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Abstract

Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed 

to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic 

features have been recently re-classified with the emergence of the Diagnostic and Statistical 

Manual for Mental Disorders, Fifth Edition (DSM-5), the disorder remains characterized by 

hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative 

cognition and mood. This heterogeneity indicates the presence of multiple neurobiological 

mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning 

the past few decades has revealed several potential avenues for the identification of diagnostic 

biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, 

the hypothalamic-pituitary-adrenal (HPA) axis, metabolic hormonal pathways, inflammatory 

mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an 

update to the literature with regard to the most promising putative PTSD biomarkers with specific 

emphasis on the interaction between neurobiological influences on disease risk and symptom 

progression. Such biomarkers will most likely be identified by multi-dimensional models derived 

from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical 

phenotypes.
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Introduction

Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder that occurs after a 

psychological traumatic life event and increases individual vulnerability to adverse health 

outcomes (1). PTSD is heterogeneous, often presenting across different symptom domains, 

including re-experiencing, avoidance/numbing, and hyper-arousal symptoms (2). While 

extensive work has successfully identified psychological, genomic, and biological risk 

factors that are associated with PTSD in trauma survivors (3–5), the identification of 

discrete diagnostic biomarkers for PTSD remains elusive. The lack of diagnostic biomarkers 

for PTSD is not due to a lack of intensive study, but rather likely due to the complexity of 

PTSD and the complex set of rules by which we classify individuals according to the 5th 

edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), as illustrated 

by the recent description of 636,120 different ways in which an individual can be diagnosed 

with PTSD (6). Furthermore, PTSD is associated with significant mental health (e.g., major 

depression, substance and alcohol abuse, panic disorder, suicide) and general medical (e.g., 

diabetes, cardiovascular disease(7, 8) comorbidities, which can obscure the search for 

diagnostic biomarkers for PTSD. Given that DSM criteria are not based on the underlying 

biology, PTSD research could benefit significantly from the new approach to mental health 

diagnoses using the Research Domain Criteria (RDoC; (9)). One of the tenets of this 

approach is dimensional analyses of neurobiological metrics and symptoms, rather than 

diagnostic classification. The putative biomarkers listed in this review are reflective of the 

extant literature, but can also serve RDoC objectives in future studies by linking PTSD 

symptoms to relevant biological underpinnings.

The vast heterogeneity inherent in PTSD symptom presentation makes it highly unlikely that 

a valid, singular biomarker will be identified for PTSD (10, 11). However, comprehensive 

biological phenotyping of the factors associated with PTSD may yield a parsimonious 

diagnostic model with which to diagnose PTSD in the future. The current review will 

highlight several biomarkers associated with PTSD symptomatology and vulnerability, in 

addition to underscoring how individual factors, such as one’s co-morbid diagnoses and 

gender, must be considered as they can profoundly influence biology and thus influence our 

search for true biomarkers of PTSD. Specifically, we will emphasize monoamine, 

neuroendocrine, inflammatory, genetic, epigenetic, psychophysiologial, neuroanatomical 

and neuroactivational phenotypes associated with PTSD to illustrate the potential efficacy of 

using multi-dimensional phenotypic data to characterize unique profiles of PTSD.

Monoamine Systems in PTSD

PTSD is characterized by increased sympathetic nervous system (SNS) tone that is 

coincident with augmented levels of catecholamine secretion (12). Urinary and central levels 

of norepinephrine (NE) are heightened in individuals with PTSD (13) and in child trauma 

victims (14), and peripheral and central levels of NE in response to threatening stimuli are 

also elevated in PTSD (15, 16). Recent evidence suggests that this increase in NE in PTSD 

is due to attenuated levels of the NE transporter within the brainstem locus coeruleus (17). 

PTSD has also been associated with decreased expression of peripheral α2-adrenergic 

receptors; receptors that underlie an autoreceptor-driven mechanism that serves to inhibit 
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synaptic transmitter release (18). Further, facilitation of NE release via blockade of pre-

synaptic α2-adrenergic receptors with the antagonist, yohimbine, can produce panic attacks 

and an increase in anxiety- and trauma-related symptoms in individuals with PTSD (19, 20). 

A prospective study of motor vehicle accident survivors indicates that urinary levels of NE 

were associated with increased development of PTSD one-month following trauma, but only 

in men (21), indicating that gender may be important for characterizing catecholaminergic 

biomakers of PTSD. Increased catecholamines, however, are also coincident with panic 

attacks and other fear-related psychopathology (22), indicating that increased sympathetic 

activation is not a specific biomarker of PTSD, but rather of a common neurobiological 

feature of fear- and anxiety-related disorders.

Alterations in the serotonergic system have also been implicated in the pathophysiology of 

PTSD. Individuals with PTSD show decreased levels of paroxetine binding, suggesting that 

levels of the serotonin (5-HT) transporter (5-HTT) are attenuated in PTSD (23) and involved 

in the manifestation of arousal and avoidance symptoms (24). Empirical evidence has shown 

that 5-HTT expression within the amygdala is attenuated in PTSD, and is significantly 

associated with higher anxiety and depressive symptoms (25). Brainstem and forebrain 

levels of the 5-HT1A receptor are higher in individuals with PTSD (26), similar to what has 

been described in depression (27). Likewise, reductions in central 5-HT1B receptors in 

trauma-exposed individuals are associated with increased PTSD and depression symptoms 

(25). Taken together, these data indicate that alterations within serotonergic system could 

reveal putative biomarkers for depressive symptoms common to both PTSD and major 

depression (26). The effectiveness of selective serotonin reuptake inhibitors (SSRIs; e.g., 

sertraline) for reducing the symptoms of PTSD (28–30), major depression, and other 

psychiatric conditions with which PTSD is highly comorbid (2, 22), further suggest that 

more careful examination of serotonergic phenotypes is warranted to better disentangle the 

specificity of biomarkers for PTSD- and depression-specific phenotypes.

One way in which to elucidate the specificity of monoaminergic biomarkers on PTSD 

symptomology is to concurrently characterize sympathetic and serotonergic function within 

the same individuals. Using a repeated-measures design, Southwick and colleagues (1997) 

found that both yohimbine and meta-Chlorophenylpiperazine (m-CPP) treatment increased 

panic attacks, anxiety, and trauma-related symptoms in veterans diagnosed with PTSD (20) 

in a manner that suggested at least two different biological sub-types of PTSD; thus, 

underscoring the need for more robust phenotyping of biological factors including the 

monoaminergic transmitter systems.

Neuroendocrine Biomarkers of PTSD

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is present in PTSD and has 

been extensively characterized (Figure 1; for review see (31). Evidence suggests that 

individuals with PTSD have attenuated levels of basal cortisol (31) and that a low level of 

cortisol in trauma survivors is associated with increased risk for subsequent development of 

PTSD (32, 33). However, findings on baseline cortisol levels have been mixed, and a recent 

meta-analysis concluded that there are no consistent differences between PTSD and controls 

(34). Similarly, equivocal results exist surrounding the cortisol response to acute cognitive 
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stressors, as reports show heightened or no differences in cortisolresponse to a stressor (35, 

36). In part, these discordant HPA results appear to be due to different sampling methods, 

the diurnal rhythm of cortisol release, and confounding analyses that have disregarded the 

influence of sex on HPA activity (37).

Rather than focus on baseline cortisol, a more promising approach is to measure cortisol 

reactivity to a challenge. Blunted cortisol reactivity to acute stress exposure is associated 

with increased prospective risk for PTSD (38). Low cortisol levels in PTSD have been 

coupled to enhanced glucocorticoid negative feedback inhibition of the HPA axis as 

evidenced by increased suppression of cortisol levels following a dexamethasone 

suppression test (39). This enhanced HPA negative feedback in PTSD is coincident with: (1) 

augmented levels of peripheral and central corticotropin-releasing hormone (CRH) (40, 41), 

(2) elevated glucocorticoid receptor (GR) levels (42), (3) increased glucocorticoid sensitivity 

(43), and (4) decreased levels of FKBP5 (44), a co-chaperone of GR that inhibits ligand 

binding and nuclear translocation of GRs. A recent prospective study indicates that 

augmented baseline GR levels and diminished FKBP5 mRNA levels are associated with 

increased risk for PTSD symptoms following trauma (45).

While extensive work has alluded to HPA-based biomarkers of PTSD, it is clear that 

additional neuroendocrine factors influence PTSD vulnerability and symptomology (Table 

1; Figure 1). For example, menstrual cycle phase (46, 47) and pregnancy (48) influence 

PTSD symptom expression profile and psychophysiology in women, suggesting that ovarian 

steroid hormones are important modulators of PTSD susceptibility and symptom 

presentation. Indeed, low levels of estradiol are associated with impaired fear extinction in 

PTSD (49), and high levels of pituitary adenylate cyclase-activating polypeptide (PACAP), 

a peptide implicated in stress-related behavior and physiology (50–52), are associated with 

PTSD only in women (53). Furthermore, central levels of the anxiolytic neuroactive steroid 

allopregnanolone, a potent modulator of GABAergic inhibition, are decreased in women 

with PTSD (54). Low levels of testosterone in men, on the other hand, have prospectively 

been associated with increased rates of PTSD (55) and increased risk for PTSD (56). These 

data, along with epidemiological studies strongly suggesting that female sex is a risk factor 

for psychopathology (including PTSD; (57) and reinforce the need to better understand the 

influence of gonadal steroid hormones in men and women with PTSD.

An additional avenue of exploration with regard to PTSD and putative biomarkers is the 

expression and regulation of metabolic hormones in individuals with PTSD. Neuropeptide Y 

(NPY) is an orexigenic peptide neurotransmitter (58) that also shows anxiolytic properties 

via antagonism of CRH and noradrenergic systems (59). Trauma exposure (60) and PTSD 

(59) are associated with attenuated peripheral levels of NPY and, conversely, resilience to 

trauma is associated with increased NPY levels (61). Ghrelin, an orexigenic peptide secreted 

from the stomach (58), displays fear-enhancing effects in rodents (62) and could serve as a 

biomarker of trauma exposure and PTSD. More recently, individuals with PTSD have 

shown a hyperinsulinemic response to an oral glucose challenge (63). Finally, peripheral 

endocannabinoid levels (64) are reduced and central cannabinoid CB1 receptors (65) are 

increased in PTSD.
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In summary, it is clear that significant progress has been made in identifying and 

characterizing PTSD-related neuroendocrine perturbations. However, the majority of these 

neuroendocrine factors have been studied in isolation in traumatized populations exhibiting 

PTSD signs and symptoms and, as such, it is important to characterize multi-level 

neuroendocrine profiles of PTSD accounting for parallel trauma-related 

neuroendocrinological changes, their interaction, and the relationship to stress exposure or 

resilience. For example, increases in dehydroepiandrosterone (DHEA) and DHEA-sulfate 

(DHEAS) have been linked to PTSD symptom expression, but are also associated with 

decreased levels of affective symptoms and PTSD severity (66, 67). Thus, it has been 

suggested that the ratio of these adrenal hormones to cortisol might be important for 

resilience to stress and recovery from PTSD (68, 69). Furthermore, elucidating the complex 

interaction of neuroendocrine factors (i.e. allopregnanlone/estradiol/NPY effects on cortisol) 

on the regulation of the HPA axis will likely expand our ability to further describe PTSD-

specific and may prove beneficial in characterizing biological sub-profiles of PTSD (Figure 

1). For instance, avoidance symptoms in male veterans with PTSD (70) may be related to 

arginine vasopressin (AVP) levels, and as such, may serve as a biomarker for increased 

aggression in men with PTSD (71).

Biomarkers of Heightened Inflammation in PTSD

The high comorbidity between PTSD, physical illness (7), and inflammation (spanning 

cardiovascular (72) and metabolic disease; (73) has led to investigations of the relationship 

between inflammatory markers and PTSD symptomology (Table 2). Pro-inflammatory 

cytokines (i.e. proteins), including interleukin (IL)-6 (74), IL-1β (75), and IL-2 (76) are 

elevated in individuals with PTSD and peripheral levels of inflammatory markers correlate 

positively with PTSD symptomology (Figure 1) (77). C-reactive protein (CRP) levels are 

also elevated in individuals with PTSD (78–80). More specifically, increased CRP levels 

have been reported with exacerbated PTSD symptoms and impaired inhibition of fear-

potentiated startle (FPS) in the presence of a safety signal (79); a psychophysiological 

biomarker for PTSD described in a later section of this review (81).

In addition, individuals with PTSD also show altered immune cell sensitivity to 

glucocorticoids that results in increased inflammation (82). Lysozyme enzyme activity is 

more sensitive to dexamethasone in PTSD (43), indicating that innate immune efficiency is 

higher in individuals with PTSD. Enhanced monocyte sensitivity to glucocorticoids in 

individuals with PTSD is also coincident with hypocortisolemia and can lead to increased 

cytokine production (83). The transcriptional factor, nuclear factor-κB (NF-κB), lays 

upstream of cytokine activation (84) and is activated by exposure to psychosocial stress (85) 

as well as noradrenergic activity (85), and thus may be critically sensitive to immune 

changes following trauma exposure. Individuals with PTSD show augmented NF-κB gene 

expression (86) and NF-κB activity (87).

Overall, the cross-sectional data linking PTSD to a pro-inflammatory state further support 

the notion that PTSD is associated with chronic inflammation (Table 2), and suggest that 

inflammation may serve as a possible therapeutic target for alleviating PTSD symptoms. 

However, increased inflammation is a hallmark of depression (88) and other adverse health 
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outcomes that are comorbid with PTSD (7, 72, 73, 89), thus complicating the view that 

immune factors may serve as diagnostic biomarkers for PTSD specifically. This point is 

further highlighted by other reports that have described no differences, or decreases in pro-

inflammatory markers, such as CRP, in individuals with PTSD (90–92). Factors such as 

gender should also be considered in our examination of immunological biomarkers, as there 

are clear sex differences in immune system function and risk for infection (93). Finally, it is 

still unclear whether increased inflammation is a consequence of trauma exposure and 

PTSD, or whether a baseline pro-inflammatory state increases individual vulnerability to 

PTSD after trauma exposure. As such, baseline inflammation may serve as biomarker of 

PTSD vulnerability, as recent evidence from a prospective study indicates that pre-

deployment levels of CRP significantly predict post-deployment PTSD (94).

Genetic and epigenetic biomarkers of PTSD

Genetic loci within genes critical for the neuroendocrine regulation of the HPA axis and 

emotional behavior have been associated with increased risk for PTSD (see review (5). 

However, these genetic loci have been associated with other psychiatric conditions as well, 

indicating that these genetic polymorphisms are not specific to PTSD, but rather may serve 

as biomarkers for stress-induced psychopathology in general or common underlying 

symptoms. There are several recent genomic reviews of PTSD (e.g., (95)) and the disorders 

with which it is co-morbid and, as such, will not be discussed at length in the current review. 

We will simply note that the emerging genetic and epigenetic findings related to PTSD risk 

versus resilience have focused on modulators of HPA axis function (prior to and following 

trauma - e.g., FKBP5; PACAP.

Psychophysiological biomarkers of PTSD

Hyperarousal symptoms, which include some of the longstanding, hallmark symptoms of 

PTSD, can be strongly influenced by an individual’s autonomic response following trauma; 

the output of the autonomic nervous system can be indexed non-invasively via 

psychophysiological assessments of peripheral targets, such as heart rate (HR), blood 

pressure (BP), skin conductance (SC), respiration rate (RR), muscle contractions using 

electromyography (EMG; e.g., startle), and body temperature. However, the use of these 

psychophysiological measures as biomarkers of PTSD may rely heavily on the timing and 

context in which they are collected. For instance, while some reports indicate that HR in the 

immediate aftermath of trauma exposure is predictive of later PTSD development (96), 

others suggest this is not the case (97, 98). These equivocal findings suggest that a more 

robust and controlled measurement of psychophysiological data may be necessary (99). 

Indeed, HR and SC changes in response to a challenge have been repeatedly associated with 

a diagnosis of PTSD (100–104).

Exaggerated startle response, a hyperarousal symptom that remains central to DSM-based 

PTSD diagnosis, is readily assessed by psychophysiology. Increased HR (SC and EMG less 

so) reactivity to startling loud tones has been found to reliably differentiate PTSD from Non-

PTSD (105). Heightened HR reactivity to loud tones does not appear to be pre-existing, but 

rather is acquired with the development of PTSD (106, 107). Whereas heightened HR 

reactivity to loud tones appears to be an acquired marker, there is accumulating evidence 
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that heightened SC reactivity to loud tones is a pre-trauma risk marker for posttraumatic 

stress (108, 109). Exaggerated arousal can manifest as sleep disturbances, which are 

frequently observed in PTSD (110, 111); however the diagnostic specificity of these 

disturbances are not yet understood.

In order to examine further explore hyper-reactivity following trauma, Pitman and 

colleagues (112) modified an imagery procedure originally developed to study phobias 

(113). In this method, psychophysiological data are recorded from participants while 

listening to a script of their actual traumatic event. This method has been used with 

divergent PTSD populations, including several combat populations (114–116) and a heavily 

traumatized civilian population (117). In all trauma survivors, PTSD patients exhibit a 

stronger HR and SC response to scripts than non-PTSD trauma survivors. In studies using 

script-driven imagery, SC was found to be the most sensitive measure of hyperarousal in 

PTSD. In 1998, Keane and colleagues (101) published the results of the largest study (multi-

site VA Cooperative Study with Vietnam veterans) to date examining the utility of 

psychophysiological measures in diagnosing PTSD. The study employed script-driven 

imagery coupled to psychophysiological recordings. While this study did not find a perfect 

correlation between interview-based PTSD diagnosis and psychophysiological reactivity, 

they concluded that psychophysiological data did provide useful and objective assessment of 

the disorder. Recent re-analyses of script-driven imagery data collected in the 1990s have 

shown high specificity for PTSD (i.e., 90% of individuals without PTSD classified 

correctly) (102), and high concordance with subjective distress (118), but sensitivity to 

PTSD diagnosis remained at approximately 60% (102). Simply talking about 

autobiographical trauma appears to have similar effects as script-driven imagery in 

increasing physiological arousal (118). These methods are currently being standardized as 

common data elements, in order to promote generation of large datasets using the same 

approach. Technological advances have afforded the opportunity to employ physiological 

indices that can be easily obtained in most clinical settings and may prove beneficial in the 

diagnosis and treatment evaluation of PTSD. A recent application of these methods using 

virtual reality techniques to provide immersive trauma-related imagery during recording of 

psychophysiological responses showed utility of this approach in tracking treatment 

outcomes (119).

The findings described previously support the notion that the etiology and maintenance of 

the fear-related symptoms of PTSD can be characterized according to the principles of fear 

conditioning (120, 121). Given the richness of the translational literature, the neural 

underpinnings of fear conditioning are well understood, and PTSD research can capitalize 

on these findings (122). Fear conditioning is based on a simple Pavlovian conditioning 

model in which a neutral conditioned stimulus (CS, for example, a light) is paired with an 

aversive unconditioned stimulus (US, for example, electric shock). After a number of 

pairings, an association is formed such that the CS alone elicits a conditioned response (CR, 

for example, a fear response). Following initial acquisition, conditioned fear is subject to 

consolidation, extinction, and reconsolidation, all of which may be disturbed in PTSD (123–

125). Fear conditioned responses can be measured with peripheral outcomes such as SC 

(123) or EMG startle responses (81). These psychophysiological measures can be used to 

index both the increase in fear during conditioning, as well as the reduction of fear during 
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extinction, or the repeated presentation of the CS without the US. In addition, these 

measures can be used in differential conditioning studies using a CS+ cue predicting danger 

(US), and a CS− predicting safety from the US; these have shown that PTSD, but not 

depression, is associated with a reduced ability to inhibit fear-potentiated startle responses to 

safety signals (81). Similarly, retention of the extinction memory has been tested using SC 

24 hours after fear extinction, and PTSD subjects have exhibited reduced levels of extinction 

recall (125). Taken together, these studies indicate the fear responses to traumatic memories 

may be serve as biomarkers specific for dysregulated fear in PTSD.

Neuroanatomical and neuroactivational biomarkers of PTSD

Neuroimaging data gathered during the last decade demonstrate that PTSD is associated 

with greater amygdala activation compared to controls (126). Functional magnetic resonance 

imaging (fMRI) studies have shown that trauma-relevant words increase amygdala 

activation in PTSD subjects more than in controls (127–130). Exaggerated fear responses 

observed in PTSD may be due to a weakened inhibitory control of the amygdala by the 

medial prefrontal cortex (mPFC). A large number of imaging studies have indicated that this 

inhibitory neurocircuit is dysregulated in patients with PTSD (126, 128, 130). A recent 

meta-analysis of imaging studies during emotion processing in PTSD, social anxiety, and 

specific phobia indicated that the rostral anterior cingulate cortex (ACC) is less active in 

PTSD patients relative to controls; an effect not found in other anxiety disorders (131).

Neuroimaging studies using fear conditioning paradigms demonstrate that fear acquisition 

and extinction of fear activate the prefrontal cortex (PFC), specifically the ventromedial 

(vmPFC) (132). For example, activation of the vmPFC (which includes the rostral ACC; 

rACC) is decreased in PTSD patients during an extinction recall in fMRI task (133). The 

vmPFC also differs in shape and size in PTSD patients (134). To date, one of the most 

replicated neuroanatomical findings in PTSD has been reduced hippocampal volume (135, 

136). Early studies of twins discordant for trauma exposure suggested that smaller 

hippocampal volume likely confers individual vulnerability to PTSD(137), however, a 

recent prospective study found that hippocampal reductions were acquired with trauma 

exposure (136). Finally, methods using higher resolution imaging techniques have indicated 

that reductions in specific subregions of the hippocampus, such as the cornu ammonis 3 

(CA3) and dentate gyrus, are associated with PTSD symptoms (138). Studies of neural 

activation have used several fMRI paradigms to activate the mPFC; the simplest and most 

commonly used tasks involve response inhibition. In such tasks, the participant is presented 

with a stimulus indicating that a response is required, for example, to press a button when a 

letter appears on the monitor. This is referred to as a “Go” signal. On a minority of trials, 

however, the participant is required to withhold a response during a “NoGo” signal (the Go/

NoGo task). The Go/NoGo task has been used in subjects with PTSD with functional 

magnetic resonance imaging (fMRI) and it reliably indicates decreased activation in the 

rostral vmPFC and rACC in PTSD subjects compared to controls (139, 140). Weakened 

mPFC control of the amygdala may be a risk factor for trauma-related psychopathology: a 

recent study of children with depressed parents found a lack of ACC activation to the 

emotional Stroop, using both fear-relevant words depicting physical threat as well as social 

threat (141).
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Summary and Conclusions

To date, an array of putative biomarkers associated with PTSD risk and symptom 

progression have been identified across distinct biological domains, including, but not 

limited to, alterations and differences in monoaminergic systems, neuroendocrinology, 

inflammation, genomics, psychophysiology, and neuroanatomy. However, the heterogeneity 

inherent in PTSD symptom presentation, and the common comorbidity with other 

psychiatric and general medical conditions represent formidable obstacles in the 

identification of valid biomarkers specifically for PTSD when considered as a diagnostic 

categorization (10, 11). Indeed, the likelihood of characterizing one biological marker 

associated with the suggested 636,120 different ways in which an individual can present 

with PTSD (6) is vanishingly small. Rather, it is more prudent that future studies develop a 

cross-dimensional, comprehensive biological and psychological phenotypic profile in 

individuals with PTSD to: (1) characterize biomarkers for specific clusters of symptoms 

and/or (2) uncover divergent biological profiles of PTSD using more complex statistical 

techniques (142). In order to be compatible with the RDoC approach, biomarkers should be 

dimensional as well as transdiagnostic—in effect, not biomarkers specific to PTSD as a 

DSM disorder, but biomarkers of features associated with PTSD. For example, 

physiological measures of fear responses would be relevant to other fear-related disorders 

such as phobias in addition to PTSD. Similarly, deficient prefrontal activity could be 

associated with PTSD symptoms, as well as addiction, and could clarify common bases for 

comorbid disorders.

In order to begin collecting comprehensive phenotypes necessary for such analyses, the 

importance of studying the interaction between biological factors (e.g., cellular, molecular, 

genetic, neurotransmitter, endocrine; Figure 1) needs to be emphasized; most notably as they 

relate to physiology and behaviors underlying complex biological phenotypes within PTSD. 

It is important to note that biology is dynamic. Thus, it is critical for the field to understand 

that biomarkers might be relevant at one time point (HR immediately following trauma 

exposure) and not at another (143). Lastly, the implications of characterizing diagnostic 

biomarkers for PTSD must be carefully considered to ensure that the benefits outweigh the 

costs (144).

In summary, the available biological and translational data point to promising new horizons 

for diagnostic biomarkers of PTSD symptoms. It is most likely that such biomarkers will 

represent a panel of several measures that will combine molecular with behavioral and 

clinical information to increase specificity and sensitivity of these tools.
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Figure 1. 
A summary of key biomarkers that are associated with PTSD, highlighting the interactions 

between different biological systems that influence and complicate biological phenotypes 

within PTSD. Gonadal steroid hormones and the HPA axis modulate neurotransmitter and 

neuropeptide systems (146), influence amygdala activity (147, 148), and influence 

inflammatory responses (93). HPA activity, via cortisol and CRH, alters sensitivity to 

gonadal hormones (149). Inflammation alters HPA activity and has adverse effects on 

cardiovascular function (150). Taken together, these data indicate that as a field we must 

begin to study these physiological systems in concert with one another to begin to 

characterize comprehensive biological phenotypes of PTSD.
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Table 1

Neuroendocrine biological factors associated with PTSD.

Neuroendocrine Biomarkers Relationship to PTSD References

HPA-Axis

 Glucocorticoid negative feedback Augmented in PTSD (39)

 Baseline cortisol Attenuated in PTSD (31), (32)

 Acute cortisol following trauma Lower levels increase risk for PTSD (33, 38)

 Pituitary adenylate cyclase-activating polypeptide (PACAP) Increased in women with PTSD (53)

Steroid Hormones

 Estradiol Reduced levels increase risk for PTSD and are associated with 
impaired fear extinction

(49)

 Allopregnanolone Decreased in women with PTSD (54)

 Dehydroepiandrosterone (DHEA) Increased in PTSD (68)

 Dehydroepiandrosterone sulfate (DHEAS) Increased in PTSD; High DHEAS increases risk for PTSD (68)

 Testosterone Low levels increase risk for PTSD (56)

Metabolic Hormones

 NPY Decreased in PTSD (59)

 Ghrelin Increases fear in rodents (62)

 Insulin Increased response to glucose in PTSD (63)

 Endocannabinoids Decreased in PTSD (64)
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Table 2

Immunological factors associated with PTSD.

Immune Biomarkers Relationship to PTSD References

Interleukin-6 (IL-6) Increased in PTSD (74)

Interleukin-1β (IL-1β) Increased in PTSD (75)

Interleukin-2 (IL-2) Increased in PTSD (76)

C-reactive protein (CRP) Increased in PTSD; Increases risk for PTSD (78, 79, 94)

Nuclear factor-κB (NF-κB) Increased in PTSD (86, 87)

Tumor necrosis factor (TNF)-α Increased in PTSD (145)

Immune cell sensitivity to glucocorticoids Enhanced in PTSD (43)
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