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Dear Editor

Schizophrenia (SZ) is a devastating psychiatric disorder hypothesized to be a 

neurodevelopmental condition (1, 2); arising as a consequence of dysregulation of brain 

development (3, 4). WNT signaling is important for neural patterning, proliferation and 

migration, and synapse formation (reviewed by (5)); moreover, converging post-mortem (6, 

7), rodent (8, 9) and pharmacological (10) evidence suggests that WNT signaling may 

contribute to SZ (reviewed by (11, 12)). We utilized human induced pluripotent stem cell 

(hiPSC) derived forebrain patterned neural progenitor cells (NPCs) (13, 14) to investigate 

canonical WNT activity in a pilot cohort of four SZ patients.

Because all research described herein was performed on deidentified human samples 

obtained for broadly consented scientific research by either American Type Culture 

Collection (ATCC) or the Coriell Cell Repository, is was found to be exempt by the Internal 

Review Committee of the Icahn School of Medicine at Mount Sinai. This work was also 

reviewed by the Embryonic Stem Cell Research Oversight Committee at the Icahn School of 

Medicine at Mount Sinai.

We compared global transcription of forebrain hiPSC NPCs from six control and four SZ 

patients by RNAseq (Table 1; GSE63738), cultured as described (13, 14). As previously 

reported, hiPSC forebrain NPCs differentiate to a mixed neuronal population of 
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glutamatergic and GABAergic neurons; there was no difference in the ability of control or 

SZ hiPSC NPCs to generate βIII-TUBULIN-positive neurons (14) and neither 

transcriptional nor immunohistochemical characterization revealed any diagnosis-dependent 

differences in the regional patterning of forebrain NPCs (13). Multi-dimensional scaling 

(MDS) resolved most SZ and control hiPSC NPC samples (Fig. 1A); 848 genes were 

significantly differentially expressed (FDR<0.05) (SI Table 1), as illustrated by a heat map 

(Fig. 1C) and a volcano plot (Fig. 1D). The differentially expressed genes in SZ hiPSC 

NPCs were significantly 3.6-fold enriched when compared to WNT target genes (p < 

10e-20) predicted by standard Classification and Regression Tree (CART) methods (16). 

The differentially expressed genes (FDR < 0.05) were submitted to DAVID (http://

david.abcc.ncifcrf.gov), which identified several significantly enriched pathways (Fig. 1B; 

Tables 2–3), including the WNT signaling pathway: 17.3-fold enrichment (p < 10e-13; FDR 

< 10e-11). The perturbed WNT genes are marked by red stars in the WNT signaling 

pathway diagram (Fig. 1E; Table 2). 6/6 differentially expressed WNT genes identified by 

RNAseq were confirmed when tested by qPCR (Fig. 1F; Table 2).

We investigated canonical WNT activity using the well-established T-cell factor (TCF) / 

Lymphoid enhancer-binding factor (LEF) (TOPFlash) assay, in which transcriptional 

activation of TCF/LEF binding sites drives expression of a luciferase reporter (17, 18). 

NPCs were infected 3–7 days prior to analysis with a Lentiviral (LV)-TOPFLASH 

luciferase reporter, generously provided by Karl Willert (UCSD), as well as a constitutive 

LV-renilla reporter for normalization. SZ hiPSC NPCs showed increased canonical WNT 

signaling relative to controls (p<10e-5) (Fig. 2A, Fig. 3), though increased WNT signaling 

was not necessarily present in every patient and significant outliers often skewed results 

(Fig. 3). Across six independent experimental replicates, the following fold-changes in 

canonical WNT signaling we observed: 2.8, 4.2, 3.1, 2.7, 4.7 and 3.3 (Fig. 3). The ultimate 

effector of canonical WNT signaling is β-CATENIN; Western blot analysis for β-CATENIN 

protein (1:10,000; Millipore), normalized to β-ACTIN (1:10,000; Ambion), revealed 

increased β-CATENIN protein levels in SZ hiPSC NPCs (Fig. 2B).

WNT signaling has been implicated in neural migration (19). Following 48 hours of culture 

with either canonical (20ng/ml WNT3A) or non-canonical (5ng/ml WNT7B) WNT signals, 

neither control nor SZ hiPSC forebrain NPCs showed significant changes in radial migration 

(98 total SZ neurospheres were analyzed relative to 56 total control neurospheres) (Fig. 2C); 

increased canonical WNT signaling was not sufficient to recapitulate SZ aberrant migration 

in control hiPSC derived neurospheres (14).

Consistent with evidence suggesting that the WNT pathway could be aberrant in SZ (20), we 

demonstrate that SZ hiPSC forebrain NPCs derived from four patients have perturbations in 

WNT signaling, but caution that i) due to our small sample size, these phenotypes may not 

generalize across all SZ patients and ii) there was substantial variation in the specific SZ 

hiPSC NPC lines with increased WNT signaling between experimental replicates. SZ hiPSC 

NPCs with elevated canonical WNT signaling showed significantly increased experimental 

variation, suggesting that this phenotype might be more accurately reflect an increased 

variability in WNT signaling, perhaps due to increased susceptibility to an extrinsic factor, 

rather than implying a cell-autonomous difference in canonical WNT signaling.
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A question of immediate interest is whether WNT signaling is also perturbed in SZ hiPSC 

neurons, and if so, in which neuronal cell types this is most evident. WNT signaling has 

been implicated in neural patterning, proliferation, differentiation, migration and activity-

dependent synaptic modulation (12, 19, 21–25). Given that WNT signaling is typically 

believed to increase neurogenesis (26), and that we and others have reported reduced 

neuronal connectivity in SZ hiPSC neurons (14, 27), we note that the (increased) direction 

of change in WNT signaling observed in our hiPSC NPCs is potentially surprising, though it 

may reflect an attempt at compensation for neural defects in other pathway(s). Perturbations 

in canonical WNT signaling in SZ hiPSC NPCs foretells a practical confound for future 

hiPSC-based studies of SZ because aberrant canonical WNT signaling might affect the 

specification of SZ hiPSCs to certain neural fates. During neuronal differentiation, active 

WNT signaling is required for the specification of hippocampal (28) and midbrain 

dopaminergic fate (29, 30), while repression of WNT signaling is required for cortical 

interneuron (31, 32) and striatum (33, 34) neuronal patterning; two recent publications have 

reported differing abilities of SZ hiPSCs to differentiate into dopaminergic neurons (27, 35).

Recent rodent-(36), hiPSC-(13, 27, 37, 38) and olfactory neural stem cell-(39) based studies 

of SZ have reported increased oxidative stress and reactive oxygen species. There is a well-

documented cross-talk between redox and WNT/β-catenin signaling (40–44); for example, 

treatment of cells with a low dose of H2O2, induces a rapid stabilization of β-catenin (43), 

while down-regulation of canonical WNT signaling can decrease oxidative stress (45). If 

increased oxidative stress does indeed contribute to perturbed canonical WNT signaling in 

SZ hiPSC NPCs, small variations in tissue culture induced oxidative stress between 

experimental replicates may be one source of the large experimental variation observed 

between SZ patients. Future studies, across larger patient cohorts, will be necessary to 

determine whether aberrant canonical WNT signaling is a causal molecular factor 

contributing to aberrant neural patterning and neuronal maturation in SZ, or simply a non-

cell autonomous consequence of increased oxidative stress (46).
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Fig. 1. RNAseq comparisons of control and SZ hiPSC NPCs
A. Multidimensional scaling (MDS) of RNAseq gene expression of hiPSC NPCs from each 

of six control and four SZ patients segregates samples along the two leading fold change 

dimensions. Gene expression analysis was performed on passage-matched hiPSC forebrain 

NPCs cultured on matrigel. Cells were lysed in RNA BEE (Tel-test, Inc). RNA was 

chloroform extracted and treated with RQ1 RNAse-free DNAse (Promega). RNAseq 

samples were prepared using the Illumina HiSeq 2500 RNA kit for 100nt/single end reads, 

four samples were run per lane. Raw cDNA reads were aligned to the hg19 reference with 

the spliced gap aligner Spliced Transcripts Alignment to a Reference (STAR) software, with 

count-based quantitation carried out via the Subread package featureCounts (http://

bioconductor.org/packages/release/bioc/html/Rsubread.html) at both the geneic and exonic 

levels for UCSC and ensemble annotation builds. B. Pathway enrichment analysis based on 

DAVID. X-axis represents fold enrichment; Y-axis denotes pathways. The FDR are labeled 

on the right of the bar plot. C. Heat map of control and SZ hiPSC NPCs of 848 unique genes 

(FDR<0.05). The count data were normalized and modeled as over-dispersed Poisson data 

using a negative binomial model in the Bioconductor package edgeR (15). Fold changes, p-

values and false discovery rates (FDRs) are obtained from the same package for integrative 

analysis. D. Volcano plots of −log10 p-value versus log2 fold-change mRNA levels for 

control and SZ hiPSC NPCs. Key canonical WNT signaling genes, including Lymphoid 

Enhancer-Binding Factor 1 (LEF1), Dickkopf-1 (DKK1), DKK2, Secreted frizzled-related 

protein-2 (SFRP2), SFRP4, growth differentiation factor 5 (GDF5) and GDF10, are 

indicated. E. Wnt signaling pathway. The differentially expressed genes by RNAseq are 

marked by red stars. F. qPCR validation of perturbed WNT gene expression, normalized to 
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the expression of the housekeeping genes GAPDH and ACTIN: LEF1, DKK1, DKK2, 

SFRP2, SFRP4, and GDF10. Error bars are s.e. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 2. Perturbed WNT signaling in SZ hiPSC forebrain NPCs
A. Comparison of canonical WNT activity (assayed as LV-TOPFLASH reporter levels 

relative to LV-renilla florescence) between control and SZ hiPSC forebrain NPCs, averaged 

by diagnosis. Luciferase levels were determined using the Dual-Glo Luciferase Assay 

System (Promega), measured on a FlexStation 3 (Molecular Devices) and then normalized 

to LV-renilla florescence. B. Increased β-CATENIN protein levels in SZ hiPSC forebrain 

NPCs. Western blot comparison of β-CATENIN and β-ACTIN levels in control and SZ 

hiPSC NPCs. Western blots were repeated twice using independent protein lysates; 

Student’s T tests were used to test statistical differences between control and SZ western 

blot β-CATENIN levels. β-ACTIN was used as a loading control because we have found no 

evidence, by microarray or Nanostring nCounter gene expression assays or SILAC 

quantitative protein mass spectrometry, that it is differentially expressed in SZ hiPSC NPCs 

or neurons (13, 14). C. No effect of WNT on aberrant migration in SZ hiPSC forebrain 

NPCs. Control and SZ neurosphere outgrowth when cultured with PBS, canonical WNT3A 

(20 ng/ml) and noncanonical WNT7B (5 ng/ml). Error bars are s.e. *P < 0.05, **P < 0.01.
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Fig. 3. Experimental variability in assaying WNT signaling in SZ hiPSC forebrain NPCs
A. Six experimental replicates comparing canonical WNT activity (assayed as LV-

TOPFLASH reporter levels relative to LV-renilla florescence) between control and SZ 

hiPSC forebrain NPCs, averaged by diagnosis. With increasing passage, NPC lines can 

show reduced ability to differentiate to neurons or undergo spontaneous transformation to a 

highly proliferative cell with rounded morphology that cannot undergo neural differentiation 

at all; when either event occurred, that NPC line was dropped from subsequent experiments, 

for this reason, not all NPC lines were analysed in independent experiments. B. Six 

experimental replicates comparing canonical WNT activity (assayed as LV-TOPFLASH 

reporter levels relative to LV-renilla florescence) between control and SZ hiPSC forebrain 

NPCs, averaged by individual. (Top row: Mean +/− s.e. Bottom row: Variability chart 

showing individual data points). For phenotypic analysis, statistical analysis was performed 

using JMP (Carey, NC). Box-Cox transformation of raw data was performed to correct non-

normal distribution of the data and means were compared within diagnosis by Oneway 

analysis using both Student’s T test and Tukey Kramer HSD. A nested analysis of values for 

individual patients was performed using standard least squares analysis comparing means 

for all pairs using Student’s T test for specific pairs and Tukey Kramer HSD for multiple 

comparisons. Error bars are s.e. *P < 0.05, **P < 0.01, ***P < 0.001.
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Table 3

Enrichment analysis for BMP signaling, hedgehog signaling or GPCR signaling pathways.

Category Term Fold Enrichment FDR

KEGG_PATHWAY Hedgehog signaling pathway 18.7 0.02

REACTOME_PATHWAY Signaling by BMP 0.7 1.00

REACTOME_PATHWAY Signaling by GPCR 2.1 1.00
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