
Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated 
with susceptibility to pancreatic cancer

A full list of authors and affiliations appears at the end of the article.

Introductory Paragraph

Pancreatic cancer is the fourth leading cause of cancer death in the developed world1. Both 

inherited high-penetrant mutations in BRCA22, ATM3, PALB24, BRCA15, STK116, 

CDKN2A7 and mismatch repair genes8 as well as low-penetrant loci are associated with 

increased risk9–12. To identify novel loci, we performed a genome-wide association study on 

9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases 

and 3,792 controls in 9 studies from North America, Central Europe and Australia. Three 

newly associated regions were identified: 17q25.1 (LINC00673, rs11655237, OR=1.26, 

95%CI:1.19–1.34, P=1.42×10−14), 7p13 (SUGCT, rs17688601, OR=0.88, 95%CI:0.84–0.92, 

P=1.41×10−8), and 3q29 (TP63, rs9854771, OR=0.89, 95%CI:0.85–0.93, P=2.35×10−8). 

Significant association was detected on 2p13.3 (ETAA1, rs1486134, OR=1.14, 95%CI:1.09–

1.19, P=3.36×10−9), a region with prior suggestive evidence in the Han Chinese12. We 

replicate previously reported associations at 9q34.2(ABO)9, 13q22.1(KLF5)10, 5p15.33 

(TERT, CLPTM1)10,11, 13q12.2 (PDX1)11, 1q32.1(NR5A2)10, 7q32.3(LINC-PINT)11, 
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16q23.1(BCAR1)11 and 22q12.1 (ZNRF3)11. Our study identifies novel loci associated with 

pancreatic cancer risk.

Main Text

We conducted a two-stage genome-wide association study (GWAS) of pancreatic cancer 

(Fig. 1). First, genome-wide genotyping of 8052 subjects from nine studies within the 

Pancreatic Cancer Case-Control Consortium (PanC4) (Supplementary Table 1) was 

conducted using the HumanOmniExpressExome-8v1 array. The overall study was approved 

by the Johns Hopkins Institutional Review Board (IRB). Each individual study obtained IRB 

approval from their parent institution. After quality control (Online Methods, Fig. 1, 

Supplementary Table 2), 7,956 individuals (4,164 cases and 3,792 controls) and 654,470 

SNPs with call rates greater than 98% were analyzed. Unconditional logistic regression 

analysis adjusted for age and the first seven principal component eigenvectors was 

conducted under the log-additive genetic model (Fig. 2, Supplementary Fig. 1).

Analysis of 7,956 newly genotyped PanC4 individuals identified a novel locus at 17q25.1 

(LINC00673, rs7214041, OR=1.38, 95%CI:1.26–1.51, P=1.95×10−10) significantly 

associated with pancreatic cancer risk (Table 1, column ‘PanC4’). In addition we replicate 

regions that had previously been reported to be associated with pancreatic cancer in the 

Caucasian population (Supplementary Table 3). These include: 9q34.29 (ABO, rs505922, 

OR=1.27, 95%CI:1.19–1.35, P=1.72×10−13), 13q22.110 (KLF5, rs9543325, OR=1.24, 

95%CI:1.16–1.32, P=2.26×10−10), 5p15.3310 (CLPTM1, rs401681, OR=1.2, 95% CI:1.13–

1.28, P=2.7×10−8), 13q12.211 (PDX1, rs9581943, OR=1.17, 95%CI:1.10–1.24, 

P=1.94×10−7), 1q32.110 (NR5A2, rs3790844, OR=0.83, 95%CI:0.77–0.90, P=3.05×10−6), 

7q32.311 (LINC-PINT, rs6971499, OR=0.81, 95%CI:0.74–0.88, P=7.1×10−6), 5p15.3311 

(TERT, rs2736098, OR=0.85, 95%CI: 0.78–0.93, P=2.31×10−5), 16q23.111 (BCAR1, 

rs7190458, OR=1.4, 95%CI=1.22–1.60, P=1.01×10−4), and 22q12.111 (ZNRF3, rs16986825, 

OR=1.14, 95% CI= 1.04–1.24, P= 2.72×10−3). In contrast, other than 2p13.3 (ETAA1, 

rs2035565, OR=1.15, 95%CI=1.07–1.25, P=2.69×10−4) (Supplementary Table 3) we 

observed no evidence of association (P>0.05) for SNPs previously reported to be associated 

(P<1×10−6) with pancreatic cancer in Asian populations12,13. While all ethnic groups were 

included in our analyses, over 92% of our study population reported Caucasian ancestry. We 

obtained similar results when analysis was limited to individuals reporting European 

ancestry. Because of limited sample sizes we did not conduct independent analysis of other 

ethnic groups(results not shown).

We then conducted a genome-wide meta-analysis of the PanC4 data with data from PanScan 

19 and PanScan 210 (Combined Stage 1, Fig. 1). After quality control (Online Methods and 

Supplementary Table 4), we analyzed 528,179 SNPs and 3,746 individuals (1,856 cases and 

1,890 controls) from PanScan 1 and 557,555 SNPs and 3,300 individuals (1,618 cases and 

1,682 controls) from PanScan 2. Since the genotyping platforms differed across studies, 

missing genotypes were imputed using IMPUTE v214, with 1000 Genomes15 (release Dec 

2013) and HapMap316 (release #2,2009) as reference panels. For PanScan 1 and PanScan 2, 

we conducted association analysis using unconditional logistic regression including age and 

the first four principal components eigenvectors as covariates. Data from PanC4, PanScan 1, 
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and PanScan 2 were combined (7,638 cases and 7,364 controls and 866,891 SNPs) and 

analyzed using a fixed-effects model implemented in METAL17 (Fig. 3). A QQ plot 

(Supplementary Fig. 2) indicated appropriate control of type-1 errors, with λ values of 1.025 

for PanC4, 0.998 for PanScan 1, and 1.017 for PanScan 2.

The Combined Stage 1 Analysis (Table 1, column ‘Combined Stage 1’) yielded a second 

novel region of association at 3q29 (TP63, rs9854771, OR=0.87, 95%CI:0.83–0.92, 

P=4.08×10−8). A second SNP on 17q25.1 (rs11655237, OR=1.27, 95%CI:1.19–1.36, 

P=6.74×10−12), which is in high LD (r2=0.95) with rs7214041, also gave significant 

evidence of association in these combined data.

We next conducted a Stage 2 analysis in an independent set of 2,497 cases and 4,611 

controls from the PANDoRA consortium18. We selected twenty-five SNPs from 23 

independent regions (Supplementary Table 5) with p-values below 10−5 in either PanC4 or 

the Combined Stage 1 analyses. When multiple SNPs per region were associated, the most 

significant SNP was selected; SNPs on 17q25.1 and 2p13.3 were exceptions. After quality 

control (Online Methods, Supplementary Table 6), 2,287 cases and 4,205 controls from the 

PANDoRA study were analyzed. Age-adjusted association analyses by country were carried 

out, and results were combined using a fixed-effect model. We observed independent 

evidence of association at 17q25.1 in the PANDoRA study (Table 1, column ‘PANDoRA’: 

rs7214041, OR=1.25, 95%CI:1.11–1.41, P=3.37×10−4).

Combined analysis of the Stage 1 and 2 data for the 25 SNPs (Table 1 and Supplementary 

Table 5, column ‘Combined Stage 1&2’) revealed two additional significantly associated 

loci: 2p13.3(ETAA1, rs1486134, OR=1.14, 95%CI:1.09–1.19, P=3.36×10−9) and 

7p13(SUGCT, rs17688601, OR=0.88, 95%CI:0.84–0.92, P=1.41×10−8). Promising signals 

(Supplementary Table 7) arose at 18q21.2(GRP, rs1517037, OR=0.87, 95%CI:0.83–0.92, 

P=3.17×10−7), 12q24.31(HNF1A, rs7310409, OR= 1.11, 95%CI:1.06–1.15, P=6.34×10−7), 

1p13.1(WNT2B, rs351365, OR=0.89, 95%CI:0.85–0.93, P=7.39×10−7), and 20q13.11 

(rs6073450, OR=1.11, 95%CI:1.06–1.15, P=9.21×10−7).

We identified and replicated a novel region for association on 17q25.1 (Fig. 4a). Two highly 

correlated variants (rs11655237 and rs7214041, r2=0.95) were associated with pancreatic 

cancer risk. Variant rs7214041 is to LINC00673 (long inter-genic non-protein coding RNA 

673). rs11655237, a non-coding transcript variant, shows significant DNase hypersensitivity 

in multiple cancer cell lines and binds transcription factors including P300, FOXA1, FOXA2, 

and the DNA repair protein RAD21 according to HaploReg v219. HaploRegV2 also 

indicated rs7214041 alters regulatory motifs for HNF119. Interestingly, we also found 

suggestive evidence of an association with rs7310409 located at the HNF1A locus 

(12q24.31, Supplementary Fig. 3a and Supplementary Table 7). A recent study of the 

pancreatic cancer transcriptome suggests HNF1A may act as a tumor suppressor in 

pancreatic cancers20. Variation in HNF1A has been associated with risk of Type 2 

diabetes21,22, a well-established risk factor for pancreatic cancer23–25, and maturity onset 

diabetes of the young (MODY)26. Furthermore, variants in HNF1A (in particular rs7310409) 

and HNF4A were identified as risk factors for pancreatic cancer in pathway-based and 

candidate-SNP-based analyses of the PanScan data27,28.
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We also identified significant association for two variants in high LD (rs9854771 and 

rs1515496, r2=0.99) located in an intron of TP63 on 3q29 (Fig. 4b). p63 is a p53 homologue 

implicated in tumorigenesis and metastasis29 by playing a role in cell-cycle arrest and 

apoptosis. Overexpression of p63 can mimic p53 activation in certain experimental 

models30. Interestingly, different isoforms of p63 have opposing effects; TAp63 has tumor 

suppressive effects while DNp63 has oncogenic effects31. Danilov and colleagues suggested 

DNp63α was the predominant isoform in pancreatic cancer cell lines and promoted 

pancreatic cancer growth, motility and invasion32. Previous GWAS studies of lung cancer 

and bladder cancer have demonstrated significant evidence of association for SNPs in 

TP6333–37. HaploReg query of this region showed that both are predicted to be conserved 

elements via GERP, suggesting functional roles.

Our analysis revealed genome-wide significance in a region on 2p13.3 (rs1486134). A 

pancreatic cancer GWAS in Han Chinese subjects12 found suggestive evidence for another 

SNP on 2p13.3 (rs2035565) (Supplementary Table 3). High LD is present throughout this 

region (Fig. 4c), including strong LD between rs1486134 and rs2035565 in European and 

Asian populations based on 1000 Genomes15 samples (r2=0.91 and r2=0.90 respectively). 

This region includes the gene ETAA1 (Ewing tumor-associated antigen 1), alias ETAA16, 

that may function as a tumor-specific cell surface antigen in the Ewing’s family of tumors38.

We observed significant association on 7p13 for rs17688601, located in an intron of the 

SUGCT (succinyl-CoA:glutarate-CoA transferase) gene (alias c7orf10) (Fig. 4d). This 

variant is predicted in HaploREGV2 to alter binding of HNF1-4 and other DNA binding 

proteins19. The SUGCT protein is involved in glutarate metabolism and mutations in this 

gene are associated with glutaric aciduria39. While there is evidence of altered tricarboxylic 

acid cycle metabolism in pancreatic cancer40, the role of this gene in pancreatic cancer risk 

is unclear.

Combined Stage 1 and Stage 2 identified suggestive evidence of association (P<1×10−6) in 

four regions: 12q24.31(HNF1A) (Supplementary Fig. 3a), 18q21.2(GRP) (Supplementary 

Fig. 3b), 1p13.1(5′ of WNT2B) (Supplementary Fig. 3c), and 20q13.11 (Supplementary Fig. 

3d). GRP (gastrin releasing peptide) production has been associated with pancreatic tumor 

growth in vitro41. WNT signaling plays an important role in pancreas development. WNT2B 

(Wingless-Type MMTV Integration Site Family, Member 2B) is overexpressed in 

pancreatic cancer and has been associated with decreased survival42. The 20q13.11 variant 

is located ~20kb of the HNF4A (MODY) gene, mutations of which are associated with 

early-onset diabetes43.

In the PanC4 study we observed 11 SNPs on chromosome 9q31.3 (Supplementary Fig. 3e) 

in moderate to high LD (r2 values between 0.6 and 1) with p-values from 7.00×10−8 to 

2.73×10−6, including rs10991043 (OR=1.19, 95%CI:1.12–1.26, P=7.00×10−8) nearby the 

SMC2 (structural maintenance of chromosome 2) gene. This gene plays an important role in 

DNA repair in humans. While there was no evidence of association in the other study 

populations examined, the strong signal across multiple SNPs in PanC4 suggest that this 

region merits further investigation.
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Further functional characterization of these associated regions is needed, including 

examining if these SNPs are functional through eQTL. Performing eQTL analysis of 

pancreatic tissues is challenging. Normal pancreatic tissue is primarily comprised of acinar 

cells (>90%), but pancreatic ductal adenocarcinoma has a ductal phenotype, and the 

appropriate normal tissue to analyze is debatable because the cell of origin of pancreatic 

ductal adenocarcinomas is debated. eQTL analysis of pancreatic tumor tissue is also 

problematic because the tumor tissue of a pancreatic ductal adenocarcinomas contains a 

variable mixture of cell types including fibroblasts, multiple types of immune cells, non-

neoplastic pancreatic cells and cancer cells, with cancer cells representing only a minority of 

the total cell population. Furthermore, gene expression analysis of normal pancreatic tissue 

is often limited by the RNA degradation associated with high level RNAase expression in 

pancreatic acinar cells. An ideal study of pancreatic eQTLs for pancreatic cells would take 

into account these challenges.

Smoking is a well-established risk factor for pancreatic cancer44–47. For all nine SNPs 

identified in Table 1 and Supplementary Table 7, we conducted an analysis stratified by 

smoking status (ever smoker vs. never smoker) in PanC4 samples. No qualitative differences 

in effect size between current smokers and never smokers were observed (results not 

shown). Furthermore, when we included an interaction term in the model, this term was not 

significant at the 0.05 level.

We estimated the heritability of pancreatic cancer due to common GWAS SNPs using data 

from PanC4 samples of Caucasian ancestry using only directly genotyped SNPs(3,828 cases, 

3,551 controls and 620,357 SNPs) as well as the combined dataset (7,032 cases 6,866 

controls 268,681 SNPs). Using a disease prevalence of 0.0149, reflecting the lifetime risk of 

pancreatic cancer, we estimated that 16.4% (95%CI: 10.4%–22.4%) in PanC4 and 13.1% 

(95%CI 9.9%–16.3%) for the combined dataset of the total phenotypic variation was 

explained by genome-wide common SNPs. The established associated regions (loci in Table 

1 and Supplemental Table 3), accounted for 3.0% (95%CI: 2.0%-3.9%) and 2.1%(95%CI 

1.7%-3.1%) of the total phenotypic variation in the Panc4 population and the combined 

dataset, respectively.

We identified several novel regions involved in pancreatic cancer susceptibility, and 

provided additional evidence to support many of the established associations. While it is of 

interest that many of these highly associated variants are located in the introns of genes, 

these associations could be due to more distant genomic effects. Follow-up studies, 

including functional studies, are needed to fully understand how these variants (either 

directly or indirectly) impact risk of pancreatic cancer. Our work highlights the importance 

of common variation in pancreatic cancer risk.

Online Methods

Stage 1 Methods

PanC4 Quality Control—In total, 8052 individuals were selected for genotyping from 

studies participating in the Pancreatic Cancer Case-Control Consortium (PanC4). 

Participating sites included: The Central Europe study coordinated by the International 
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Agency for Research on Cancer (IARC/Central Europe)48, Johns Hopkins Hospital49,50, 

Mayo Clinic51, MD Anderson Cancer Center52, Memorial Sloane-Kettering Cancer 

Center53, University of Toronto54, Queensland55, University of California San Francisco 

(UCSF)56, and Yale University57 (Supplementary Table 1). Cases were defined as 

individuals with adenocarcinoma of the pancreas. DNA samples from these individuals from 

PanC4, 180 study duplicates, 176 HapMap control samples, and 26 replicates from the 

previous pancreatic cancer GWAS PanScan 210, were genotyped on the 

IlluminaHumanOmniExpressExome-8v1 array at the Johns Hopkins Center for Inherited 

Disease Research (CIDR). Genotypes were called using GenomeStudio version 2011.1, 

Genotyping Module 1.9.4 and GenTrain version 1.0.

Genotyping results were inspected for quality by assessing the missing call rate, allelic 

imbalance, heterozygosity, discordance in reported versus genotyped gender, relatedness, 

ancestry and chromosomal anomalies. Unexpected relatedness between pairs of samples was 

assessed using the method of moments58 implemented in SNPRelate59. The median 

genotype call rate was 99.9%, with all individuals having a call rate greater than 98%. After 

removing individuals with excessive allele sharing, duplicates and subjects with incomplete 

information on age, 7,956 subjects (4,164 cases and 3,792 controls) were available for 

statistical analyses (Supplementary Table 2). SNPs with the following characteristics were 

excluded from statistical analyses: positional duplicates, more than two discordant calls in 

study duplicates, technical failures or missing call rate greater than 2%, more than one 

Mendelian error in HapMap control trios, Hardy-Weinberg equilibrium p-value<10−6, sex 

difference in allele frequency greater than 0.2 for autosomes/XY in samples of European 

ancestry, and minor allele frequencies (MAF) less than 0.005. Overall 654,470 SNPs passed 

the quality control filters applied; the median missing call rate was 0.024% and 98% of 

SNPs had a missing call rate less than 1% (Supplementary Table 2).

PanScan 1 and PanScan 2 Quality Control—PanScan 1 and PanScan 2 data were 

obtained from dbGAP60,61 (dbGaP study accession: phs000206.v4.p3). Data from all 

participating sites apart from Group Health (which required a separate data sharing 

agreement) were included in the analysis. Previously published PanScan 19 and PanScan 210 

studies used the Illumina HumanHap550 and Illumina Human 610-Quad chips respectively. 

Quality control was performed as described above for PanC4. Forty-five unexpected 

duplicates between PanScan 1, PanScan 2, and PanC4 were identified and removed from 

analyses of the PanScan datasets. After data cleaning, 528,179 SNPs and 3,746 individuals 

(1,856 cases, 1,890 controls) remained in PanScan 1, and 557,555 SNPs and 3,300 

individuals (1,618 cases and 1,682 controls) remained in PanScan 2 (See Supplementary 

Table 4).

Association Analysis—To investigate population structure, principal components 

analysis (PCA) was conducted separately for PanC4, PanScan 1 and PanScan 2 using 

SNPRelate59 (Supplementary Fig. 4). Genotype imputation was performed separately for 

PanScan 1, PanScan 2 and PanC4 using IMPUTE v214. Since PanScan 1 and PanScan 2 

SNPs were originally mapped using an older genome assembly (NCBI build 36), we 

converted their genome position to genome assembly NCBI build 37 by using LIFTOVER. 
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Markers not identified in the build 37 assembly were removed. To decrease computational 

time, we pre-phased genotypes to produce best-guess haplotypes using SHAPEIT v2 

software62. Both 1000 Genomes15 Phase I-integrated haplotypes (release Dec 2013) and 

HapMap316 (release #2,2009) were used as reference panels during imputation.

After imputation, SNPs with quality scores < 0.3 were excluded from all subsequent 

analysis. Only SNPs directly genotyped in either PanC4, PanScan 1, or PanScan 2 and 

passing quality control filters were retained for analysis. This resulted in 866,891 SNPs in 

the Combined Stage 1 analysis. The expected genotype counts were then analyzed using the 

frequentist test option of SNPTEST63. Decade of age and eigenvectors from PCA were 

included as covariates. The number of eigenvectors to include was chosen based on 

inspection of the scree plot and p-values from association between eigenvectors and 

pancreatic cancer status. The results from each study were then combined using a fixed-

effects inverse standard error approach implemented by METAL17 (see Supplementary 

Table 5, column ‘Combined Stage 1’). Test statistic inflation (λ), was estimated to be 1.025 

for PanC4, 0.998 for PanScan 1, and 1.017 for PanScan 2. Test statistics for PanC4 and 

PanScan 2 were adjusted to account for small amounts of population stratification using 

METAL’s genomic control option. Our sample size gives us over 80% power to detect an 

odds ratio of 1.2 for SNPs with a minor allele frequency greater than 0.20. Manhattan and 

QQ plots of PanC4 GWAS are shown in Fig. 2 and Supplementary Fig. 1, respectively. 

Manhattan and QQ plots showing association results from the Combined Stage 1 analysis 

are shown in Fig. 3 and Supplementary Fig. 2. To examine whether our association results 

were confounded by population stratification, we conducted a secondary analysis, restricting 

our samples to those of European ancestry based on a PCA analysis performed with PanC4 

and Hapmap3 samples. The loci identified through association testing did not change, and 

their odds ratios and p-values did not vary significantly (results not shown).

Stage 2 Methods

PANDoRA Replication Study—Twenty-five SNPs from 23 independent regions 

identified as showing evidence of association (P<1×10−5) in either the PanC4 analysis or the 

Combined Stage 1 analysis, were genotyped in samples from the PANcreatic Disease 

ReseArch (PANDoRA)18 consortium with TaqMan technology. These samples were drawn 

from case-control studies in six European countries: Czech Republic, Germany, Greece, 

Italy, Lithuania, and Poland. In total, 2497 cases with pancreatic cancer and 4611 controls 

were genotyped. 8% of samples were duplicated and overall concordance was >99%. 

Supplementary Table 6 shows the features of the PANDoRA dataset. Samples missing more 

than 2 SNPs (~15%) or missing covariate information were excluded from analyses. In total, 

2,287 cases and 4,205 controls from the PANDoRA study remained after quality control.

Because PANDoRA is a collection of samples from various centers, we analyzed each 

country separately. Logistic regression models with additive effects of each allele were fit, 

as implemented in PLINK64 (Supplementary Table 5, column ‘PANDoRA’). Two SNPs, 

rs16867971 for Greece and rs10850078 for Lithuania, showed evidence of departure from 

HWE in controls (P<0.001). The SNP violating HWE was not analyzed for that country. A 

final fixed-effects meta-analysis of PanC4, PanScan 1, PanScan 2, and PANDoRA 
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(Combined Stage 1 and 2 analysis) was then conducted using METAL17 on the 25 SNPs 

chosen for inclusion in Stage 2. Results are in Supplementary Table 5, column ‘Combined 

Stage 1&2’. To further interrogate these regions we examined all 1000G imputed SNPs (as 

described above) in regions with significant or suggestive (P<1×10−6) evidence of 

association (Fig. 4 and Supplemental Fig. 3).

In our Combined Stage 1 analysis (Supplementary Table 5, column ‘Combined Stage 1’), 

two SNPs selected for replication were observed to have heterogeneity p-values below 

0.001. When restricting our analysis to individuals of European ancestry, heterogeneity p-

values from the meta-analysis remained virtually unchanged, implying that the heterogeneity 

was not due to population stratification. One SNP, rs16867971, was directly genotyped in 

PanC4 and imputed in PanScan 1 and PanScan 2. We found evidence of association for 

rs16867971 in PanC4, but not in PanScan 1 or PanScan 2 (P>0.05). The second SNP, 

rs6706539, was also directly genotyped in PanC4 and imputed in PanScan 1 and PanScan 2. 

For rs6706539, allele A was associated with increased risk in PanScan 1 and PanScan 2 

(P=0.008 and P=0.04, respectively) but protective in PanC4 (P=3.4×10−6). Upon 

examination of the imputed and non-imputed SNPs adjacent to rs6706539, we found that r2 

values between this SNP and other SNPs within 10kb were low, ranging from 0.05 to 0.18 in 

1000 Genomes CEU samples. It is possible that this low LD made imputation of this SNP 

rather difficult. Additionally, inspection of the alleles coded as reference and alternate 

alleles for this SNP in PanC4 and 1000 Genomes suggests that this oddity is not due to 

differences in strand alignment.

Forest plots of our top hits (Supplemental Fig. 5a–5i) showing the magnitude of odds ratios 

for each study population show that in the majority of the “top” SNPs, those with p-value 

<1×10−6, the direction of the effect was consistent across populations. Additionally, none of 

the top SNPs showed significant heterogeneity (at the 0.05 level) in the Combined Stage 1 

and Stage 2 analysis. However, in many instances the effect size in the PanScan I population 

was smaller than the association observed in PanScan II, PanC4 and PANDoRA. We 

conducted a random effects meta-analysis as well and overall the results were consistent 

with the results observed from the fixed-effect meta-analysis (results not shown).

Heritability Analysis—Heritability analysis was performed using GCTA65 software. This 

analysis estimates the percentage of phenotypic variance explicated by common SNPs. We 

assumed a prevalence of 0.0149 (risk to age 90 in the US Caucasian population; SEER data 

collected in 2009–2011). We excluded individuals not clustering with HapMap16 CEU 

(CEPH- Utah residents with ancestry from northern and western Europe) samples in PCA 

analysis as well as individuals with estimated relationships > 0.05 or missing genotype rate 

>0.01. SNPs with missing rate>0.05, MAF <0.01 and HWE p-value<5×10−4 were also 

excluded. We estimated the overall heritability in the PanC4 study using SNP data, as well 

as the heritability attributed to the 12 regions with significant evidence of association in the 

Caucasian population plus the 6 suggestive regions identified.

HaploReg—HaploReg is a tool used for exploring functional annotations of non-coding 

variants. For each variant and region identified in this study, we used HaploReg to gain 

insight into functional annotations including chromatin state (promoters and enhancers), 
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conserved regions, variant effect on regulatory motifs and protein binding sites. Regions 

were defined by SNPs with r2>0.8 to the associated SNP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of Stage 1 and Stage 2 analyses

Childs et al. Page 15

Nat Genet. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Manhattan plot of PanC4 association analysis. Loci previously associated with pancreatic 

cancer in Caucasians are shown in black, 2p13.3 in blue and novel loci in red.
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Figure 3. 
Manhattan plot of Combined Stage 1 association analysis. Loci previously associated with 

pancreatic cancer in Caucasians are shown in black, 2p13.3 in blue and novel loci in red.
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Figure 4. 
Regional association and linkage disequilibrium (LD) plots for four novel genome-wide 

significant loci: (a) 17q25.1, (b) 3q29, (c) 2p13.3, and (d) 7p13. Association p-values are 

shown for three analyses: PanC4 only (black circles), Combined Stage 1 (PanC4, PanScan 1, 

and PanScan 2) (grey circles), and Combined Stage 1 and 2 (PanC4, PanScan 1, PanScan 2, 

and PANDoRA) (red circles). LD plots are based on 1000 Genomes European samples.
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