Table 1.
Type of data | DC Model | Same Model | Different Model | ||
---|---|---|---|---|---|
Fraction of congruent fixational saccades |
f1(c) = b1 f2(c) = b2 |
f2(c) = f1(c) |
|
||
2 parameters: (b1, b2) |
3 parameters: (f, n, f) |
4 parameters: (f1, f2,n,f) |
|||
Congruent Rate |
Rc1(c) = 1f1(c) Rc2(c) = 2f2(c) |
Rc1(c) = Rcm/ (cm + Rm) + Rc2(c) = Ro2(c)f2(c) = Rc1(c)f2(c)/f1(c) |
Rc1(c) = R cm/ (cm + Rm) + Rc2(c) = Ro2(c)f2(c) = Rc1(c)f2(c)/f1(c) + f2(c) |
||
Overall Rate |
Ro1(c) = 1 Ro2(c) = 2 |
Ro1 (c) = Rc1(c)/f1(c) Ro2 (c) = Ro1(c) |
Ro1 (c) = Rc1(c)/f1(c) Ro2(c) = Ro1(c) + |
||
2 parameters: (1, 2) |
4 parameters: (R, m, R,) |
5 parameters: (R, m, R, ,) |
DC Fraction model, parameters b1 and b2 specify f1 and f2, respectively. Same Fraction model, parameters fn, f correspond to the gain, exponent, and semi-saturation, respectively, of a Nara-Rushton function (shared for f1 and f2). Different Fraction model, f1, and f2 correspond to the gain of f1 and f2, respectively; n, f correspond to the exponent, and semi-saturation (shared for f1 and f2). DC Rate model, parameters 1 and 2 specify the overall rates. Same Rate model and Difference Rate models, parameters R, m, R, and correspond to the gain, exponent, semi-saturation, and baseline, respectively, of the Nara-Rushton function that specify one of the congruent rate curves Rc1(c). The other three curves, Rc2(c), (Ro1(c), and Ro2(c), are specified relative to that function. Same Rate model, Ro1(c), = Ro2(c). Different Rate model, Ro1(c) and Ro2(c) differ by a constant.