Skip to main content
. 2015 Jul 30;10(7):e0133184. doi: 10.1371/journal.pone.0133184

Table 2. Univariate Cox regression analysis of RFS for different models of SNP rs3775291 and rs4833095 in 715 breast cancer patients.

Variables HR (95%CI) P
Age 0.60
<50 1.00
≥50 0.91 (0.65–1.29)
Menopausal status 0.87
Premenopausal 1.00
Postmenopausal 0.97 (0.69–1.37)
ER status <0.01
Negative 1.00
Positive 0.50 (0.33–0.74)
PR status 0.01
Negative 1.00
Positive 0.60 (0.40–0.88)
HER2 status <0.01
Negative 1.00
Positive 2.13 (1.36–3.33)
Lymph node status <0.01
Negative 1.00
Positive 2.80 (1.87–4.19)
Tumor size(cm) <0.01
≤2 1.00
>2 2.59 (1.73–3.86)
Chemotherapy <0.01
No 1.00
Yes 3.34 (1.92–5.82)
Endocrine therapy <0.01
No 1.00
Yes 0.51 (0.34–0.76)
TLR3 rs3775291:
Recessive model <0.01
AG+GG 1.00
AA 2.06 (1.31–3.23)
Dominant model 0.31
AG+AA 1.00
GG 0.83 (0.59–1.18)
Co-dominant model 0.01
GG 1.00
AG 1.07 (0.73–1.56) 0.74
AA 2.04 (1.24–3.35) <0.01
TLR1 rs4833095:
Recessive model 0.06
TC+CC 1.00
TT 0.55 (0.30–1.01)
Dominant model 0.41
TC+TT 1.00
CC 1.16 (0.82–1.64)
Co-dominant model 0.16
CC 1.00
TC 0.97 (0.67–1.39) 0.85
TT 0.54 (0.29–1.02) 0.06

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2