig. 7. Note that 

the GPU computational time of the reconstruction (20 iterations of OSEM using five 

subsets) is for the entire ~15 × 15 × 15 mm3-voxel volume. For FastSPECT III, finer 

sampling of the PSF (e.g., 27 × 27 or 31 × 31) qualitatively improves the reconstructed 

image. For comparison, in systems with lower detector resolution, such as FastSPECT II, a 

nontruncated sampling of the 2-D Gaussian PSF could be obtained with 9 × 9 elements. 

Examining Tables II and III, a key point is that even as the PSF is truncated, it is possible to 

reconstruct the object without significant artifacts, even with a highly truncated PSF, e.g., 7 

× 7 or 5 × 5 region of the 2-D Gaussian. Shown in Table III at these sampling values, it 

takes only ~3 s to complete 20 iterations of OSEM. Since each PSF is normalized to the 

original count level, we avoid bias in the reconstruction, even as the tails are truncated.

IV. Discussion and Conclusion

The inherently parallel nature of GPUs, with hundreds of processing cores, is an attractive 

feature for performing fast tomographic reconstructions using iterative methods. An 

additional attractive feature of GPUs is their relatively low cost. In modern computing 

systems, which provide gigabytes of system and GPU memory, storing the nonzero, system 

matrix elements in memory for fast reconstruction is not feasible in next-generation SPECT 

systems because of the massive number of voxels and/or detector elements. Our solution to 

this problem is to represent the nonzero system matrix elements with a model, e.g., 2-D 

Gaussians, which can then be parameterized by coefficients. Storing only the coefficients is 

a data reduction process that overcomes memory storage issues much in the way storing 

listmode data in PMT-based scintillation cameras is more efficient than binning when there 

are many event attributes. Implementing iterative reconstruction algorithms using coefficient 

data requires that the system matrix elements be generated on the fly, which is accomplished 

in parallel using GPU processors.

We propose that as SPECT imagers with vastly more detector elements and vastly more 

voxels are developed, generation of the system matrix on the fly using GPUs is the method 

that will have to be employed to generate tomographic reconstructions within reasonable 

time frames. We have developed and validated this method with MLEM and OSEM in the 

FastSPECT III, small-animal stationary SPECT imager where we successfully reconstructed 

a resolution phantom at ~60× faster speed compared to a single CPU. We have demonstrated 

that this method allows for real-time tomography of the entire voxel volume in a matter of 

seconds using a reduced voxel volume and/or a truncated PSF. Real-time tomography is a 

feature that provides SPECT imagers with a number of benefits such as a method for 

obtaining the optimal acquisition time and rapid knowledge as to whether or not tracer has 

arrived at the target volume of interest. Most importantly, we propose it as a solution to a 

critical feature needed in future next-generation adaptive SPECT imagers that will require 

fast tomographic reconstruction of scout data.
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Fig. 1. 
FastSPECT III stationary SPECT imaging system. The system comprises 20 

BazookaSPECT detectors and acquisition hardware that processes ~1.23 Gpix/s. In the 

current imaging configuration, the detectors share a common FOV of ~15 mm for 

neurological imaging studies of the mouse brain.
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Fig. 2. 
FastSPECT III system calibration. A radioactive point source, e.g., 99mTc ion-exchange 

resin bead, is mechanically stepped in a sparse 3-D grid of positions inside the FastSPECT 

III aperture. The system has 20 pinholes (one per detector), and for each source position, we 

acquire 20 projection images. Shown above are magnified regions of raw projection images 

from two FastSPECT III detectors taken at a given voxel position during calibration. The 

system response to the point source for the given voxel position, which we estimate by 

fitting a 2-D Gaussian function to raw projection data, corresponds to one column of H, 640 

× 480 × 20 = 6144000 elements in length (mostly zeros).
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Fig. 3. 
2-D Gaussian fits to point-source projection data. (a) (left) Nonzero, point-source projection 

regions of Fig. 2 from 20 detectors. Images were acquired for 20 s, using a ~600 μCi, 99mTc 

point source. (right) Least-squares 2-D Gaussian fits to the projection data. (b) (left) 600-s 

projection images and (right) their corresponding 2-D Gaussian fits.
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Fig. 4. 
Plots showing the accuracy and reproducibility of 2-D Gaussian fits to raw PSF projection 

data for an example voxel location and two different detectors as a function of the number of 

counts in the projections. Projection images were acquired using a ~Ø500-μm, 99mTc point 

source with an activity of ~604 μCi. The point source for both (a) and (b) was located 

inwards 2 mm, left 5 mm, and up 2.318 mm from the center of the imaging aperture 

(referencing the image of the FastSPECT III camera configuration above). h̄PSF is a 2-D 

Gaussian fit averaged using ten 600-s projection images (gPSF) and their corresponding hPSF 

Gaussian fits. Error bars are two standard deviations in width around the median RMSE/

RMS.
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Fig. 5. 
FastSPECT III projection images of a micro-Derenzo phantom. (a) Camera locations 

corresponding to each (b) projection image.

Miller et al. Page 13

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2015 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
(a) High-resolution micro-Derenzo phantom [19]. Bore sizes range from Ø0.35 to Ø0.75 

mm. The length of the phantom is 8 mm with a diameter of 10 mm, and center-to-center 

distances between holes is 2× the hole diameter. (b) On-the-fly, GPU-based MLEM 

reconstruction of the phantom filled with 5 mCi of . The voxel volume is 104 × 

104 × 104, ~144 μm voxels.
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Fig. 7. 
OSEM (20 iterations, five subsets) reconstruction time (CPU/GPU) as a function of the size 

of the sparse H in gigabytes for a 15 × 15 × 15-mm3 voxel volume. For both the CPU 

(single-core Intel i7 processor) and GPU reconstructions, elements of the sparse H are 

generated on the fly from 2-D Gaussian coefficient data where the size of the sparse H 
decreases with truncation of the 2-D Gaussian. (a) Voxel volume sampled with 1043 voxels. 

(b) Voxel volume sampled with 523 voxels.
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TABLE I

Matrix Storage Size Assuming a 31 × 31 Region of Pixels That Sample the Detector’s Response to a Point 

Source in FastSPECT III and a 9 × 9 Region for the Low-Resolution Detectors in FastSPECT II

H-matrix for 104 × 104 × 104 voxels

Storage Options FastSPECT II Fast SPECT III

Full H 0.37 TB 25.14 TB

Sparse H 4.82 GB 80.54 GB

Gaussian Coefficients only 366 MB 515 MB
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TABLE II

1043-Voxel Volume (~144 μm Voxels) Reconstruction Time and Resolution Comparison of the GPU-Based 

OSEM Reconstruction Where the Fraction of the 2-D Gaussian (PSF) is Varied

FastSPECT III
On-The-Fly OSEM Reconstruction

1043 voxels, ~144 μm (15 × 15 × 15 mm3 FOV)
20 Iterations OSEM, 5 Subsets

hPSF (2D Gaussian Sampled Region) H (Sparse) GPU Computation Time 
(Total Volume)

Versus CPU (Single 
Core i7) Slice (144 μm)

31 × 31

80.54 GB 387 sec 60.37×

27 × 27

61 GB 287.8 sec 60.87×

21 × 21

37 GB 148.4 sec 70.57×

15 × 15

18.8 GB 83.22 sec 64×

11 × 11

10.1 GB 43.5 sec 66.09×
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FastSPECT III
On-The-Fly OSEM Reconstruction

1043 voxels, ~144 μm (15 × 15 × 15 mm3 FOV)
20 Iterations OSEM, 5 Subsets

hPSF (2D Gaussian Sampled Region) H (Sparse) GPU Computation Time 
(Total Volume)

Versus CPU (Single 
Core i7) Slice (144 μm)

9 × 9

6.7 GB 33.3 sec 58.34×

7 × 7

4.12 GB 27.09 sec 40×

5 × 5

2.09 GB 24.39 sec 25.67×

3 × 3

0.75 GB 24.10 sec 10.68×

1 × 1

0.08 GB 19.52 sec 3.12×
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TABLE III

523-Voxel Volume (~287.5 μm-Voxels) Reconstruction Time and Resolution Comparison of the GPU-Based 

OSEM Reconstruction Where the Fraction of the 2-D Gaussian (PSF) is Varied

FastSPECT III
On-The-Fly OSEM Reconstruction

523 voxels, ~287.5 μm (15 × 15 × 15 mm3 FOV)
20 Iterations OSEM, 5 Subsets

hPSF (2D Gaussian Sampled Region) H (Sparse) GPU Computation Time 
(Total Volume)

Versus CPU (Single 
Core i7) Slice (287.5 μm)

31 × 31

10.1 GB 47.27 sec 56.67×

27 × 27

7.63 GB 35.05 sec 57.7×

21 × 21

4.62 GB 18.06 sec 67.8×

15 × 15

2.35 GB 10.02 sec 61.8×

11 × 11

1.26 GB 5.41 sec 61.89×
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FastSPECT III
On-The-Fly OSEM Reconstruction

523 voxels, ~287.5 μm (15 × 15 × 15 mm3 FOV)
20 Iterations OSEM, 5 Subsets

hPSF (2D Gaussian Sampled Region) H (Sparse) GPU Computation Time 
(Total Volume)

Versus CPU (Single 
Core i7) Slice (287.5 μm)

9 × 9

0.85 GB 4.22 sec 53.8×

7 × 7

0.51 GB 3.48 sec 40.06×

5 × 5

0.262 GB 3.18 sec 23.42×

3 × 3

0.094 GB 3.15 sec 9.98×

1 × 1

0.014 GB 2.62 sec 3.02×
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