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Abstract

Like apoptosis, necroptosis is an innate immune mechanism that eliminates pathogen-infected 

cells. Receptor interacting protein kinase (RIP)3 (also called RIPK3) mediates necrotic death by 

phosphorylating an executioner protein, MLKL, leading to plasma membrane leakage. The 

pathway is triggered against viruses that block caspase 8. In murine CMV, the viral inhibitor of 

caspase 8 activation (vICA) prevents extrinsic apoptosis but also has the potential to unleash 

necroptosis. This virus encodes the viral inhibitor of RIP activation (vIRA) to prevent RIP 

homotypic interaction motif (RHIM)-dependent signal transduction and necroptosis. Recent 

investigations reveal a similar mechanism at play in the human alphaherpesviruses, herpes simplex 

virus (HSV)1 and HSV2, where RHIM competitor function and caspase 8 suppression are carried 

out by the virus-encoded large subunit of ribonucleotide reductase (R1). In human cells, R1 

inhibition of caspase 8 prevents TNF-induced apoptosis, but sensitizes to TNF-induced 

necroptosis. The RHIM and caspase 8 interaction domains of R1 collaborate to prevent RIP3-

dependent steps and enable both herpesviruses to deflect host cell death machinery that would cut 

short infection. In mouse cells, HSV1 infection by itself triggers necroptosis by driving RIP3 

protein kinase activity. HSV1 R1 contributes to activation of RIP3 adaptor function in mice, a 

popular host animal for experimental infection. Based on these studies, infection of RIP3-kinase 

inactive mice should be explored in models of pathogenesis and latency. The necrotic death 

pathway that is suppressed during infection in the natural host becomes a cross-species barrier to 

infection in a non-natural host.
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Introduction

Programmed cell death contributes to innate immune control over intracellular pathogens, 

eliminating infected cells and restricting dissemination within the host organism. DNA 

viruses, in particular, encode functions that preserve cell viability to ensure sustained 

production of progeny from infected host cells [1,2]. The cell-intrinsic (mitochondrial) 

pathway of apoptosis is responsible for developmental elimination of cells, relying on pro-

apoptotic BCL2 family proteins BAX and BAK to control the release of mediators such as 

cytochrome c from mitochondria [3]. Intrinsic pathway adaptors are disarmed by virus-

encoded mitochondrial suppressors [4,1], several of which have shown a critical role in viral 

pathogenesis [5–11]. Mitochondrial apoptosis forms a cross-species barrier in human cells to 

prevent replication of murine cytomegalovirus (CMV) that is relieved dependent on the 

species origin of virus-encoded cell death suppressor [12]. In addition to mitochondrial cell 

death, cell autonomous death occurs through the assembly of preexisting cytosolic 

components into a caspase (Casp)8-containing signaling complexe. The existence of a 

cytosolic complex was first demonstrated in the context of TNF family death receptor 

signaling [13] where receptor interacting protein kinase (RIP)1 (also called RIPK1), Fas-

associated protein with death domain (FADD), Casp8 and the long form of FLICE 

inhibitory protein (FLIPL) associate as shown in (Figure 1). A similar complex, called a 

ripoptosome is key to signal transduction downstream of pathogen sensors and genotoxic 

stress [14–16] in addition to death receptors. No matter how this complex is triggered, the 

ripoptosome is now known to act as a regulator of alternate Casp8-dependent apoptosis and 

RIP3-dependent necroptosis outcomes (Figure 2). Necrotic signaling from the ripoptosome 

has been implicated in inflammatory disease [17,2]; however, whether necroptosis drives 

inflammation [18,19] or is the result of inflammation [20] remains unresolved. Cell death 

signaling outcomes suggest that this complex acts as a broad pathogen supersensor [21] with 

demonstrated activity against vaccinia and reovirus [22–24,2,25], the natural mouse 

pathogen, murine CMV [17,26–28] and human herpesviruses, herpes simplex virus (HSV)1 

and HSV2 [29–31] as well as bacteria [32,33]. Murine CMV, HSV1 and HSV2 encode 

suppressors of RIP homotypic interaction motif (RHIM) signal transduction to prevent RIP3 

activation (Figure 1), providing insights into the host defense role of necroptosis [29,27,28].

The potency and delicate balance of apoptotic and necrotic pathways was first brought to 

light in studies that revealed a RIP1-RIP3-dependent process dictating midgestational 

embryonic lethality of Casp8-deficient mice [34,35] and FADD-deficient mice [36,37]. This 

was further reinforced when RIP1-deficiency [38–40] was shown to unleash a combination 

of Casp8- and RIP3-mediated pathways that are normally held in check via RIP1 RHIM 

signaling through the final stages of gestation and during parturition, a time during 

development when tonic levels of TNF, interferons and nucleic acids combine to activate the 

ripoptosome [38]. The propensity for a ripoptosome to dictate apoptotic or necrotic 

outcomes was extended by studies of RIP3 mutant-bearing cells and mice [41,42] and, in 

particular, the behavior of RIP3 kinase inhibitors, where viability of cells and mice were 

undermined by RHIM-dependent signal transduction associated with robust ripoptosome 

formation [41]. It is now recognized that, in addition to death receptor signaling [23,43,44], 

a ripoptosome regulates necroptosis downstream of Toll-like receptors [14], T cell receptors 
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[45], interferon receptors [46,41,47] and intracellular genotoxic stress [15] in addition to the 

well understood contribution in death receptor signaling (Figure 1). While less well 

characterized, similar principles dictate RIP1-independent RIP3-mediated necroptosis via 

RHIM-signaling adaptors TIR-domain-containing adapter-inducing interferon-β (TRIF) 

[48,49] and DNA inducer of interferon activation (DAI, also called ZBP1) [27,28]. We have 

argued that the ability to assemble a ripoptosome in such diverse settings evolved to 

facilitate the mammalian response to pathogens [21,18], particularly those that inhibit 

mitochondrial and Casp8 death pathways. One consequence of such pathogen-host détente is 

a propensity for untoward developmental and immunological defects arising from an 

imbalance in key ripoptosome components [38,35,41,42]. Necroptosis very likely evolved as 

a “trap door” host adaptation to eliminate cells infected with pathogens that inhibit Casp8 

[2,21,18]. It has become increasingly clear that, through the ripoptosome and virus-encoded 

countermeasures that target this complex, Casp8-dependent apoptosis and RIP3-dependent 

necroptosis execute cells and reduce the burden of infection.

Viral Inhibition of RHIM Signal Transduction in Mouse and Human Cells

A ripoptosome (Figure 1) is nucleated via activation of FADD, Casp8, cFLIPL, RIP1 or 

RIP3, and forms through death effector domain (DED)-dependent, death domain (DD)-

dependent and RHIM-dependent interactions [16]. The RIP1-RIP3 necrosome is crucial for 

execution of necroptosis (Figure 2). The murine CMV M45-encoded viral inhibitor of RIP 

activation (vIRA) brought both the remarkable potency of necroptosis and the importance of 

virus-encoded countermeasures to light [17,26–28]. Without vIRA RHIM competitor 

function, this virus fails to infect its natural mouse host due to induction of DAI-RIP3 

necroptosis that eliminates infected cells [28]. The potency of this cell autonomous host 

defense pathway is reinforced by the remarkable attenuation of M45-deficient viruses for 

immunocompetent as well as immunodeficient mice [50,51,27,28]. Cell death is triggered by 

DAI-mediated recruitment and activation of RIP3, leading to the execution step involving 

MLKL phosphorylation and subsequent membrane permeabilization, shown in Figure 3 

[27,28,49]. Virus-infected cells are eliminated within a few hours and virus fails to sustain 

infection of the host animal. Elimination of either RIP3 or DAI from the mouse germ line 

reverses the phenotype; however, elimination of other RHIM adaptors, TRIF or RIP1, does 

not. In addition to its natural role in preventing this virus-induced necroptosis, vIRA RHIM 

competitor can also prevent consequences of RIP1-RIP3 interaction downstream of TNF 

receptor (TNFR)1 [27] and TRIF-RIP3 interaction in Toll-like receptor (TLR)3 and TLR4-

dependent necroptosis [49], as shown in Figure 3.

Like all betaherpesviruses, murine CMV M45 encodes an enzymatically inactive homolog 

of the large subunit (R1) of ribonucleotide reductase (RNR) [52]. This gene is conserved in 

alpha- and gamma-herpesviruses as well, where it encodes a subunit of an enzymatically 

active RNR responsible for converting ribonucleotides to deoxyribonucleotides in support of 

viral DNA synthesis [52]. Herpes simplex virus (HSV)1 and HSV2 regulate cell death early 

during infection [53,54], suppressing necrosis [55] as well as apoptosis [56–62]. Cell death 

suppression requires the regulatory protein ICP4 as well as the protein kinase US3 

[63,54,64,65]. Early viral gene products gD [62,66], US3 [65,67,64] and R1 

[68,69,60,70,71] are all able to inhibit apoptosis in defined settings [72,73]. Furthermore, 
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reactivation of HSV1 from latency in rodent animal models is tied to suppression of 

apoptosis by the viral latency transcript [74,75]. The mechanism of cell death suppression 

mediated by the R1 proteins, HSV1 ICP6 and HSV2 ICP10, has become the best understood 

at a mechanistic level. The large C-terminal RNR domain interacts directly with Casp8 [71] 

to prevent Casp8-mediated apoptosis [76,70,71,60], a pattern of cell death suppression that 

is comparable to the betaherpesvirus-encoded inhibitor of caspase activation (vICA) 

[77,2,4,78] or, possibly, gammaherpesvirus-encoded FLIP (vFLIP) homologs [77].

TNF as well as TLR3 pathways trigger cell death and contribute to host defense against 

HSV in mice [79–82]. Humans with mutations in innate signaling pathways exhibit marked 

susceptibility to HSV1 encephalitis [83–88]. The acknowledged host defense value of 

necroptosis in mice [18,19] prompted an evaluation of the importance of this pathway in 

human cells and the potential for HSV1 ICP6 and HSV2 ICP10 to block the pathway. 

Although these viral R1 proteins were shown to bind RIP1, the interaction was initially 

mapped outside of the N-terminal RHIM-like sequence homology [89]. It turns out that both 

ICP6 and ICP10 have an N-terminal RHIM that mediates binding to RIP1 and RIP3 (Figure 

4). In human cells, this interaction prevents RIP3 activation and formation of a necrosome 

downstream of TNFR1- and Fas-dependent necroptosis [29]. In mouse cells, similar 

interactions of ICP6 have revealed an ability to trigger necroptosis independent of death 

receptor, DAI or TRIF signaling [30,31]. Thus, both HSV1 and HSV2 R1 function like M45 

in human cells, but HSV1 R1 appears to contribute to virus-induced necroptosis in mouse 

cells and mice. The suppression of necroptosis in human cells comes with one important 

additional feature that distinguishes the protein from murine CMV M45/vIRA; the C-

terminal RNR domain known to control apoptosis is also necessary for suppression of 

necroptosis by both R1 homologs. Neither M45 nor human CMV UL45 bind to Casp8 [29]. 

Both betaherpesviruses encode the separate Casp8-binding protein, vICA. Thus, in addition 

to blocking Casp8-dependent apoptosis, the RNR domain of HSV1 and HSV2 R1 

simultaneously opens the pro-necrotic trap door in human cells by blocking Casp8 

activation, but closes this alternate outcome via RHIM-dependent disruption of RIP1-RIP3 

interaction.

Viral Initiation of Necroptosis

Mouse cells infected with murine CMV M45 mutant virus die via DAI-RIP3-dependent 

necroptosis [27,28]. Even though human cells infected with either WT or ICP6 mutant 

HSV1 do not undergo spontaneous death [29], HSV1-infected mouse cells die prematurely 

from necroptosis [30,31]. HSV1-infected C57BL/6 mouse cells and mice show 

compromised titers compared to RIP3-deficient cells and mice [30,31], a pattern reminiscent 

of vaccinia-infection [23]. HSV1 ΔICP6 deletion mutant or tetra-Ala substitution mutant 

(mutRHIM) viruses relieve this RIP3-dependent restriction of infection. Furthermore, 

transfection with HSV1 ICP6 into mouse, but not human cells, triggers the interaction with 

RIP1 and/or RIP3, resulting in RHIM-dependent initiation of necroptosis [30,31]. The 

consequences of interacting with RIP1 and RIP3 results in an opposite outcome from HSV1-

infected human cells where the R1 protein blocks Casp8-mediated apoptosis [71] as well as 

RIP3-mediated necroptosis [29]. These studies reveal the importance of apoptosis and 

necroptosis in human cell autonomous host defense against HSV1 and HSV2. The 
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observations demonstrate how differently mouse cells respond to these human pathogens, 

raising serious questions about using WT HSV1 in mice for studies intended to model 

pathogenesis and latency in humans. In human cells, where both apoptosis and necroptosis 

are suppressed, ICP6 and ICP10 emerge as potent cell death suppressors in addition to 

enzymatic activity responsible for generating deoxyribonucleotides.

The direct role of HSV1 ICP6 in triggering necroptosis during infection in mouse cells 

[31,30] suggests necroptosis may provide a cross-species barrier to infection. Not much 

research has gone into defining the contribution of cell autonomous death to cross-species 

infection, although investigation of murine CMV in human cells demonstrated that intrinsic 

apoptosis also contributes as a barrier [12]. Because recent studies investigating the 

initiation of necroptosis in HSV1-infected mouse cells and mice implicated RIP3 but left the 

question of a role for RIP1 incompletely resolved, we have explored the contribution of 

RIP1 and RIP3 kinase activity in the pro-necrotic potential of HSV1 infection for mouse 

cells. We first examined the sensitivity of control necroptosis-sensitive and RIP3 shRNA 

knock-down 3T3-SA cells to infection with two pairs of viruses, HSV1 KOS strain 

compared to ΔICP6 mutant virus or F strain and mutRHIM virus used previously [29,31]. As 

shown in Figure 5A, dramatic levels of death were observed in 3T3-SA cells at 16 hpi with 

either KOS or F strain. Death was reduced when either ΔICP6 or mutRHIM virus was 

employed. Consistent with previous published data [31,30], knockdown of RIP3 reversed 

cell death induced by either WT or mutant HSV1 strains. Thus, HSV1 triggers RIP3- and 

MLKL-dependent necroptosis in mouse cells facilitated by the expression of ICP6. 

Somewhat surprisingly, by 24 hpi, HSV1 KOS and ΔICP6 mutant virus induce similar levels 

of death in either 3T3-SA or L929 cells when assayed across a range of MOIs (Figure 5B 

and C). These results suggested that HSV1-mediated necroptosis in mouse cells was 

facilitated by ICP6 at earlier times, but that death was independent of this gene product 

when cells were followed for longer times. In order to further understand the behavior, we 

infected cells carrying kinase inactive versions of RIP1 (K45A) or RIP3 (K51A). Cultured 

WT, RIP1 K45A and RIP3 K51A mouse embryo fibroblasts (MEFs) were infected with 

HSV1 or ΔICP6 mutant virus at an MOI of 5 and cell viability was assessed at 22 hpi. As 

shown in Figure 5D, RIP1 K45A MEFs showed a modest decrease in necroptosis compared 

to WT MEFs, and RIP3 K51A MEFs were completely resistant to virus-induced 

necroptosis. Importantly, parental WT strains KOS and F did not show a difference from 

ICP6 mutant viruses, ΔICP6 or mutRHIM. This result indicated that HSV1-induced 

necroptosis is RIP3 kinase-dependent. Similar to a recent report [31], these results suggest 

RIP1 kinase partially influences the outcome. To more fully explore the differences in the 

time course of HSV1 KOS and ΔICP6 virus-induced necroptosis, cell permeability was 

measured throughout infection using Sytox Green on an IncuCyte instrument [29]. In stark 

contrast to uninfected cells, which remained impermeable, MEFs infected with either KOS 

or ΔICP6 became positive between 8 and 10 hpi and progressed to maximal levels by 20 to 

24 hpi (Figure 5E), with the ΔICP6 mutant lagging the parental WT KOS strain. Differences 

in the extent of cell permeability became most dramatic around 12 hpi when the level of WT 

virus-induced necroptosis was approximately twice that in the ICP6 mutant virus infection 

and lasted until 20 hpi. Consistent with the viability assay shown in Figure 5D, time course 

analysis of cell permeability showed that RIP1 kinase inactive mutant had very little impact 
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on cell death when infected with HSV1 KOS or ΔICP6, but that RIP3 kinase inactive cells 

completely resisted infection (Figure 5F and data not shown).

Previous studies implicated HSV1 ICP6 as an inducer of necroptosis independent of 

infection by using transient overexpression in mouse cells [31,30]. We were able to isolate 

necroptosis-sensitive 3T3-SA cells stably expressing either ICP6 or ICP10, relying on 

transduction methods we employed on human cells [29]. R1-expressing cells were readily 

isolated without any signs of spontaneous death reported when transient overexpression was 

used [31,30]. We then evaluated the sensitivity of these HSV R1-expressing cells to 

necroptosis induced by TNF plus zVAD. HSV2 ICP10 modestly protected cells and, as 

expected, RIP3 kinase inhibitor GSK’872 fully protected (Figure 6A). In contrast, HSV1 

ICP6 modestly increased sensitivity to death of transduced 3T3-SA cells, as we recently 

reported [29]. While both of these R1 proteins are potent cell death suppressors in human 

cells, they show inconsistent behavior in mouse cells. In addition to modest protection from 

TNFR1-induced necroptosis, ICP10 protected 3T3-SA cells from MCMVmutRHIM virus-

induced, DAI-dependent necroptosis (Figure 6B), but not from TLR3/TRIF-induced 

necroptosis. ICP10 sensitized 3T3-SA cells to poly(I:C)-induced death independent of the 

addition of caspase inhibitor zVAD (Figure 6C). As expected, MCMV M45-encoded vIRA 

exhibited the broad capacity to block TNFR1-RIP1-induced, TLR3-TRIF-induced and virus-

induced DAI-RIP3-dependent necroptosis (Figure 6D). In L929 cells, ICP10 modestly 

protected from TNF, zVAD or TNF plus zVAD induced necroptosis (Figure 6E), although 

this R1 protein did not have any impact on MEFs (Figure 6F). These results indicated that 

ICP10 exhibits anti-necroptosis function in a mouse cell line-dependent manner. Overall, 

HSV1 infection induces necroptosis in mouse cells but not in human cells. The UL39 gene 

product ICP6 alone is not necessary for induction of necroptosis in mouse cells by HSV1 

even though ICP6 alone induces necroptosis under some conditions when expressed in 

mouse cells. It is important to appreciate that other viral functions aside from ICP6 drive 

necroptosis in mouse cells as well as the fact that stress of transfection or other assay 

conditions may influence the potential of ICP6 to trigger necroptosis on its own.

Given that MCMV M45-encoded vIRA disrupts the ability of RIP3 to interact with activator 

proteins RIP1, TRIF and DAI [27,28] and M45 is a homolog of HSV R1 [52], we were 

encouraged by the observation that HSV R1 blocked necroptosis in human cells. Neither 

ICP6 nor ICP10 functions consistently in cells derived from the non-natural mouse host. In 

contrast, MCMV M45 displays a broad capacity to prevent necroptosis in cells from either 

mice or humans (Figure 6) [29,31]. HSV1 infection triggers a dramatic level of necroptosis 

in mouse cells dependent upon RIP3 kinase activity, in line with two recent reports [31,30]. 

In contrast to these reports, however, we observe that ICP6 mutant viruses retain pro-

necrotic impact on mouse cells, albeit delayed, indicating that ICP6 is not the only viral gene 

product that is responsible for triggering necroptosis in the non-natural mouse host. 

Importantly, HSV1 ICP6 and its close relative HSV2 ICP10, are both necessary and 

sufficient to protect human cells from necroptosis as well as apoptosis whether assessed 

within the context of virus infection or independent of virus infection [29].
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Synopsis and Outlook

Necroptosis clearly provides cell autonomous host defense against viruses infecting mouse 

and human cells even though herpesviruses derail RIP3 activation by disrupting key 

signaling events. This pathway may be important in preventing cross-species infections 

where the viral suppressors are either inactive or contribute to the recruitment of RIP3. 

Future efforts will address how other viruses, particularly poxviruses, interface with this 

pathway. The relative importance of RIP1, TRIF and DAI in triggering RIP3 kinase activity 

will also continue to receive deserved attention. Finally, it is widely presumed that 

necroptosis contributes to inflammatory disease pathology; however, more direct tools and 

interventions are needed to interrogate affected tissues.
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Figure 1. Formation of the ripoptosome from cytosolic components
FADD becomes activated by signal transduction downstream of death receptor (DR), Toll-

like receptor (TLR), interferon receptor (IFNR) as well as T cell receptor (TCR) activation 

or intracellular genotoxic stress and virus infection. When activated, FADD recruits cFLIPL-

Casp8 heterodimer via death effector domain (DED) interactions, and RIP1 is recruited via 

death domain (DD) interactions. Associated RIP1 recruits RIP3 via a RHIM interaction (red 

rectangle). Some R1 proteins of herpesviruses, such as murine CMV (MCMV), HSV1 and 

HSV2, act as RHIM competitors to disrupt the formation of the ripoptosome.
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Figure 2. Regulation of Casp8-mediated apoptosis and RIP3-mediated necroptosis by the 
ripoptosome
Although cFLIPL–Casp8 association prevents autocleavage activation of Casp8 and 

maintains sufficient basal protease activity to prevent necroptosis, Casp8-mediated apoptosis 

will be induced by homodimerization which leads to Casp8 autocleavage to execute 

apoptosis under conditions such as low cFLIP levels. However, RIP3-mediated necroptosis 

may be alternatively triggered when Casp8 activity is blocked. In this setting, the RIP1-RIP3 

heterodimer is activated by phosphorylation, then phosphorylated RIP3 recruits and 

activates mixed lineage kinase domain-like (MLKL) protein. The RIP1-RIP3-MLKL 

complex, called a necrosome, localizes to membranes and directs the final steps in 

necroptosis leading to membrane leakage.
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Figure 3. RIP3-mediated necroptosis is activated by three distinct RHIM-containing adaptors 
and blocked by R1 proteins of MCMV and HSV
RIP1 is a key pro-necrotic kinase acting downstream of TNF family death receptor (TNFR1, 

Fas, TRAIL), forming a RIP1–RIP3 complex. Virus-induced DAI–RIP3 necrosis is 

characterized by MCMV M45 mutant virus infection. In addition to RIP1 and DAI, TRIF, 

the key TLR3- and TLR4-signaling adaptor, activates RIP3 via TRIF–RIP3 interaction. 

RIP3 is specifically activated by RIP1, DAI, or TRIF in a RHIM-dependent manner, when it 

autophosphorylates at S277 and targets MLKL via phosphorylation at T357 and S358. The 

RHIM competitor MCMV M45 functions during infection to prevent RIP3 association with 

DAI (solid line), but experimentally can also inhibit association with RIP1 or TRIF (dashed 

lines).
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Figure 4. Interaction of HSV1 RHIM competitors with ripoptosome components downstream of 
TNFR1/Fas in human cells
Diagramatic depiction of HSV1 ICP6 and HSV2 ICP10 interaction with the Casp8 DED 

domain via ribonucleotide reductase (RNR) domain and interaction with RIP1 or RIP3 via 

the RHIM domain.
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Figure 5. HSV1 infection triggers RIP3-dependent necroptosis in mouse cells
A. Cell viability of HSV1 KOS strain and HSV1 KOS-derived ΔICP6, as well as HSV1 F 

strain and HSV1 F-derived ICP6 mutRHIM virus-infected 3T3-SA cells (MOI=5) stably 

expressing either control scrambled (Sc) shRNA or RIP3 shRNA. Viability was determined 

by measuring ATP levels using a Cell Titer-Glo assay at 16 hpi. Immunoblot (IB) detection 

of RIP3 in transduced whole cell lysates is shown above. B. Viability of indicated virus-

infected 3T3-SA cells (MOI=5, 10, 50 or 100), and viability was determined at 24 hpi as 

described in panel A. C. Viability of indicated virus-infected L929 cells (MOI=5, 10, 50 or 

100), and viability was determined at 24 hpi as described in panel A. D. Viability of 

indicated virus-infected WT, RIP1 kinase inactive mutant (RIP1 K45A) and RIP3 kinase 

inactive mutant (RIP3 K51A) MEFs (MOI=5), and viability was determined at 22 hpi as 

described in panel A. E. Time course (IncuCyte) cell death analysis of indicated virus-

infected WT MEFs (MOI=5) assessed by cell permeability using Sytox Green (50 nM) 

fluorescent dye stained cells per mm2. F. Time course analysis showing cell death of HSV1 

(KOS)-infected WT, RIP1 K45A and RIP3 K51A MEFs assessed by cell permeability as 

described in panel E.
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Figure 6. Role of HSV2 ICP10 in necroptosis of mice cells
A. Viability of 3T3-SA-EV or 3T3-SA-ICP10 cell lines treated for 18h with TNF (T, 25 

ng/mL) and/or caspase inhibitor zVAD (V, 25 µM) in the absence or presence of RIP3 

kinase inhibitor GSK’872 (5 µM). B. Viability of 3T3-SA-EV or 3T3-SA-ICP10 cell lines 

infected with MCMV parental K181 or M45mutRHIM virus (MOI=10) for 18h. C. Viability 

of IFNβ-primed 3T3-SA cells for 24 h following treated with poly(I:C) (25 µg/ml) in the 

absence or presence of zVAD for 18h. D. Viability of 3T3-SA-EV or 3T3-SA-M45 cells 

treated for 18 h with T+V or poly(I:C)+V, or infected with M45mutRHIM virus. E. Viability 
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of L929-EV or L929-ICP10 cells treated for 18 h with T and/or V. F. Viability of MEF-EV 

or MEF-ICP10 cells treated for 18 h with T, V, IAP antagonist BV6 (S; 1 µM) or the 

indicated combinations. Viability was determined by measuring ATP levels as in Figure 5.
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